Homework 0

For review. Do not hand in.

1 Find the real and imaginary parts of the following complex numbers:
(a) $z_{1}=\frac{\mathrm{e}^{-2 \mathrm{i} \theta}+2}{\mathrm{e}^{2 \mathrm{i} \theta}-2}$,
(b) $z_{1}=\frac{-2+\mathrm{i}}{1-\mathrm{i}}$,
(c) $z_{3}=\left(\frac{1+\mathrm{i} \sqrt{3}}{2}\right)^{2016}$.

2 Solve the following problems
(a) $y^{\prime \prime}+y=\mathrm{e}^{x}, \quad y(0)=y^{\prime}(0)=0$,
(b) $y^{\prime}-x^{2} y=\sin x, \quad y(0)=0$,
(c) $y y^{\prime \prime}+y^{\prime 2}=2, \quad y(0)=y^{\prime}(0)=0$,
(d) $y^{\prime}=(1+y)^{-1}, \quad y(0)=0$.

3 Find the eigenvalues and eigenvectors of the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

4 Sketch the graph of $x^{-1} \tanh x$ over the real axis.

5 Use Euler's formula to express $\sin 4 x$ in terms of $\sin x, \cos x$ and powers of those functions.

6 Show that if $g(x)$ is a solution of the nonlinear ODE

$$
g^{\prime \prime \prime}+g g^{\prime \prime}=0,
$$

then so is $f(x)=\lambda g(\lambda x)$. Explain how to obtain the solution to the boundary-value problem with boundary conditions $f(0)=f^{\prime}(0)=0, f^{\prime}(\infty)=1\left(^{*}\right)$ from the solution to the initial-value problem with boundary conditions $f(0)=f^{\prime}(0)=0, f^{\prime \prime}(0)=1\left({ }^{* *}\right)$. Use the result that as $x \rightarrow \infty$, the solution to the initial-value problem ${ }^{* * *}$) has $f^{\prime} \rightarrow \mu$. [Bonus: do this numerically. You should find that for $\left({ }^{*}\right), f^{\prime \prime}(0)=0.4969 \ldots$; obtain 12 digits.]

