Homework 0

For review. Do not hand in.

1 Find the real and imaginary parts of the following complex numbers:

(a)
$$z_1 = \frac{e^{-2i\theta} + 2}{e^{2i\theta} - 2}$$
, (b) $z_1 = \frac{-2 + i}{1 - i}$, (c) $z_3 = \left(\frac{1 + i\sqrt{3}}{2}\right)^{2016}$

- 2 Solve the following problems
 - (a) $y'' + y = e^x$, y(0) = y'(0) = 0, (b) $y' - x^2y = \sin x$, y(0) = 0, (c) $yy'' + {y'}^2 = 2$, y(0) = y'(0) = 0, (d) $y' = (1+y)^{-1}$, y(0) = 0.
- 3 Find the eigenvalues and eigenvectors of the matrix

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right).$$

4 Sketch the graph of x^{-1} tanh *x* over the real axis.

5 Use Euler's formula to express $\sin 4x$ in terms of $\sin x$, $\cos x$ and powers of those functions.

6 Show that if g(x) is a solution of the nonlinear ODE

$$g^{\prime\prime\prime}+gg^{\prime\prime}=0,$$

then so is $f(x) = \lambda g(\lambda x)$. Explain how to obtain the solution to the boundary-value problem with boundary conditions f(0) = f'(0) = 0, $f'(\infty) = 1$ (*) from the solution to the initial-value problem with boundary conditions f(0) = f'(0) = 0, f''(0) = 1 (**). Use the result that as $x \to \infty$, the solution to the initial-value problem (**) has $f' \to \mu$. [Bonus: do this numerically. You should find that for (*), f''(0) = 0.4969...; obtain 12 digits.]