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Solution III
1. Consider an element of arc ds on the free surface: the surface tension and inner pressure p
must be balanced by the pressure outside of the interface, pa. The balance of forces perpendicular
to the arc requires

−pa ds+ pds+σdθ = 0.

The pressure difference is therefore given by

pa− p = σ
dθ

ds
= σ

∂2η

∂x2

in two dimensions, where the curvature κ is defined as

κ =
dθ

ds
=

x′y′′− y′x′′

(x′2 + y′2)3/2

and where the free surface is parameterized by x = x(t), y = y(t). For a two-dimensional curve with
y = η(x), the curvature becomes

κ =
∂2η/∂x2

[1+(∂η/∂x)2]3/2 ≈
∂2η

∂x2

for small slopes. If the atmospheric pressure is taken to be 0, the linearized dynamic condition at
the surface is

p =−σ
∂2η

∂x2 at z = 0.

This may be combined with the linearized Bernoulli equation

∂φ

∂t
+

p
ρ

+gz = 0

to give
∂φ

∂t
=

σ

ρ

∂2η

∂x2 −gη.

The solution to the Laplace equation is as in class, namely

φ =
aω

k
coshk(z+H)

sinhkH
sin(kx−ωt),

with free surface,
η = acos(kx−ωt).
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The new dynamic condition at z = 0 gives the dispersion relation

ω
2 = k

(
g+

σk2

ρ

)
tanhkH.

For the three-dimensional case, the k2 term is replaced by k2 + l2. The group velocity cg is given
by ∂ω/∂k, so

cg =
(g/k)1/2

2
[1+3T (kH)2] tanhkH + kH[1+T (kH)3]sech2kH

{[1+T (kH)2] tanhkH}1/2 ,

where T = σ/ρH2 is a non-dimensional version of surface tension. In the limit of small kH,
cg ≈

√
gH, the standard shallow water case (assuming T is not ridiculously large). For large kH

and T not very small, cg ≈ (3/2)
√

σk/ρ, corresponding to capillary waves on deep water.

2 Using the Lagrangian description for fluid motion, consider a fluid particle at (x0 + λ,z0 + ζ)
with mean position (x0,z0). Then

u =
∂λ

∂t
, w =

∂ζ

∂t
,

while the velocities are found by taking the gradient of the velocity potential above:

u = aω
coshk(z+H)

sinhkH
cos(kx−ωt), w = aω

sinhk(z+H)
sinhkH

sin(kx−ωt).

For small-amplitude waves, the motion of the particle is small and consequently the velocity of a
particle along its path is approximately equal to the velocity at the mean position (x0,z0), so that

∂λ

∂t
= aω

coshk(z0 +H)
sinhkH

cos(kx0−ωt),
∂ζ

∂t
= aω

sinhk(z0 +H)
sinhkH

sin(kx0−ωt).

Integrating in time gives

λ =−a
coshk(z0 +H)

sinhkH
sin(kx0−ωt), ζ = a

sinhk(z0 +H)
sinhkH

cos(kx0−ωt)

(the constant of integration is irrelevant). Using the identity sin2 x + cos2 x = 1, the particle path
may be written as

λ2

[coshk(z0 +H)/sinhkH]2
+

ζ2

[sinhk(z0 +H)/sinhkH]2
= a2;

these are ellipses. In the deep water case,

coshk(z0 +H)
sinhkH

' sinhk(z0 +H)
sinhkH

' ekz0,

that the particle orbits are

λ =−aekz0 sin(kx0−ωt), ζ = aekz0 cos(kx0−ωt).
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The equation for the particle paths becomes

ζ
2 +λ

2 = a2e2kz0.

i.e. circles whose radius is equal to the amplitude a at the surface and decreases exponentially with
depth. For shallow water, the approximations

coshk(z0 +H)' 1, sinhk(z0 +H)' k(z0 +H), sinhkH ' kH

lead to
λ =− a

kH
sin(kx0−ωt), ζ = a

(
1+

z0

H

)
cos(kx0−ωt).

These are thin ellipses described by

(λkH)2 +
ζ2

(1+ z0/H)2 = a2.

In this limit, the semi-major axis, a/kH, is depth-independent, and the semi-minor axis decreases
linearly to 0 at the bottom boundary. Therefore, the particle orbits are ellipses that get progressively
thinner for particle near the bottom.

3 We need to solve Laplace’s equation with the usual boundary conditions in x > 0. However we
are now imposing a velocity u = ∂φ/∂x on x = 0 (for inviscid flow we can only impose the normal
velocity). We seek a separated solution in the form φ = X(x)Z(z)e−iωt . Laplace’s equation gives

X ′′−κ
2X , Z′′+κ

2Z = 0.

The linearized boundary conditions for Z are Z′ = 0 and z =−H and −ω2Z +gZ′ = 0 at z = 0. We
take Z = cosκ(z+H) to satisfy the first of these. The second then gives

tanκH =−ω2

gκ
.

Plotting the two sides of this equation shows that there are infinitely positive roots κn. These
correspond to modes Zn that decay for large x, i.e. trapped near the wall. However, there is also a
mode with imaginary κ = ik with Z = coshk(z+H) and

tanhkH =
ω2

gk
.

Here we must take the mode with positive k = k0 to obtain waves that propagate away from the
wall. Hence

φ = A0ei(k0x−ωt)Z0(z)+
∞

∑
n=1

Ane−κnx−iωtZn(z).

The coefficients are found by matching the velocity at the wall to the forcing:

u = ik0A0Z0(z)−
∞

∑
n=1

κnAnZn(z).
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The vertical modes come from a Sturm–Liouville problem, so we may take them to be orthonormal.
Then the boundary condition may be multiplied by Z∗m and integrated to give

ik0A0 =
Z 0

−H
u(z)Z0(z)dz, −κnAn =

Z 0

−H
u(z)Zn(z)dz.

Only the portion of u that projects onto the mode Z0 (essentially the lowest mode) gives a propa-
gating response.
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