Solution I

Phase plane System: $\dot{x}=x(2-y-x), \dot{y}=(x-2) y$. There are fixed points at $(0,0)$ and $(2,0)$. The Jacobian matrix is

$$
\left(\begin{array}{cc}
2-y-2 x & -x \\
y & x-2
\end{array}\right)
$$

The fixed point at $(0,0)$ has eigenvalues -2 and 2 with eigenvectors $(10)^{T}$ and $(01)^{T}$, so it is a saddle. The fixed point at $(2,0)$ has eigenvalues -2 and 0 with eigenvectors $(10)^{T}$ and $(1-1)^{T}$, so it is a degenerate fixed point. In the the linearized flow, the flow is horizontal into the line $x+y=2$. Further analysis of the flow near this line requires the concept of a center manifold.

D 2.4 The fixed points are 0,1 and R^{-1}. Differentiate to get $f^{\prime}(u)=-1+2(1+R) u-$ $3 R u^{2}$. Hence $f^{\prime}(0)=-1$ and $u=0$ is a stable solution. For $u=1$, find $f^{\prime}(1)=1-R$, so the solution is stable for $R>1$. For $u=R^{-1}$, find $f^{\prime}\left(R^{-1}\right)=1-R^{-1}$ and the solution is stable for $R<1$. If $u(0)=A$, the solution tends to 0 if $A<\min \left(1, R^{-1}\right)$. So for large R, there is a smaller and smaller range of positive A which lead to decay.

D 2.18 Substitute $(x y)^{T}=(a b)^{T} \mathrm{e}^{-\mathrm{i} \omega t}$ into the governing equations. This gives the matrix relation

$$
\left(\begin{array}{cc}
\mathrm{i}\left(\omega-\omega_{1}\right) & \epsilon p_{1} \\
\epsilon p_{2} & \mathrm{i}\left(\omega-\omega_{2}\right)
\end{array}\right)\binom{a}{b}=\binom{0}{0} .
$$

For this linear homogeneous solution to have solutions, the determinant of the matrix must vanish. This gives

$$
\omega^{2}-\omega\left(\omega_{1}+\omega_{2}\right)+\omega_{1} \omega_{2}+\epsilon^{2} p_{1} p_{2}=0
$$

Solving the quadratic and substituting in for ω_{2} gives

$$
\omega=\omega_{1}+\frac{1}{2} b \epsilon \pm \frac{1}{2} \epsilon\left(b^{2}-4 p_{1} p_{2}\right)^{1 / 2} .
$$

If $\epsilon=0$, the quadratic has the double root $\omega=\omega_{1}$. One can check that this corresponds to two different linearly independent eigenvalues $(10)^{T}$ and $(01)^{T}$, and the solution is $(x y)=\left(x_{0} y_{0}\right) \mathrm{e}^{-\mathrm{i} \omega_{1} t}$, i.e. neutrally stable with no algebraic instability, since there are two linearly independent eigenvectors. If $\epsilon>0$ and $4 p_{1} p_{2}>b^{2}$, the contents of the square root are negative so the solutions for ω have non-zero imaginary part. In particular one root has positive imaginary part, which means that $\mathrm{e}^{-\mathrm{i} \omega t}$ increases with time and the null solution is unstable.

Figure 1: Phase plane (trajectories are integrated until $t=0.5$).

C1.6.7 The eigenvalues are $-\epsilon$ and -2ϵ with eigenvectors $\mathbf{e}_{1}=(10)^{T}$ and $\mathbf{u}_{2}=(1,-\epsilon)^{T}$ respectively. The solution takes the form

$$
\mathbf{x}(t)=y_{01} \mathrm{e}^{-\epsilon t} \mathbf{e}_{1}+y_{20} \mathrm{e}^{-\epsilon t} \mathbf{e}_{2}
$$

Applying the initial condition gives the matrix equation

$$
\left(\begin{array}{cc}
1 & 1 \\
0 & -\epsilon
\end{array}\right)\binom{y_{10}}{y_{20}}=\binom{x_{10}}{x_{20}}
$$

This can be solved to give

$$
\mathbf{x}(t)=\left(x_{10}+x_{20} / \epsilon\right) \mathrm{e}^{-\epsilon t} \mathbf{e}_{1}+\left(-x_{20} / \epsilon\right) \mathrm{e}^{-\epsilon t} \mathbf{e}_{2} .
$$

For large times, the exponential terms both decay and $|\mathbf{x}(t)| \rightarrow 0$.
The energy is given by

$$
E(t)=y_{10}^{2} \mathrm{e}^{-2 \epsilon t}+2 y_{10} y_{20} \mathrm{e}^{-3 \epsilon t}+y_{20}^{2}(1+\epsilon)^{2} \mathrm{e}^{-4 \epsilon t}
$$

Figure 2: Bifurcation diagram. Blue portions of the curves are stable, red portions are unstable.

A Taylor expansion gives for small times

$$
E(t)=\left(y_{10}+y_{20}\right)^{2}+\left(\epsilon y_{20}\right)^{2}-\left[2 y_{10}^{2}+4(1+\epsilon)^{2} y_{20}^{2}+6 y_{10} y_{20}\right] \epsilon t+O\left(\epsilon^{2} t^{2}\right)
$$

To see when this can decay, write $y_{20}=-a y_{10}$. The ϵt term changes sign when the following quadratic vanishes:

$$
2\left(1+\epsilon^{2}\right) a^{2}-3 a+1=0
$$

which has roots

$$
a_{ \pm}=\frac{3 \pm \sqrt{1-8 \epsilon^{2}}}{4\left(1+\epsilon^{2}\right)}
$$

Energy initially grows if the quadratic is negative, which is the case if a is not large in magnitude. Hence there is growth if $a_{-}<a<a_{+}$.
Differentiate to find time at which $E(t)$ passes through a maximum by solving the equation

$$
-2 y_{10}^{2} \mathrm{e}^{-2 \epsilon t}-6 y_{10} y_{20} \mathrm{e}^{-3 \epsilon t}-4 y_{20}^{2}(1+\epsilon)^{2} \mathrm{e}^{-4 \epsilon t}=0 .
$$

Substituting in $y_{20}=-a y_{10}$ again gives

$$
1-3 a \mathrm{e}^{-\epsilon t}+2 a^{2}(1+\epsilon)^{2} \mathrm{e}^{-2 \epsilon t}=0
$$

This is the same quadratic as before for $a \mathrm{e}^{-\epsilon t}$, so $a \mathrm{e}^{-\epsilon t}=a_{ \pm}$. We need take a_{-}on the right-hand side, since $t>0$. Hence

$$
\epsilon t_{\max }=\ln \frac{a}{a_{-}}
$$

Now plug into the formulas for E :

$$
\frac{E\left(t_{\max }\right)}{E_{0}}=\frac{\mathrm{e}^{-2 \epsilon t_{\max }}-2 a \mathrm{e}^{-3 \epsilon t_{\max }}+a^{2}(1+\epsilon)^{2} \mathrm{e}^{-4 \epsilon t_{\max }}}{1-2 a+a^{2}(1+\epsilon)^{2}}=\frac{a_{-}^{2}}{a^{2}} \frac{1-2 a_{-}+a_{-}^{2}(1+\epsilon)^{2}}{1-2 a+a^{2}(1+\epsilon)^{2}} .
$$

In this fraction, the numerator is fixed. To maximize the ratio as a function of a, can minimize the denominator. The derivative of the denominator is

$$
2 a\left[1-3 a+2 a^{2}(1+\epsilon)^{2}\right] .
$$

So the roots are 0 and $a_{ \pm}$. The maximum comes from choosing a_{+}. To obtain the final expression, multiply the first fraction top and bottom by $2(1+\epsilon)^{2}$ and the second by a, then get rid of the $(1+\epsilon)^{2}$ terms by using the quadratic satisfied by $a_{p} m$:

$$
\frac{E\left(t_{\max }\right)}{E_{0}}=\frac{3 a_{-}-1}{3 a_{+}-1} \frac{1-a_{-}}{1-a_{+}}
$$

