Final

This is a 3-hour open-note exam (no calculators, no books). Answer all six questions.

1 Analysis of Stokes flow past a sphere yields the ODE

$$
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}-\frac{2}{r^{2}}\right)^{2} f=0
$$

Find the general solution. Now apply the boundary conditions $f(r) \sim-U r^{2} / 2$ for large r and $f(a)=f^{\prime}(a)=0$. [There is no paradox here.]

2 Consider the eigenvalue problem

$$
f^{\prime \prime}+\lambda f=0
$$

on the interval $(0,1)$ with $f(0)=0$ and $f^{\prime}(1)=f(1)$. Solve for the eigenfunctions. Obtain the equation

$$
\tan \sqrt{\lambda_{n}}=\sqrt{\lambda_{n}}
$$

for the eigenvalues λ_{n}. Show graphically that there are infinitely many positive eigenvalues. Write down the orthogonality relation between the different eigenfunctions $f_{n}(x)$.

3 Find the general series solution about $x=0$ to the equation

$$
w^{\prime \prime}+2 x w^{\prime}+2 w=0
$$

Sum the series with $w(0)=1$ and $w^{\prime}(0)=0$.
4 Find the general solution to the equation

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}=\frac{1}{x^{2} y^{3}}
$$

[Hint: you could try a two-step reduction process, examining invariances at each step.]

5 Find the most general solutions $u(x, y)$ to the following equation, consistent with the boundary condition stated:

$$
\left(x^{2}+1\right) \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0, \quad u(0, y)=\frac{1}{y^{2}+1} .
$$

Where do you obtain a solution?
6 Solve Laplace's equation $\nabla^{2} u=0$ inside the rectangle with boundaries $x=0, x=a$, $y=0, y=b$, with boundary conditions $u=1-y / b$ on $x=0, u=1-x / a$ on $y=0$ and $u=0$ everywhere else. [Hint: you can save time by solving the same problem twice.]

