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Solution I

Phase plane System: X = x(2 —y — x),y = (x — 2)y. There are fixed points at (0,0) and
(2,0). The Jacobian matrix is
2—y—2x —x
y x—2 )

The fixed point at (0,0) has eigenvalues —2 and 2 with eigenvectors (10)” and (01)7,
so it is a saddle. The fixed point at (2,0) has eigenvalues —2 and 0 with eigenvectors
(10)T and (1 —1)7, so it is a degenerate fixed point. In the the linearized flow, the flow is
horizontal into the line x + y = 2. Further analysis of the flow near this line requires the
concept of a center manifold.

D 2.4 The fixed points are 0, 1 and R~!. Differentiate to get f'(u) = —1+2(1 + R)u —
3Ru?. Hence f’(0) = —1 and u = 0 is a stable solution. For u = 1, find f'(1) =1 — R, so
the solution is stable for R > 1. For u = R~!, find f'(R™') = 1 — R~! and the solution is
stable for R < 1. If u(0) = A, the solution tends to 0 if A < min (1, R~!). So for large R,
there is a smaller and smaller range of positive A which lead to decay.

D 2.18 Substitute (xy)T = (ab)T e7'“! into the governing equations. This gives the

matrix relation
i(w—wr) €p1 a\ (0
€p2 i(w—w») b ) \0 )

For this linear homogeneous solution to have solutions, the determinant of the matrix
must vanish. This gives

w? — w(w1 + wy) + wiwy + 62p1p2 =0.

Solving the quadratic and substituting in for w; gives
w = w; + be + le(b* — 4p1pa)'/2.

If € = 0, the quadratic has the double root w = wj. One can check that this corresponds
to two different linearly independent eigenvalues (10)” and (01)7, and the solution is
(xy) = (x0yo) e 1!, i.e. neutrally stable with no algebraic instability, since there are two
linearly independent eigenvectors. If € > 0 and 4p;p, > b?, the contents of the square
root are negative so the solutions for w have non-zero imaginary part. In particular one
root has positive imaginary part, which means that e ' increases with time and the null
solution is unstable.
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Figure 1: Phase plane (trajectories are integrated until t = 0.5).

C1.6.7 Theeigenvalues are —e and —2¢ with eigenvectors e; = (10)T and up = (1, —€)”
respectively. The solution takes the form

X(t) = yme_etel -+ yzoe_etez.

Applying the initial condition gives the matrix equation
(32 (o) ()
0 —e Y20 X0 )

x(t) = (x10+ xa0/€)ee1 + (—xz0/€)e ez

This can be solved to give

For large times, the exponential terms both decay and |x(¢)| — 0.
The energy is given by

E(t) = yioe > + 2y10y20e > + 30 (1 + €)%
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Figure 2: Bifurcation diagram. Blue portions of the curves are stable, red portions are
unstable.

A Taylor expansion gives for small times
E(t) = (y10+¥20)* + (ey20)* — 2y + 4(1 + €)*y30 + 6yr0y20]et + O(e?12).

To see when this can decay, write yo90 = —ayjo. The et term changes sign when the
following quadratic vanishes:

2(1+€®)a*>—3a+1=0,

which has roots
. 3+ V1 —8¢€?
T 41+ )

Energy initially grows if the quadratic is negative, which is the case if a is not large in
magnitude. Hence there is growthifa_ <a <a,.
Differentiate to find time at which E(f) passes through a maximum by solving the equa-
tion

—2}/%0672“ _ 6]/10]/2067361% _ 4]/%0(1 4 6)2e74et = 0.

Substituting in y29 = —ayjp again gives

1—3ae " 4+ 24a%(1 + €)% % = 0.



et et

This is the same quadratic as before for ae™ = a4+. We need take a_ on the

right-hand side, since t > 0. Hence

, SO ae

a
etmax — ].n ——

Now plug into the formulas for E:

E(tmay) e 2¢tmx —2ge=3€tmax 4 g2(1 4 ¢)2e4€tmr g2 1 —2a_ + 4% (14 ¢€)?

Eo 1—2a+a2(1+e¢)? T a2 1-2a+a*(1+€)?

In this fraction, the numerator is fixed. To maximize the ratio as a function of a, can
minimize the denominator. The derivative of the denominator is

2a[1 — 3a + 24%(1 + €)?].

So the roots are 0 and a+. The maximum comes from choosing a. To obtain the final
expression, multiply the first fraction top and bottom by 2(1 + €)? and the second by 4,
then get rid of the (1 + €)? terms by using the quadratic satisfied by a,m:

EO _3ﬂ+—11—ﬂ+.




