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Solution III

D 8.10 With a broken-line profile, the Rayleigh equation reduces to wzz + α2w = 0. The
solution in z > 0 is

w =

{
Ae−|α|z for z > 1
B cosh |α|z + C sinh |α|z for 0 < z < 1.

and similarly in z < 0. For now we just use α and put the absolute value back in at the
end. The matching conditions come from continuity of the interface and of pressure:

w
U − c

and Uzw− (U − c)wz are continuous at z = 1.

(Note that Uz = 0 for this flow.) Since the basic flow is even, the solution w is either even
(sinuous) or odd (varicose). For the sinuous solution, C = 0. Hence

Ae−α

−c
=

C cosh αz
1− c

, c(−αAe−α) = −(1− c)(α tanh αC).

Dividing these two equations one by the other gives c2 = −(1− c)2 tanh α, giving the
dispersion relation

c2 + (1− c)2 tanh |α| = 0.

Note the typo in the book. Rayleigh uses nt + kx, which explains the problem. This
quadratic has real coefficients and a negative determinant, so it has complex conjugate
roots, one of which has positive imaginary part and is hence unstable.
The varicose instability has B = 0, so

Ae−α

−c
=

B sinh αz
1− c

, c(−αAe−α) = −(1− c)(α cosh αB).

The same working gives
c2 + (1− c)2 coth |α| = 0.

D 8.14 (i) First note that the argument of the logarithm is always positive so the stream-
function is real. Write

eψ = (1 + A2)1/2 cosh z + A cos x.

Hence
eψ∇ψ = (−A sin x, (1 + A2)1/2 sinh z).

Taking the divergence gives

eψ[∆ψ + |∇ψ|2] = −A cos x + (1 + A2)1/2 cosh z.

1



Now
eψ|∇ψ|2 = A2 sin2 x + (1 + A2) sinh2 z.

and
eψ[−A cos x + (1 + A2)1/2 cosh z] = (1 + A2) cosh2 z− A2 cos2 x.

Putting this together gives

e2ψ∆ψ = (1 + A2) cosh2 z− A2 cos2 x− [A2 sin2 x + (1 + A2) sinh2 z] = 1.

Hence ∆ψ = e−2ψ. A steady solution to the two-dimensional vorticity has to satisfy

J(ψ, ∆ψ) = J(ψ, e−2ψ) = 0,

since the Jacobian J(ψ, f (ψ)) = 0 for any function f . A contour plot of the solution for
A = 1 is given in Figure 1.
Expand for small A in a Taylor series:

ψ = log [cosh z + A cos x + O(A2)] = log cosh z + log
(

1 + A
cos x
cosh z

+ O(A2)
)

= log cosh z + A cos x sech z + O(A2).

The first two terms can be considered as basic state streamfunction and perturbation of the
flow with ψ = log cosh z, showing that the Rayleigh problem for the basic flow U = tanh z
has a neutrally stable mode with wavenumber 1 and vertical structure sech z.
As A→ ∞, have

ψ ∼ log A + log [cosh z + cos x] + · · · .
The first term is irrelevant. The second looks like a set of line vortices spaced at a distance
2π apart along the x-axis with strength −4π. This can be seen by expanding about the
singularities x = (2n + 1)π and z = 0. This streamfunction is discussed in Lamb and
can be obtained as the sum of the streamfunction for point vortices. Contours of the
streamfunction are plotted in Figure 1.

8.24 Linearize the inviscid equations about the given basic state, writing the perturba-
tion velocity as (u, v, w) and the perturbation density as ρ (subscripts are derivatives):

ρ̄[ut + Ωuθ + Wuz − 2Ωv]− V2

r
ρ = −pr,

ρ̄[vt + Ωvθ + Wvz + (Ω + Vr)u] = −1
r

pθ,

ρ̄[wt + Ωwθ + Wwz + Wru] = −pz,
1
r
(ru)r +

1
r

vθ + wz = 0,

ρt + Ωρθ + Wρz + ρ̄ru = 0.
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Figure 1: Top: contour plot of Stuart vortex for A = 1. Bottom: contour plot of limit for
large A.

Here Ω = r−1V is the angular velocity. Now consider the axisymmetric case and use
normal modes as indicated:

ρ̄[−ikcû + ikWû− 2Ωv̂]− V2

r
ρ̂ = −Dp̂,

ρ̄[−ikcv̂ + ikWv̂ + (Ω + DV)û] = 0,
ρ̄[−ikcŵ + ikWŵ + (DW)û] = −ikp̂,

D∗û + ikw = 0,
−ikcρ̂ + ikWρ̂ + (Dρ̄)û = 0.

Cancel v̂ and ŵ:

ρ̄[−k2(W − c)2 + 2Ω(Ω + DV)]û− ik(W − c)
V2

r
ρ̂ = −ik(W − c)Dp̂,

ρ̄[−ik(W − c)D∗ + ik(DW)]û = k2 p̂,
ik(W − c)ρ̂ + (Dρ̄)û = 0.

Now cancel ρ̂ and substitute in û = ik(W − c)F:

ρ̄[−k2(W − c)2 + 2Ω(Ω + DV)]F + (Dρ̄)
V2

r
F = −Dp̂,

ρ̄[−ik(W − c)D∗ + ik(DW)]ik(W − c)F = k2 p̂.

Cancel p̂:

D{ρ̄[(W − c)D∗ − (DW)](W − c)F}+ ρ̄[−k2(W − c)2 + 2Ω(Ω + DV)]F + (Dρ̄)
V2

r
F = 0.

3



Now

D∗(W − c)F− (DW)(W − c)F = (W − c)DF + r−1(W − c)F = (W − c)D∗F,

which gives the required equation

D[ρ̄(W − c)2D∗F]− ρ̄k2(W − c)2F + ΦF = 0,

since Φ = r−1(Dρ̄)V2 + 2ρ̄[r−2V2 + r−1V(DV)].
Notice that the condition given in the question must be wrong on dimensional grounds,
since W is a velocity, while Φ has a factor of density as defined. Now write F = (W −
c)−1/2G, assuming that c has a non-zero imaginary part. Some algebra gives

ci

(∫ R2

R1

{
ρ̄(|D∗G|2 + k2|G|2) + |G|2

|W − c|2

[
Φ− 1

4
ρ̄(DW)2

]}
r dr

)
= 0.

If the flow is unstable, the square bracket must be negative somewhere, so the flow is
stable if

Φ ≥ 1
4

ρ̄(DW)2.

The subtlety in this question is that, while the analogy with the Taylor–Goldstein equation
is clear, the Miles–Howard theorem derived in class used the Boussinesq approximation.

C 4.5.2 The velocity field is piecewise constant, so the perturbation velocity is irrota-
tional. The velocity potential satisfying the boundary conditions at the walls is

φ =

{
B cosh k(y− h2) for 0 < y < h2
A cosh k(y + h1) for −h1 < y < 0.

The kinematic interfacial condition stays

ik(U − c)η = φy on y = 0,

for both layers, while the dynamic interfacial condition becomes, from Bernoulli’s’ equa-
tion,

ρ1[ik(U1 − c)φ1 + gη]− ρ2[ik(U2 − c)φ2 + gη] = −k2Tη on y = 0.

We hence obtain three linear equations

ik(U2 − c)η = −kB sinh h2,
ik(U1 − c)η = kA sinh h1,

ρ1[ik(U1 − c)A cosh kh1 + gη]− ρ2[ik(U2 − c)B cosh kh2 + gη] = −k2Tη

(one can eliminate η, but keeping it makes the equations cleaner). There is a non-trivial
solution when the determinant∣∣∣∣∣∣

s1 0 −i(U1 − c)
0 s2 i(U2 − c)

ikρ1(U1 − c)c1 −ikρ2(U2 − c)c2 g(ρ2 − ρ1)− k2T

∣∣∣∣∣∣
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vanishes, where c1 = cosh kh1 and so on. This gives the dispersion relation

[g(ρ2 − ρ1)− k2T]s1s2 − kρ2(U2 − c)2c2s1 − kρ1(U1 − c)2c1s2 = 0.

Simplifying gives

ρ1(U1 − c)2 coth kh1 + ρ2(U2 − c)2 coth kh2 + g
ρ2 − ρ1

k
− kT = 0.

One can also solve this problem using velocity, or using Rayleigh’s equation and matching
the total pressure.

5


