Final Solutions

1 This is an equidimensional equation. Taking $f=r^{\alpha}$ and applying the operator in parentheses once gives

$$
[\alpha(\alpha-1)-2] r^{\alpha-2}=(\alpha+1)(\alpha-2) r^{\alpha-2} .
$$

Applying the operator again leads to

$$
(\alpha+1)(\alpha-2)[(\alpha-2)(\alpha-3)-2] r^{\alpha-4}=0 .
$$

This factors to give

$$
(\alpha-4)(\alpha-2)(\alpha-1)(\alpha+1)=0 .
$$

The general solution is therefore

$$
f=A r^{4}+B r^{2}+C r+\frac{D}{r}
$$

The boundary condition for large r forces $A=0$ and $B=-U / 2$. The solution now has the form $f=C r+D r^{-1}-(U / 2) r^{2}$. Applying the condition at $r=a$ leads to $C=3 U a / 4$ and $D=-U a^{3} / 4$. The final result is

$$
f=-\frac{U^{2}}{2} r^{2}+\frac{3 U a}{4} r-\frac{U a^{3}}{4 r}
$$

2 The equation has constant coefficients and solution

$$
f=A \sin \sqrt{\lambda} x+B \cos \sqrt{\lambda} x .
$$

The boundary condition at the origin requires $B=0$, so the eigenfunctions are

$$
f=A \sin \sqrt{\lambda} x
$$

The condition $f^{\prime}(1)=f(1)$ leads to an equation for the eigenvalues λ_{n} :

$$
A \sin \sqrt{\lambda_{n}}=A \sqrt{\lambda_{n}} \cos \sqrt{\lambda_{n}}
$$

which can be written as

$$
\tan \sqrt{\lambda_{n}}=\sqrt{\lambda_{n}} .
$$

There are an infinite number of intersections of the curves $y=\tan x$ and $y=x$, then there are infinitely many solutions. The orthogonality relation between the different eigenfunctions is

$$
\int_{0}^{1} \sin \left(\sqrt{\lambda_{m}} x\right) \sin \left(\sqrt{\lambda_{n}} x\right) \mathrm{d} x=\frac{\delta_{m n}}{2} \sin ^{2} \sqrt{\lambda_{m}}
$$

3 The origin is an ordinary point, so substitute in $w(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ to obtain

$$
\sum_{n=0}^{\infty}\left[n(n-1) a_{n} x^{n-2}+2 n a_{n} x^{n}+2 a_{n} x^{n}\right]=0
$$

Shifting variables gives the recurrence relation

$$
(n+2)(n+1) a_{n+2}+2(n+1) a_{n}=0
$$

i.e.

$$
a_{n}=-\frac{2}{n} a_{n-2}
$$

From the recurrence relation, it is clear there is one even and one odd solution. The relation can be iterated to give

$$
a_{2 n}=(-1)^{n} \frac{2^{n}}{(2 n)(2 n-2) \cdots 2} a_{0}=\frac{(-1)^{n}}{n!} a_{0}
$$

for the even solution; this can be summed to give $\mathrm{e}^{-x^{2}}$. The odd solution has coefficients

$$
a_{2 n+1}=(-1)^{n} \frac{2^{n}}{(2 n+1)(2 n-1) \cdots 3} a_{1}=\frac{(-1)^{n} 2^{n}(2 n)(2 n-2) \cdots 2}{(2 n+1)(2 n) \cdots 2} a_{1}=\frac{(-1)^{n} 2^{2 n} n!}{(2 n+1)!} a_{1} .
$$

4 This is an equidimensional-in- x equation. Let $x=\mathrm{e}^{t}$ and find

$$
y_{t t}-y_{t}+y_{t}+y^{2}=y_{t t}+y^{2}=\frac{1}{y^{3}}
$$

Now this is autonomous and we introduce $u=y_{t}$, which leads to

$$
u \frac{\mathrm{~d} u}{\mathrm{~d} y}=\frac{1}{y^{3}}
$$

Now separate variables and get

$$
y_{t}=u(y)= \pm \sqrt{C-y^{-2}}
$$

Integrate and obtain

$$
x(y)=\exp \left(\int^{y} \frac{\mathrm{~d} \xi}{\left. \pm\left[A-\xi^{-2}\right)\right]^{1 / 2}}+B\right)
$$

5 Characteristic equation:

$$
\frac{\mathrm{d} x}{x^{2}+1}=\mathrm{d} y
$$

We find $p=y-\tan ^{-1} x$ with $u=f(p)$. The boundary condition gives $f(y)=1 /\left(1+y^{2}\right)$, so

$$
u(x, y)=\frac{1}{\left(y-\tan ^{-1} x\right)^{2}+1}
$$

The characteristic curves

$$
x=\tan (y-p)
$$

cover the whole plane.

6 Solve Laplace's equation with boundary conditions $u=1-y / b$ on $x=0$ and $u=$ $1-x / a$ on $y=0$. The solution for the first case

$$
u_{1}=\sum_{m=1}^{\infty} A_{m} \sin \frac{m \pi y}{b} \sinh \frac{m \pi(x-a)}{b} .
$$

Computing the coefficients in the Fourier series gives

$$
A_{m}=-\frac{2}{b \sinh (m \pi a / b)} \int_{0}^{b}\left(1-\frac{y}{b}\right) \sin \frac{m \pi y}{b} \mathrm{~d} y=\frac{2}{m \pi \sinh (m \pi a / b)}
$$

The solution to the second problem can be written down immediately as

$$
u_{2}=\sum_{m=1}^{\infty} B_{m} \sin \frac{m \pi x}{a} \sinh \frac{m \pi(y-b)}{a}
$$

with

$$
B_{m}=-\frac{2}{b \sinh (m \pi b / a)} \int_{0}^{b}\left(1-\frac{x}{a}\right) \sin \frac{m \pi x}{a} \mathrm{~d} x=\frac{2}{m \pi \sinh (m \pi b / a)} .
$$

The total solution is

$$
u(x, y)=u_{1}+u_{2}
$$

