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Thermals

Introduction Thermals correspond to an instantaneous finite release of buoyancy. First
discussed by Morton, Taylor & Turner (1956; MTT). Follow their treatment. This deriva-
tion is essentially that of MTT, and it’s useful to go back and compare it to the derivation
of the plume equations.

Variables Observations show that thermals rise from the ground and are approximately
spherical in shape. We will derive a system analogous to that for plumes. We use the
following variables: V for volume (length), P for specific momentum (length4/time) and
specific buoyancy (length4/time2). Using a top-hat profile, these can be related to an
effective radius b, a characteristic velocity w and a reduced gravity g′ = g(ρ − ρe)ρ0,
where ρ is the density of the plume, ρe(z) is the density in the ambient and ρ0 is a reference
density (we are using the Boussinesq approximation). This gives V = b3, P = b3w and
B = b3g′ (note that these definitions are not unique).
The three governing equation come from conservation of mass, Newton II and the first
law. In these three cases, we look at the time rate of change of the total, integrated quantity
in the thermal. We then replace d/dt by wd/dz.

Volume Since we are considering a Boussinesq system, we can replace conservation of
mass by conservation of volume. In the plume equations, the info at the edge of the plume
depended on the horizontal velocity at the edge of the plume, ue, which was related to
the characteristic vertical velocity in the plume, w, by the entrainment assumption by
w = αue, where α is the entrainment parameter. Here we argue that the volume of the
thermal can change as fluid flows through the boundary. Hence

d
dt

∫
V

dV =
∫

S
un dS.

Now the quantity we care about in the thermal is its characteristic vertical velocity w, so
we will say that the inflow over the boundary is proportional to the area times w times
an entrainment coefficient αT, which is not the same as for the plume case. Observations
indicate αT ∼ 0.25. Using the change of variable, we find

w
d
dz

(4π/3)b3 = 4πb2αTw.

In terms of the specific variables, this is

dV
dz

= 3αTV2/3.

It is interesting that w cancels and this equation involves only V.
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Momentum The rate of change of momentum is given by the force on the thermal. The
latter has two terms: gravity and the buoyancy force, i.e. the mass of displaced fluid. We
can use the reference density ρ0 in the definition of momentum, but the critical point is
that we need to consider not just the mass of the thermal, but also the mass of fluid it
displaces, known as the added mass.1 For a sphere, the added mass is M/2. Hence we
have

d
dt

(2π/3 + 4π/3)ρ0b3w = g(ρe − ρ)(4π/3)b3.

This can be simplified to give

d
dz

(b3w) =
2
3

g
ρe − ρ

ρ0

b3

w
.

Hence we obtain the final form
dP
dz

=
2
3

BV
P

.

Buoyancy The first law of thermodynamics is really the heat equation, which in this
context is the advection equation for density, since we are neglecting molecular viscos-
ity. Physically, this means that density can only change by a flux in from the boundary,
which is most appropriately formulated in terms of density departures from the reference
density:

d
dt

(4π/3)b3(ρ− ρ0) = 4παTw(ρe − ρ0),

using the same entrainment hypothesis as before. Now use

w
d
dz

(4π/3)b3(ρ0 − ρe) = (ρ0 − ρe)4παTw− (4π/3)b3w
dρe

dz
,

using volume conservation. Now add the two equations to obtain

w
d
dz

(4π/3)b3(ρ− ρe) = −(4π/3)b3w
dρe

dz
.

Hence
dB
dz

=
g
ρ0

dρe

dz
b3 = −N2V,

which is the same as for the plume buoyancy flux.

Volume We now have a system for thermals and we note that the volume equation
decouples from the others. We solve it and find

V = (V1/3
0 + αTz)3,

where V0 is the volume at z = 0. For a pure plume, with V0 = P0 = 0, we have V = α3
Tz3.

This is independent of stratification.
1The added mass can be calculated from the solution to potential flow around the object. For a sphere

Ma = M/2; for a cylinder Ma = M. For other added masses, see e.g. Marine hydrodynamics (1977) by
J. N. Newman. If the flow is very viscous or there are wave effects, things aren’t to simple.
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Buoyancy The buoyancy equation can also be solved explicitly. We find

B = B0 −
∫ z

0
N2(z′)V(z′) dz′.

For an unstratified ambient, B = B0 is constant.

Momentum This also has a closed solution, given by

P =
[

P2
0 + (4/3)

∫ z

0
B(z′)V(z′) dz′

]1/2

.

Pure thermal The integrals can all be done exactly and we find that P is also a power
law, given by

P =
B1/2

0√
3

α3/2
T z2.

Then the other quantities of the plume are found to be

b = αTz, w =
B1/2

0√
3α3/2

T z
, g′ =

B0

α3
Tz3

.

These results are consistent dimensionally. We see that on the whole these solutions are
easier to obtain for the plume.

Comparison with experiment (Turner § 6.3.1) Scorer (1957) carried out laboratory ex-
periments using thermals of heavy salt solution falling through fresh water, finding b ∼
t1/2 and w ∼ t−1/2. We need to re-express our solutions in terms of t. For the plume,

t =
∫ z

0

dz′

w
=
√

3

2B1/2
0

α3/2
T z2,

i.e. z ∼ t1/2. Hence we have b ∼ t1/2 and w ∼ t−1/2, as found. However, this has to be
true on dimensional grounds.

Power-law buoyancy frequency (Caulfield & Woods 1998) If N(z) = N2
s (z/λ)β, where

λ is some length scale, we find for a pure plume

B = B0 −
N2

s α3
Tz4+β

λβ(4 + β)
.

We can hence find the height at which B vanishes if 4 + β > 0. Next,

P =
2√
3

[
1
3

B0α3
Tz3B0 −

N2
s α6

Tz8+β

λβ(4 + β)(8 + β)

]1/2

.

The specific momentum will vanish if (4 + β)(8 + β) > 0, although one should really
rework the solution with z0 > 0 to make sure that N2 is well-behaved everywhere.
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