
MAE224A: Environmental Fluid Mechanics Fall Quarter 2010

http://maecourses.ucsd.edu/ sllewell/MAE224A 2010/

Solution I
1. Consider a tensor of arbitrary order, F(x, t), integrated over the region V (t), which may be
either a fixed or material volume. The time derivative of this tensor is written as

d
dt

Z
V (t)

F dV,

where d/dt emphasizes the fact that F remains solely a function of time after integration in space.
Exploring the 1D case, with boundaries at x = a(t) and x = b(t), one can use Leibniz’s theorem,
which shows how to differentiate an integral whose integrand F as well as the limits of integration
are functions of the variable with respect to which the integration occurs. The time derivative of
the integral becomes

d
dt

Z b(t)

a(t)
F(x, t)dx =

Z b

a

∂F
∂t

dx+
(

db
dt

F(b, t)− da
dt

F(a, t)
)

.

The last two terms on the right-hand side represent the gain of F at the outer boundary moving at
a rate db/dt, and the loss of F at the inner boundary at a rate da/dt, respectively. These may be
combined to a more general integral, representing the outward flux through an area element dA.
Rewriting the above equation, and generalizing Leibniz’s theorem,

d
dt

Z
V (t)

F(x, t)dV =
Z

V (t)

∂F
∂t

dV +
Z

A(t)
F dA ·uA,

where uA is the velocity of the boundary and A(t) is the surface of V (t).
For a material volume, V(t), the surfaces move with the fluid, and consequently uA = u. The above
equation may be re-written as the Reynolds transport theorem, following a material volume:

D
Dt

Z
V

F(x, t)dV =
Z

V

∂F
∂t

dV+
Z

A
F dA ·uA.

Another form of the transport theorem may be obtained by manipulating the above via Gauss’s
theorem, and defining a new function f , where F = ρ f . Transforming the surface integral into a
volume integral, and using index notation for simplicity,

D
Dt

Z
V

ρ f dV =
Z

V

[
∂F
∂t

+
∂

∂x j
(ρ f u j)

]
dV.

By virtue of the product rule, the RHS becomes

=
Z

V

[
ρ

∂ f
∂t

+ f
∂ρ

∂t
+ f

∂

∂x j
(ρu j)+ρu j

∂ f
∂x j

]
dV.
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The continuity equation gives
∂ρ

∂t
+

∂

∂x j
(ρu j) = 0

so that
D
Dt

Z
V

ρ f dV =
Z

V

[
ρ

∂ f
∂t

+ρu j
∂ f
∂x j

]
dV =

Z
V

ρ
D f
Dt

dV.

SOURCE: Kundu et al., Fluid Mechanics, ed. 4, pgs. 82–84.

2. Upon nondimensionalizing the momentum equations with a characteristic length scale, L, and
characteristic velocity, U , the non-dimensional Reynolds number is obtained:

Re =
UL
ν

,

where ν is the kinematic viscosity of the fluid. This quantity is a ratio of inertia forces to viscous
forces; if small, inertia forces are negligible, and viscous and pressure forces are in approximate
balance in steady state (e.g. creeping flow around a sphere). When Re is large, inertia forces dom-
inate, and the viscous term in the momentum equations may be omitted as a first approximation,
outside of the boundary layer.
The Rossby and Ekman numbers are obtained by nondimensionalizing the rotating momentum
equations. The Rossby number is given by

Ro =
U2/L

fU
=

U
f L

and represents the ratio of the nonlinear advection terms to the Coriolis force. When Ro is large,
the earth’s rotation is negligible, as opposed to the nonlinear acceleration terms. When Ro is small,
for example when looking at very long length scales, the Coriolis force may not be ignored, but the
neglect of nonlinear terms is justified for the flow.
The Ekman number is defined as

E =
ν

f L2

and is a ratio of the viscous force to the Coriolis force. Likewise, when the flow in question is over a
long characteristic length scale, and consequently E is very small, the viscous forces are negligible
in comparison to the force created by earth’s rotation.

(i) For mantle convection, the following approximate values were found:

ν ≈ 3×1017 m2/s, U ≈ 1.5×10−9 m/s, D ≈ 2.9×106 m

The Coriolis frequency is defined as f = 2Ωsinθ, where Ω is the earth’s rate of rotation, equal
to 0.73× 10−4 s−1, and θ is the latitude. Here, the latitude is assumed to be 90◦N, giving f =
1.46×10−4 s−1. Therefore, the three dimensionless parameters are:

Re = 1.45×10−20, Ro = 3.54×10−12, E = 2.44×108

These values make sense intuitively, since mantle convection is a slow creeping motion dominated
by viscous effects.
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SOURCE: Lowrie, William. Fundamentals of Geophysics, pg. 328.

(ii) For the Great Red Spot of Jupiter, the following approximate values were found:

ν ≈ 1×106 m2/s, U ≈ 2 m/s, D ≈ 1.3×107 m, f ≈ 1.3×10−4 s−1

These correspond to a Reynolds, Rossby, and Ekman number of:

Re = 26, Ro = 1.18×10−3, E = 4.55×10−5

In this case, it is expected that viscous forces do not dominate the flow, but rather the Coriolis
terms. The result for Re seems small. These may not be the best values to take.
SOURCE: Stone, P.H. et al., Concerning the existence of Taylor columns in atmospheres, Journal
of Royal Meter. So., 1968, pgs. 578-579.

(iii) The outflow from the Point Loma wastewater treatment plant has the following approximate
values:

ν ≈ 1×10−6 m2/s, U ≈ 0.731 m/s, D = 3.6576 m

Located at a latitude of 33◦N, the Coriolis frequency is f = 7.95×10−5 s−1. These values give the
following nondimensional parameters:

Re = 2.67×106, Ro = 2.51×103, E = 9.40×10−4

In this case, Re is large, and one would therefore expect a turbulent outflow from the pipe. Fur-
thermore, the Rossby number is large, and consequently the nonlinear acceleration terms cannot be
ignored, as is expected for turbulent flow.
SOURCE: City of San Diego Facilities website, Point Loma Wastewater Treatment Plant.
http://www.sandiego.gov/mwwd/facilities/ptloma.shtml

3. The vertical momentum equation for a static fluid of density ρ is

0 =−dp
dz
−ρg.

This equation may be readily integrated in z to obtain

P =−ρgz,

where the atmospheric pressure, P0, has been taken to be 0 at z = 0. Now consider a body with
boundary S that is at least partially submerged in the fluid. The fluid exerts a force dF = −P n̂dS
on an area element dS on the body, where n̂ is the unit outward vector normal to the surface. The
net forces in the x̂ and ŷ directions are 0 by symmetry, so that the total force in the z-direction is:

Fz =−
Z

S
PdS.

Substituting for P,

Fz = ρg
Z

S
zdS.
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By virtue of the divergence theorem, the force becomes

Fz = ρg
Z

V

∂z
∂z

dV = ρg
Z

V
dV = ρgV = mg.

Therefore, the force acting on the solid object immersed in the fluid is equal to the weight of the
displaced fluid. Note that the hydrostatic equation is used on the boundary to obtain Fz. The trans-
formation from surface to volume integral is a mathematical procedure and the physical contents
of the interior of the volume are irrelevant.
SOURCE: Physics Wiki, Archimedes’ Principle

4. The fluid in the tank is in solid-body rotation, and therefore the inviscid Euler equations in the
radial and vertical directions may be used in cylindrical coordinates, and simplifies to

−ρ
u2

θ

r
=−∂p

∂r
, 0 =−∂p

∂z
−ρg.

The pressure differences between two neighboring points must be:

dp =
∂p
∂r

dr +
∂p
∂z

dz = ρΩ
2r dr−ρgdz,

where Ωr has been substituted for uθ. This may be integrated between arbitrary points 1 and 2 so
that

P2−P1 =
1
2

ρΩ
2(r2

2 − r2
1)−ρg(z2− z1)

Surfaces of constant pressure, and thus an outline of the surface, occur at

z2− z1 =
1
2

Ω2

g
(r2

2 − r2
1),

which are paraboloids of revolution. If at height z1 = 0 (taken at the bottom of the tank), the radius
is r1 = 0, since all the fluid is pushed up against the side walls, then the above equation becomes

z2 =
1
2

Ω2

g
r2

2.

Working in 2D, the area under the parabola must equal the area of fluid in the tank, which is 2HL.
Therefore,

2
Z L

0

1
2

Ω2

g
x2 dx = 2HL

Integrating the LHS,
1
6

Ω2

g
L3 = HL

Solving for Ωc,

Ωc =

√
6gH
L2

If Ω is increased above this value, the minimum point on the parabola of the free surface (i.e. line
of constant pressure) will have to drop below z = 0, so that at z = 0, the bottom of the tank is dry.
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