MAE294A/SIO203A: Methods in Applied Mechanics Fall Quarter 2016
http://web.eng.ucsd.edu/~sgls/MAE294A_2018/

Homework II1

Due Oct 26, 2016.

1 Which of the following series solutions of the equation
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are incorrect and which might be correct?
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Your answer should only require one or two lines of algebra.

2 Find two series solutions about x = 0 to the equation
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Sum them.

3 Chebyshev’s equation is
(1—2%)y" —xy' +p’y =0.

Obtain series solutions about x = 0 (you may leave the answer in terms of a recurrence
relation) and show that one of therm terminates when p is an integer. Make the substitu-
tion x = cos @ and solve the equation exactly in terms of 6. Verify your series solutions
forp=0,1,2and 3.

4 Solve the equation
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as a series expansion about the origin. Solve the problem exactly using an integrating
factor and show that the answers match.



5 Discuss the nature of the point x = 1 in Legendre’s equation

[(1—x))f1+1(14+1)f =0.

Find the recurrence relation for the series solution about x = 1 with the larger index (use
the variable y = x — 1). Show that these solutions terminate if / is an integer and obtain
them for/ = 0,1 and 2.

6 Show that the origin is a regular singular point for the differential equation
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Solve the indicial equation and show that the solution associated with the larger index is
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Make the change of variable y = /xf(2+/x) and solve the resulting equation for f. What
does this tell you about the nature of the second series solution? [Note: Bessel’s equation

in the form
n

f”+%f’+(1—r—22)f:0

has solutions J,,(r) and Y, (r). Near the origin, J; = /2 + -+ and Y1(r) = —(7r/2) "' +
r(logr+A)+--- ]



