Homework III

Due Oct 26, 2016.

1 Which of the following series solutions of the equation

$$
y^{\prime \prime}+\frac{\sin 3 x}{\sin 2 x^{2}} y^{\prime}+\frac{\cos x-1}{x^{4}} y=0
$$

are incorrect and which might be correct?

$$
\begin{aligned}
& y_{1}(x)=x^{-1}+\cdots+\mathrm{e}^{-1 / x^{2}}[1+\cdots] \\
& y_{2}(x)=x^{-1}+\cdots+x^{-1} \log x[1+\cdots] \\
& y_{3}(x)=x^{1 / 2}+\cdots \\
& y_{4}(x)=1+\cdots
\end{aligned}
$$

Your answer should only require one or two lines of algebra.

2 Find two series solutions about $x=0$ to the equation

$$
y^{\prime \prime}-\frac{2}{2 x+1} y^{\prime}-\frac{2 x+3}{2 x+1} y=0
$$

Sum them.

3 Chebyshev's equation is

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0
$$

Obtain series solutions about $x=0$ (you may leave the answer in terms of a recurrence relation) and show that one of therm terminates when p is an integer. Make the substitution $x=\cos \theta$ and solve the equation exactly in terms of θ. Verify your series solutions for $p=0,1,2$ and 3 .

4 Solve the equation

$$
y^{\prime}-\frac{1-x^{2}}{x} y=0, \quad y^{\prime}(0)=1
$$

as a series expansion about the origin. Solve the problem exactly using an integrating factor and show that the answers match.

5 Discuss the nature of the point $x=1$ in Legendre's equation

$$
\left[\left(1-x^{2}\right) f^{\prime}\right]^{\prime}+l(l+1) f=0
$$

Find the recurrence relation for the series solution about $x=1$ with the larger index (use the variable $y=x-1$). Show that these solutions terminate if l is an integer and obtain them for $l=0,1$ and 2 .

6 Show that the origin is a regular singular point for the differential equation

$$
y^{\prime \prime}+\frac{1}{x} y=0
$$

Solve the indicial equation and show that the solution associated with the larger index is

$$
y_{1}=x \sum_{n=0}^{\infty} \frac{(-x)^{n}}{(n+1)(n!)^{2}}
$$

Make the change of variable $y=\sqrt{x} f(2 \sqrt{x})$ and solve the resulting equation for f. What does this tell you about the nature of the second series solution? [Note: Bessel's equation in the form

$$
f^{\prime \prime}+\frac{1}{r} f^{\prime}+\left(1-\frac{n^{2}}{r^{2}}\right) f=0
$$

has solutions $J_{n}(r)$ and $Y_{n}(r)$. Near the origin, $J_{1}=r / 2+\cdots$ and $Y_{1}(r)=-(\pi r / 2)^{-1}+$ $r(\log r+A)+\cdots$.

