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Midterm Solutions
1 1. Take u· the Euler equation and obtain

u ·ρDu
Dt

=−u ·∇p−ρu ·∇Φ.

The pressure term may be rewritten using integration by parts to give the energy equation

ρ
D
Dt

(
u2

2

)
=−ρu ·∇Φ−∇ · (up)+ p∇ ·u.

The last term on the RHS is the reversible conversion to internal energy due to volume changes. For
incompressible flow this term disappears since ∇ ·u = 0. In this case, the internal energy equation
decouples from the kinetic energy equation.

2. To obtain the Reynolds number, nondimensionalize the momentum equations with a character-
istic length scale, L, characteristic velocity, U , and time scale of L/U to obtain Re = UL/ν, where
ν is the kinematic viscosity of the fluid. This number is a ratio of inertial forces to viscous forces.
When it is small, inertial forces are negligible, and viscous and pressure forces are in approximate
balance. When it is large, inertia forces dominate, and the viscous term in the momentum equations
may be omitted as a first approximation (outside boundary layers). The scaling used for pressure
depends on whether the flow considered is for low or high Re.
The Rossby and Ekman numbers are obtained by nondimensionalizing the rotating momentum
equations using the time scale f−1. The pressure is nondimensionalized with ρUL f . The Rossby
number Ro = U/ f L appears in front of the material derivative of velocity. When Ro is large, the
earth’s rotation is negligible; when Ro is small, for example when looking at very long length
scales, the Coriolis force may not be ignored. The Ekman number is defined as E = ν/ f L2 and
appears in front of the viscous term. It is a ratio of the viscous force to the Coriolis force. When E
is small, the viscous forces are negligible in comparison to the Coriolis force.

3. The medium is unstratified, therefore dB/dz = 0 and B = B0 is constant. Since we are looking
for power-law solutions, substitute in

Q = qzλ, M = mzγ.

The plume equations becomes

dQ
dz

= λqzλ−1 =
2αmzγ

qzλ
,

dM
dz

= γmzγ−1 =
B0qzλ

mzγ
.

Equating powers of z shows that λ = γ = 1. The equations now give

q = 2α
m
q

, m = B0
q
m

.

Solving gives
B = B0, M = (2αB2

0)
1/3z, Q = (4α

2B0)1/3z.
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2. The Boussinesq equations of motion (neglecting rotation) are

Du
Dt

=− 1
ρ0

∇p′− ρ′

ρ0
gẑ+ν∇

2u,

where ρ′ and p′ are the perturbation density and pressure, respectively, and ρ0 is the density of the
background state. Nondimensionalize with

û = u
H
κ

, x̂ =
x
H

, t̂ = t
κ

H2 , ρ̂′ =
ρ′

ρ0β∆T
, p̂′ =

p′

ρ0 u2 = p′
H2

ρ0 κ2 .

The motivation for nondimensionalizing the perturbation density this way comes from the lin-
earized equation of state

ρ = ρ0[1−β(T −T0)]

and the time scale is taken to be determined by the vertical diffusion of heat. The nondimensional-
ized form of the Boussinesq equations of motion is

κ2

H3
Dû
Dt

=− κ2

H3 ∇ p̂′−β∆T gẑρ̂′+
νκ

H3 ∇
2û.

Rewriting this in terms of R and σ gives

1
σ

Dû
Dt

=− 1
σ

∇p̂′−Rẑρ̂′+∇
2û,

where R and σ are the Rayleigh and Prandtl number, respectively. From the equation of state the
units of β are 1/[T]. The flow will be turbulent for large R because it will have a large driving term,
leading to vigorous overturning motions (R is essentially a Reynolds number with the velocity scale
determined by the buoyancy forcing).

3 (i) The length scale of the boundary layer thickness is given as δ, and the bottom plate must be
at a temperature T0 + ∆T . The temperature difference δT between the lower plate and the interior
is therefore

δT = T0 +∆T − (T0 +
1
2

∆T ) =
1
2

∆T.

Using this temperature difference and the boundary layer thickness as the length scale, the local
Rayleigh number is

Rδ =
gβ∆T δ3

2κν
=

g′δ3

κν
.

(ii) Since the local Rayleigh number is approximately 1800 for a blob about to leave the boundary
layer,

g′δ3

κν
= 1800

and hence
δ

H
=

(
1800 κ ν

g′H3

)1/3

.
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(iii) When the thermal is about to leave the boundary layer, its diameter is on the order of δ. Since
it is assumed to be spherical, an appropriate volume at time of release is V0 = δ3. It is assumed that
the blob has no initial velocity, and consequently no momentum, at time of release so that M0 = 0.
The specific buoyancy is given by volume times buoyancy acceleration g′, where

g′ =
ρe−ρ

ρ0
g

with the usual meanings for the densities. In terms of temperature, use
ρe−ρ

ρ0
= β(T −T0)

to obtain g′ = β(T −T0)g. The temperature difference between the bottom plate and the interior is
one half the total temperature difference so

g′ =
1
2

gβ∆T

and the initial buoyancy may be taken as B0 = g′δ3.

(iv) The thermal equations are
dV
dz

= 3αTV 2/3,
dM
dz

=
2
3

BV
M

,
dB
dz

=−N2V

where αT is the thermal entrainment coefficient and N2 is the buoyancy frequency. Because we
consider only rise in the interior, where the temperature is constant, N2 = 0 and B = B0 = g′δ3 is
constant. Separate variables in the volume equation:

dV
V 2/3 = 3αT dz

and integrate: from z = δ to z = H−δ:

3[V 1/3−V 1/3
0 ] = 3αT (z−δ).

At z = δ, this gives
V = [αT (H−2δ)+δ]3 ≈ (αT H)3,

since δ � H. The thermal is expanding from its original size of δ3 through entrainment of fluid
from the ambient. The momentum equation is

dM
dz

=
2
3

B0

M
[αT (z−δ)+δ]3.

Separating variables and integrate:
1
2

M2 =
2
3

B0
1

4αT
([αT (z−δ)+δ]4−δ

4).

The final value of momentum is

M =
[

B0

3αT
([αT (H−2δ)+δ]4−δ

4)
]1/2

≈
[

B0α3
T H4

3

]1/2

.

The final temperature of the blob is the same as when it starts, since g′ has not changed. This seems
reasonable: the blob moves rapidly through the boundary layer and diffusion is negligible on this
advective time scale. Fluid is entrained so the volume increases. The momentum also increases as
the blob rises and potential energy is converted to kinetic energy.
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