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Midterm
The MATLAB code is given separately.

1. Viscosity in the capillary instability of a thread See Figure 1. Note that the inviscid
result uses a different scaling.
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Figure 1: Nondimensional growth rate for J = 1, 2, 4 and 8.

2. The critical Rayleigh numbers for rigid-free and rigid-rigid boundary conditions
The critical Reynolds numbers are a = 3.116334360598749, R = 1707.761777134238 for
rigid-rigid and a = 2.682326791289785, R = 1100.649606893142 for rigid-free. The exact
solution for free-free gives a = 2.22144146907918 and R = 657.511364479516. This is
using Chandrasekhar’s approach and I have given too many digits for fun. As expected, it
is easier to drive convection with free boundaries, since the no-slip condition at rigid walls
is more effective at inhibiting flow. Chandrasekhar’s approach is fairly easy to program,
although some care is required for the initial starting guess in the odd case. Note that
Figure 2 in Chandrasekhar, which claims to show both the even and odd curves, must be
wrong given the fact that the critical Rayleigh number for the odd case is around 17, 600:
see Figure 2(b). Hence there is an unknown factor required to obtain the odd curve.
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Figure 2(a) shows the critical curve for the three cases: rr, r f and f f . The curves have also
been obtained by solving the underlying equations numerically (Chandrasekhar §—,12).
In terms of W, the problem is

(D− a2)3W = −Ra2W

with boundary conditions W = (D2 − a2)2W = 0 at z = 0 and 1 and either DW = 0 or
D2W = 0 there (no slip and free slip respectively). Alternatively, in terms of Θ,

(D− a2)3Θ = −Ra2Θ

with boundary conditions Θ = (D2− a2)Θ = 0 at z = 0 and 1 and either D(D2− a2)Θ = 0
or D2(D2− a2)Θ = D4Θ = 0 there (no slip and free slip respectively). This formulation is
more convenient in 3.
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Figure 2: Left: critical curves computed by Chandrasekhar’s method (solid curves), solv-
ing the W- and Θ-equations numerically (also black dots). The crosses correspond to the
critical wavenumber and Rayleigh numbers. Right: an attempt to reproduce Figure 2 in
Chandrasekhar.

3. A numerical Rayleigh–Bénard problem (i) The momentum equation becomes

ρ0
Du
Dt

= ∇p + ρ0g[1− α(ρ− ρ0)
3].

In the basic state, the temperature profile is linear so θ = θ0 + (θ1 − θ0)z/d. Plugging this
into the momentum equation and linearizing gives

u′t = −
1
ρ0
∇p′ − 3αg

(θ1 − θ0)
2

d2 z2θ′ + ν∇2u′;

the other equations are the same. Follow the usual process to get

(∂t − ν∇2)∇2w′ = 3αg
(θ1 − θ2

0)

d2 z2∇2
hθ′, (∂t − κ∇2)θ′ =

(θ1 − θ0)

h
w′.
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Non-dimensionalizing and eliminating w′ gives the equation in the text. At the boundary
θ′ = 0. The boundary conditions w′ = 0 along with θ′ = 0 and the linearized heat
equation give ∆θ′ = 0. Finally the no-stress condition gives u′z = v′z = 0, so continuity
gives w′zz = 0. Using the same argument as before leads to ∆2θ′ = 0.
(ii) Non-dimensionalize as in the text and substitute in the normal-mode solution θ′ =
T̂(z)eσt+i(kx+ly) to get

[(σ + κ2 − D2)(σPr−1 + κ2 − D2)(D2 − κ2) + 3Aα2z2]T = 0,

where κ = (k2 + l2)1/2.
(iii) Multiply by T∗ and integrate from 0 to d. Then the imaginary part shows that σi
multiplied by a positive integral vanishes. Hence the principle of exchange of stabilities
remains valid.
(iv) To solve the eigenvalue problem numerically, use the Θ formulation as above with
Θ = T, so that

(D− a2)3Θ = −3Az2a2Θ

and the same boundary conditions as above. Figure 3 shows the corresponding critical
curves. Roughly, the critical wavenumbers are a = 3.2, R = 2012.9 for rigid-rigid, a = 2.7
and a = 1120.9 for rigid-free, and a = 2.2 and R = 763.7 for free free.
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Figure 3: Left: critical curves for Hupnol computed from the Θ-equation numerically. The
crosses correspond to the critical wavenumber and Rayleigh numbers.

4. Compressible Rayleigh–Bénard convection There was no correct answer for this. I
was expecting to see a discussion of the governing equations, the relevant boundary con-
ditions, the nondimensional parameters and an account of the form of the critical curves
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in terms of the appropriate Rayleigh number and wavenumber and their dependence on
the other nondimensional parameters.
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