Solution III

1. Consider an element of arc $\mathrm{d} s$ on the free surface: the surface tension and inner pressure p must be balanced by the pressure outside of the interface, p_{a}. The balance of forces perpendicular to the arc requires

$$
-p_{a} \mathrm{~d} s+p \mathrm{~d} s+\sigma \mathrm{d} \theta=0
$$

The pressure difference is therefore given by

$$
p_{a}-p=\sigma \frac{\mathrm{d} \theta}{\mathrm{~d} s}=\sigma \frac{\partial^{2} \eta}{\partial x^{2}}
$$

in two dimensions, where the curvature κ is defined as

$$
\kappa=\frac{\mathrm{d} \theta}{\mathrm{~d} s}=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left(x^{\prime 2}+y^{\prime 2}\right)^{3 / 2}}
$$

and where the free surface is parameterized by $x=x(t), y=y(t)$. For a two-dimensional curve with $y=\eta(x)$, the curvature becomes

$$
\kappa=\frac{\partial^{2} \eta / \partial x^{2}}{\left[1+(\partial \eta / \partial x)^{2}\right]^{3 / 2}} \approx \frac{\partial^{2} \eta}{\partial x^{2}}
$$

for small slopes. If the atmospheric pressure is taken to be 0 , the linearized dynamic condition at the surface is

$$
p=-\sigma \frac{\partial^{2} \eta}{\partial x^{2}} \quad \text { at } z=0
$$

This may be combined with the linearized Bernoulli equation

$$
\frac{\partial \phi}{\partial t}+\frac{p}{\rho}+g z=0
$$

to give

$$
\frac{\partial \phi}{\partial t}=\frac{\sigma}{\rho} \frac{\partial^{2} \eta}{\partial x^{2}}-g \eta .
$$

The solution to the Laplace equation is as in class, namely

$$
\phi=\frac{a \omega}{k} \frac{\cosh k(z+H)}{\sinh k H} \sin (k x-\omega t)
$$

with free surface,

$$
\eta=a \cos (k x-\omega t)
$$

The new dynamic condition at $z=0$ gives the dispersion relation

$$
\omega^{2}=k\left(g+\frac{\sigma k^{2}}{\rho}\right) \tanh k H
$$

For the three-dimensional case, the k^{2} term is replaced by $k^{2}+l^{2}$. The group velocity c_{g} is given by $\partial \omega / \partial k$, so

$$
c_{g}=\frac{(g / k)^{1 / 2}}{2} \frac{\left[1+3 T(k H)^{2}\right] \tanh k H+k H\left[1+T(k H)^{3}\right] \operatorname{sech}^{2} k H}{\left\{\left[1+T(k H)^{2}\right] \tanh k H\right\}^{1 / 2}},
$$

where $T=\sigma / \rho H^{2}$ is a non-dimensional version of surface tension. In the limit of small $k H$, $c_{g} \approx \sqrt{g H}$, the standard shallow water case (assuming T is not ridiculously large). For large $k H$ and T not very small, $c_{g} \approx(3 / 2) \sqrt{\sigma k / \rho}$, corresponding to capillary waves on deep water.

2 Using the Lagrangian description for fluid motion, consider a fluid particle at $\left(x_{0}+\lambda, z_{0}+\zeta\right)$ with mean position $\left(x_{0}, z_{0}\right)$. Then

$$
u=\frac{\partial \lambda}{\partial t}, \quad w=\frac{\partial \zeta}{\partial t}
$$

while the velocities are found by taking the gradient of the velocity potential above:

$$
u=a \omega \frac{\cosh k(z+H)}{\sinh k H} \cos (k x-\omega t), \quad w=a \omega \frac{\sinh k(z+H)}{\sinh k H} \sin (k x-\omega t)
$$

For small-amplitude waves, the motion of the particle is small and consequently the velocity of a particle along its path is approximately equal to the velocity at the mean position $\left(x_{0}, z_{0}\right)$, so that

$$
\frac{\partial \lambda}{\partial t}=a \omega \frac{\cosh k\left(z_{0}+H\right)}{\sinh k H} \cos \left(k x_{0}-\omega t\right), \quad \frac{\partial \zeta}{\partial t}=a \omega \frac{\sinh k\left(z_{0}+H\right)}{\sinh k H} \sin \left(k x_{0}-\omega t\right) .
$$

Integrating in time gives

$$
\lambda=-a \frac{\cosh k\left(z_{0}+H\right)}{\sinh k H} \sin \left(k x_{0}-\omega t\right), \quad \zeta=a \frac{\sinh k\left(z_{0}+H\right)}{\sinh k H} \cos \left(k x_{0}-\omega t\right)
$$

(the constant of integration is irrelevant). Using the identity $\sin ^{2} x+\cos ^{2} x=1$, the particle path may be written as

$$
\frac{\lambda^{2}}{\left[\cosh k\left(z_{0}+H\right) / \sinh k H\right]^{2}}+\frac{\zeta^{2}}{\left[\sinh k\left(z_{0}+H\right) / \sinh k H\right]^{2}}=a^{2}
$$

these are ellipses. In the deep water case,

$$
\frac{\cosh k\left(z_{0}+H\right)}{\sinh k H} \simeq \frac{\sinh k\left(z_{0}+H\right)}{\sinh k H} \simeq e^{k z_{0}}
$$

that the particle orbits are

$$
\lambda=-a e^{k z_{0}} \sin \left(k x_{0}-\omega t\right), \quad \zeta=a e^{k z_{0}} \cos \left(k x_{0}-\omega t\right)
$$

The equation for the particle paths becomes

$$
\zeta^{2}+\lambda^{2}=a^{2} e^{2 k z_{0}}
$$

i.e. circles whose radius is equal to the amplitude a at the surface and decreases exponentially with depth. For shallow water, the approximations

$$
\cosh k\left(z_{0}+H\right) \simeq 1, \quad \sinh k\left(z_{0}+H\right) \simeq k\left(z_{0}+H\right), \quad \sinh k H \simeq k H
$$

lead to

$$
\lambda=-\frac{a}{k H} \sin \left(k x_{0}-\omega t\right), \quad \zeta=a\left(1+\frac{z_{0}}{H}\right) \cos \left(k x_{0}-\omega t\right) .
$$

These are thin ellipses described by

$$
(\lambda k H)^{2}+\frac{\zeta^{2}}{\left(1+z_{0} / H\right)^{2}}=a^{2}
$$

In this limit, the semi-major axis, $a / k H$, is depth-independent, and the semi-minor axis decreases linearly to 0 at the bottom boundary. Therefore, the particle orbits are ellipses that get progressively thinner for particle near the bottom.

3 We need to solve Laplace's equation with the usual boundary conditions in $x>0$. However we are now imposing a velocity $u=\partial \phi / \partial x$ on $x=0$ (for inviscid flow we can only impose the normal velocity). We seek a separated solution in the form $\phi=X(x) Z(z) \mathrm{e}^{-\mathrm{i} \omega t}$. Laplace's equation gives

$$
X^{\prime \prime}-\kappa^{2} X, \quad Z^{\prime \prime}+\kappa^{2} Z=0
$$

The linearized boundary conditions for Z are $Z^{\prime}=0$ and $z=-H$ and $-\omega^{2} Z+g Z^{\prime}=0$ at $z=0$. We take $Z=\cos \kappa(z+H)$ to satisfy the first of these. The second then gives

$$
\tan \kappa H=-\frac{\omega^{2}}{g \kappa} .
$$

Plotting the two sides of this equation shows that there are infinitely positive roots κ_{n}. These correspond to modes Z_{n} that decay for large x, i.e. trapped near the wall. However, there is also a mode with imaginary $\kappa=\mathrm{i} k$ with $Z=\cosh k(z+H)$ and

$$
\tanh k H=\frac{\omega^{2}}{g k} .
$$

Here we must take the mode with positive $k=k_{0}$ to obtain waves that propagate away from the wall. Hence

$$
\phi=A_{0} \mathrm{e}^{\mathrm{i}\left(k_{0} x-\omega t\right)} Z_{0}(z)+\sum_{n=1}^{\infty} A_{n} \mathrm{e}^{-\kappa_{n} x-\mathrm{i} \omega t} Z_{n}(z)
$$

The coefficients are found by matching the velocity at the wall to the forcing:

$$
u=\mathrm{i} k_{0} A_{0} Z_{0}(z)-\sum_{n=1}^{\infty} \kappa_{n} A_{n} Z_{n}(z)
$$

The vertical modes come from a Sturm-Liouville problem, so we may take them to be orthonormal. Then the boundary condition may be multiplied by Z_{m}^{*} and integrated to give

$$
\mathrm{i} k_{0} A_{0}=\int_{-H}^{0} u(z) Z_{0}(z) \mathrm{d} z, \quad-\kappa_{n} A_{n}=\int_{-H}^{0} u(z) Z_{n}(z) \mathrm{d} z
$$

Only the portion of u that projects onto the mode Z_{0} (essentially the lowest mode) gives a propagating response.

