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Final Solutions

1 This is an equidimensional equation. Taking f = rα and applying the operator in
parentheses once gives

[α(α− 1)− 2]rα−2 = (α + 1)(α− 2)rα−2.

Applying the operator again leads to

(α + 1)(α− 2)[(α− 2)(α− 3)− 2]rα−4 = 0.

This factors to give
(α− 4)(α− 2)(α− 1)(α + 1) = 0.

The general solution is therefore

f = Ar4 + Br2 + Cr +
D
r

.

The boundary condition for large r forces A = 0 and B = −U/2. The solution now has
the form f = Cr + Dr−1 − (U/2)r2. Applying the condition at r = a leads to C = 3Ua/4
and D = −Ua3/4. The final result is

f = −U2

2
r2 +

3Ua
4

r− Ua3

4r
.

2 The equation has constant coefficients and solution

f = A sin
√

λx + B cos
√

λx.

The boundary condition at the origin requires B = 0, so the eigenfunctions are

f = A sin
√

λx.

The condition f ′(1) = f (1) leads to an equation for the eigenvalues λn:

A sin
√

λn = A
√

λn cos
√

λn,

which can be written as
tan

√
λn =

√
λn.

There are an infinite number of intersections of the curves y = tan x and y = x, then there
are infinitely many solutions. The orthogonality relation between the different eigenfunc-
tions is ∫ 1

0
sin (

√
λmx) sin (

√
λnx)dx =

δmn

2
sin2

√
λm.
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3 The origin is an ordinary point, so substitute in w(x) = ∑∞
n=0 anxn to obtain

∞

∑
n=0

[n(n− 1)anxn−2 + 2nanxn + 2anxn] = 0.

Shifting variables gives the recurrence relation

(n + 2)(n + 1)an+2 + 2(n + 1)an = 0,

i.e.
an = − 2

n
an−2.

From the recurrence relation, it is clear there is one even and one odd solution. The
relation can be iterated to give

a2n = (−1)n 2n

(2n)(2n− 2) · · · 2 a0 =
(−1)n

n!
a0

for the even solution; this can be summed to give e−x2
. The odd solution has coefficients

a2n+1 = (−1)n 2n

(2n + 1)(2n− 1) · · · 3 a1 =
(−1)n2n(2n)(2n− 2) · · · 2

(2n + 1)(2n) · · · 2 a1 =
(−1)n22nn!
(2n + 1)!

a1.

4 This is an equidimensional-in-x equation. Let x = et and find

ytt − yt + yt + y2 = ytt + y2 =
1
y3 .

Now this is autonomous and we introduce u = yt, which leads to

u
du
dy

=
1
y3 .

Now separate variables and get

yt = u(y) = ±
√

C− y−2.

Integrate and obtain

x(y) = exp
(∫ y dξ

±[A− ξ−2)]1/2 + B
)

.

5 Characteristic equation:
dx

x2 + 1
= dy.

We find p = y− tan−1 x with u = f (p). The boundary condition gives f (y) = 1/(1+ y2),
so

u(x, y) =
1

(y− tan−1 x)2 + 1
.

The characteristic curves
x = tan (y− p),

cover the whole plane.
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6 Solve Laplace’s equation with boundary conditions u = 1− y/b on x = 0 and u =
1− x/a on y = 0. The solution for the first case

u1 =
∞

∑
m=1

Am sin
mπy

b
sinh

mπ(x− a)
b

.

Computing the coefficients in the Fourier series gives

Am = − 2
b sinh (mπa/b)

∫ b

0
(1− y

b
) sin

mπy
b

dy =
2

mπ sinh (mπa/b)
.

The solution to the second problem can be written down immediately as

u2 =
∞

∑
m=1

Bm sin
mπx

a
sinh

mπ(y− b)
a

with

Bm = − 2
b sinh (mπb/a)

∫ b

0
(1− x

a
) sin

mπx
a

dx =
2

mπ sinh (mπb/a)
.

The total solution is
u(x, y) = u1 + u2.
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