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Solution II
1 The volume, momentum and buoyancy flux (per unit length) are given by

Q = 2
Z

∞

0
wdx, M = 2

Z
∞

0
w2 dx, B = 2

Z
∞

0
g′wdx,

where
g′ =

ρe−ρ

ρ0
g

is the specific gravity, as in class, with ρe the density in the ambient, ρ the density inside the plume,
and ρ0 the reference density.
Exactly the same approach as in class works, with the obvious change in the continuity equation:
r−1∂r(ru) goes to ∂x(u). We obtain the three following equations, which are just those for the
axisymmetric plume with b (the half-width of the plume) taken out in the appropriate place:

dQ
dz

= 2ue,
dM
dz

= 2
Z b

0
g′ dx,

dB
dz

=−N2(z)Q.

Now use top hat velocity profiles. Then the entrainment assumption states that the entrainment ve-
locity is proportional to w, so that ue = αw, where α is the entrainment coefficient. On dimensional
grounds, w = MQ−1 and b = Q2M−1. Then, using the same arguments as for the axisymmetric
case, we can obtain a closed set of equations in the form

dQ
dz

=
2αM

Q
,

dM
dz

=
BQ
M

,
dB
dz

=−N2(z)Q.

Notice that the only difference is in the first equation. The pure plume solution in an unstratified
ambient is particularly simple since both Q and M are linear in z.

2 The equations for an axisymmetric pure plume are

dQ
dz

= 2αM1/2,
dM
dz

=
BQ
M

,
dB
dz

=−N2Q

with initial conditions Q0 = M0 = 0 and B0 = 1. Following the non-dimensionalization of CW98,
we obtain

B̂ =
B
Bs

, Q̂ =
Q

(2α)4/3B1/3
s H5/3

p

, M̂ =
M

(2α)2/3B2/3
s H4/3

p

, ẑ =
z

Hp
, N̂ =

N
Ns

,

where Hp is the characteristic length scale of the plume height of rise. Then the plume equations
take the universal form

dQ̂
dz

= M̂1/2,
dM̂
dz

=
B̂Q̂
M̂

,
dB̂
dz

=−N̂2Q̂.
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A plot of the integrated ODEs against height is given in Figure 1. The MATLAB program shows
how to produce this graph in a number of ways. Using the plume equations is straightforward, but
BM/Q is not defined numerically at z = 0. The simplest approach is to give small positive values to
Q and M near the origin – this works. Alternatively one can start the integration at the small value
z = ε, using the fact that near the origin the plume does not feel the effect of stratification, so that
Q∼ q0z5/3 and M ∼m0z4/3. Mathematically it is more elegant to use the variables q = z−2/3Q and
m = z−1/3M. These variables have finite derivatives q0 and m0 at the origin. One can extend this to
deal with N = za with negative a by writing B = 1+bza+5/3. This is not actually needed in CW98
since they start at z = λ−1 (see below).
Physically, Q increases with height due to entrainment, while buoyancy decreases with height due
to the entrainment of relatively dense ambient fluid. When B goes to 0, the momentum decreases
so that the plume will eventually stop at a finite height zm = 2.57 . . .. Buoyancy has units L4T−3

and the buoyancy frequency, N, has units T−1, so the maximum height becomes zmB1/4N−3/4.
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Figure 1: Volume, momentum and buoyancy fluxes vs. height for a pure plume in a stratified
ambient with N = 1.

For a > 0, the stratification becomes stronger with height, so that the plume will reach even less
high than for the case a = 0. When a < 0, stratification becomes increasingly weaker with height,
so the plume may or may not be bounded. CW define the parameter λ = Hp/zs and have the plume
start at z = λ−1. Then λ represents the ratio of the scale height rise of a plume in a uniformly
stratified environment to the scale height of the environmental stratification. In our case, the plume
starts at the origin and N2 is unbounded there for a < 0, and it is not clear this is a good physical
model.
Here is what CW say in their abstract.

In the case a > 0, the stratification becomes progressively stronger with height, and so
plumes are always confined within a finite distance above the origin. Furthermore, the
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non-dimensional height of rise h decreases with λ. In contrast, in the case a < 0, the
stratification becomes progressively weaker with height, and so the non-dimensional
plume height increases monotonically with λ. For slowly decaying stratification, β >
−8/3, the motion is confined within a finite distance above the source. However, for
each value of a with a < −8/3, there is a critical value λc(a) such that for λ < λc a
plume is confined to a region near the source while for λ≥ λC the motion is unbounded.
[. . . ]

3 First consider the case with no stratification. A pure plume starts to rise with very small length-
scale. As it rises its radius becomes larger (and its velocity also changes). Eventually the Rossby
number based on its width and entrainment velocity will reach O(1). Now we can use the pure
plume result to find

Ro =
u

b f
∼ B1/3

z4/3 f
.

This gives an estimate H ∼ B1/4 f−3/4. At this height rotation will act to suppress vertical shear
and the plume will presumably start to spread out as some kind of thin vortex.
With stratification, the Prandtl ratio N/ f enters the picture. If N � f , then the plume will not
have reached an equilibrium level by the time it starts to feel rotation. If N and f are comparable,
the plume may reach its neutral level and start to spread out as a buoyancy current before it feels
rotation. We have not discussed this spreading-out phase, but by conservation of volume, the plume
must keep spreading, so eventually its size will become large enough to feel rotation, although the
behavior of the spreading velocity will also be relevant.
See Bush & Woods (1999).
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