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The differential equation is
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The origin is a RSP, so write y(x) = x° }_;" 5 a,x" with ay # 0. The recurrence relation is
then
[(n+5)?>—vay+a, =0  forn>2.

The indicial and O(x*~!) equations are
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So s = £v and the recurrence relation becomes
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leading to the solution
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where one adopts the conventional normalization
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The Gamma function is an extension of the factorial function with I'(n +s+1) = (n +
s)in+s—1)...(s+1)T'(s+1).

The general theory of Frobenius series indicates that the second solution may not take
Frobenius form if 2v is an integer. In fact one sees that the series works when v is a half-
integer. For integer v, it fails. The second series is given by
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where s7 is the smaller of the indices and y(s; x) denotes the Frobenius series in which the
value of s is as yet unspecified. For the Bessel function, this means using the recurrence

relation
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For v = 2, this leads to
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which is singular at s = —2. The second solution is given by
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The recurrence relation can be solved to give

(="

fon = (2n+s)2(2n+s—2)2---(2+45s)?

ap.

The limiting procedure given above gives a second solution in the form
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In fact it is conventional to add another multiple of Jy(x) to obtain a specific behavior as
X — 0.



