Homework V

Due Nov 30, 2018.

1 Find the most general solutions $u(x, y)$ to the following equations, consistent with the boundary conditions stated:
(a) $(y-2) \frac{\partial u}{\partial x}+(x+1) \frac{\partial u}{\partial y}=0, \quad u(x, 0)=x$,
(b)

$$
\mathrm{e}^{y} \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0, \quad u(x, 0)=1-x
$$

(c)

$$
\sin y \frac{\partial u}{\partial x}+x \frac{\partial u}{\partial y}=0, \quad u(x, 0)=x^{2}
$$

$$
\begin{equation*}
\frac{\partial u}{\partial x}+3 x^{2} \frac{\partial u}{\partial y}=0, \quad u=1 \text { on the curve } y=x \tag{d}
\end{equation*}
$$

2 Find the most general solutions $u(x, y)$ to the following equations, consistent with the boundary conditions stated:
(a) $\quad(y-2) \frac{\partial u}{\partial x}+(x+1) \frac{\partial u}{\partial y}=y-2, \quad u(x, 0)=x$,
(b)

$$
\mathrm{e}^{y} \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\quad y u, \quad u(x, 0)=1-x
$$

(c)
(d)

$$
\begin{array}{rlrl}
\sin y \frac{\partial u}{\partial x}+x \frac{\partial u}{\partial y} & =x \sin y, & u(x, 0)=x^{2} \\
\frac{\partial u}{\partial x}+3 x^{2} \frac{\partial u}{\partial y} & =\quad x^{2}, & & u=1 \text { on the curve } y=x
\end{array}
$$

3 Find the most general solutions $u(x, y)$ to

$$
(2 x y+\sin y) \frac{\partial u}{\partial x}+\left(\mathrm{e}^{x}-y^{2}\right) \frac{\partial u}{\partial y}=0
$$

subject to $u=x$ on $y=0$.

4 Solve

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial y}-2 \frac{\partial^{2} u}{\partial y^{2}}=2
$$

subject to $u=3 x$ and $\partial u / \partial y=2$ on the line $y=0$.

5 Solve

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial x \partial y}-\frac{\partial^{2} u}{\partial y^{2}}=0,
$$

subject to $u=3$ and $\partial u / \partial x=1$ on the line $y=x$.

6 Find a formal solution to

$$
\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial^{2} u}{\partial x \partial y}+2 \frac{\partial^{2} u}{\partial y^{2}}=0
$$

