The differential equation is

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{v^{2}}{x^{2}}\right) y=0
$$

The origin is a RSP, so write $y(x)=x^{s} \sum_{n=0}^{\infty} a_{n} x^{n}$ with $a_{0} \neq 0$. The recurrence relation is then

$$
\left[(n+s)^{2}-v^{2}\right] a_{n}+a_{n-2}=0 \quad \text { for } n \geq 2
$$

The indicial and $O\left(x^{s-1}\right)$ equations are

$$
\left(s^{2}-v^{2}\right) a_{0}=0 \quad\left[(s+1)^{2}-v^{2}\right] a_{1}=0
$$

So $s= \pm v$ and the recurrence relation becomes

$$
n(n+2 s) a_{n}+a_{n-2}=0,
$$

leading to the solution

$$
J_{ \pm v}(x)=\left(\frac{x}{2}\right)^{ \pm v} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(n \pm v+1)}\left(\frac{x}{2}\right)^{2 n}
$$

where one adopts the conventional normalization

$$
a_{0}=\frac{1}{2^{ \pm v} \Gamma(\pm v+1)} .
$$

The Gamma function is an extension of the factorial function with $\Gamma(n+s+1)=(n+$ $s)(n+s-1) \ldots(s+1) \Gamma(s+1)$.
The general theory of Frobenius series indicates that the second solution may not take Frobenius form if $2 v$ is an integer. In fact one sees that the series works when v is a halfinteger. For integer v, it fails. The second series is given by

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left[\left(s-s_{1}\right) y(s ; x)\right]_{s=s_{1}}
$$

where s_{1} is the smaller of the indices and $y(s ; x)$ denotes the Frobenius series in which the value of s is as yet unspecified. For the Bessel function, this means using the recurrence relation

$$
a_{n}=-\frac{1}{(n+s+v)(n+s-v)} a_{n-2}
$$

For $v=2$, this leads to

$$
y(s ; x)=x^{s}\left\{1-\frac{x^{2}}{s(s+4)}+\frac{x^{4}}{s(s+4)(s+2)(s+6)}+\cdots\right\}
$$

which is singular at $s=-2$. The second solution is given by

$$
\begin{aligned}
& \lim _{s \rightarrow-2} \frac{\mathrm{~d}}{\mathrm{~d} s}\left\{(s+2) x^{s}\left[1-\frac{x^{2}}{s(s+4)}+\cdots\right]\right\} \\
= & x^{-2} \log x\left[-\frac{x^{4}}{16}+\cdots\right]+x^{-2}\left[1+\frac{x^{2}}{4}+\frac{x^{4}}{64}+\cdots\right] \\
= & -\frac{1}{4} J_{2}(x) \log x+\frac{1}{x^{2}}\left[1+\frac{x^{2}}{4}+\cdots\right] .
\end{aligned}
$$

If $v=0$, the indicial equation is $s^{2}=0$. Then

$$
J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!^{2}}\left(\frac{x}{2}\right)^{2 n}
$$

The recurrence relation can be solved to give

$$
a_{2 n}=\frac{(-1)^{n}}{(2 n+s)^{2}(2 n+s-2)^{2} \cdots(2+s)^{2}} a_{0}
$$

The limiting procedure given above gives a second solution in the form

$$
J_{0}(x) \log x-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!^{2}}\left(\frac{x}{2}\right)^{2 n}\left[1+\frac{1}{2}+\cdots+\frac{1}{n}\right] .
$$

In fact it is conventional to add another multiple of $J_{0}(x)$ to obtain a specific behavior as $x \rightarrow \infty$.

