Homework IV

Due Nov 16, 2018.

1 Find the eigenvalues and eigenfunctions of the problem

$$
y^{\prime \prime}+\lambda \frac{y}{x^{2}}=0 ; \quad y(1)=0, \quad y(2)=0
$$

Give numerical results for the two lowest eigenvalues. Can you find an approximate result for λ_{n} for large n ?

2 Use the Rayleigh quotient to find the lowest eigenvalue of the problem.

$$
y^{\prime \prime}+\lambda \mathrm{e}^{x} y=0 ; \quad y(0)=0, \quad y(1)=0
$$

Try the following test function: $y=\sin \pi x+a \sin 2 \pi x$. The exact result is 5.82654627418.
3 Find an exact solution to

$$
y^{\prime}=y^{2}-y \sin x+\cos x
$$

and hence find a second solution.

4 Solve the equation

$$
y^{\prime}=-\frac{x \mathrm{e}^{-y}}{x^{2}+y^{2}}
$$

5 Solve the equation

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{y^{2}}{x^{2}}=0
$$

6 Solve the equation

$$
y^{\prime}-x \frac{y^{2}}{y+y^{\prime}}=0
$$

