Solutions 0

1
(a) $z_{1}=\frac{\cos 4 \theta-4-\mathrm{i} \sin 4 \theta}{5-4 \cos 2 \theta}$,
(b) $z_{2}=-\frac{3+\mathrm{i}}{2}$,
(c) $z_{3}=\left(\mathrm{e}^{\mathrm{i} \pi / 3}\right)^{2016}=1$.

2 (a) A particular solution is $y=\frac{1}{2} \mathrm{e}^{x}$. The homogeneous solution is $A \sin x+B \cos x$. Hence the full solution is

$$
y=A \sin x+B \cos x+\frac{1}{2} \mathrm{e}^{x}
$$

Plugging in the boundary conditions,

$$
y=-\frac{1}{2} \sin x-\frac{1}{2} \cos x+\frac{1}{2} \mathrm{e}^{x}
$$

(b) We find the integrating factor $\mathrm{e}^{-x^{3} / 3}$, so after some algebra and applying the boundary condition,

$$
y=\mathrm{e}^{x^{3} / 3} \int_{0}^{x} \mathrm{e}^{-t^{3} / 3} \sin t \mathrm{~d} t
$$

(c) We have $y y^{\prime \prime}+y^{\prime 2}=\left(y y^{\prime}\right)^{\prime}$, so $y y^{\prime}=2 x+A$. Integrate again, giving $\frac{1}{2} y^{2}=x^{2}+$ $A x+B$. The boundary conditions lead to $A=B=0$, so the solution appears to be $y=$ $\pm \sqrt{2} x$. However, these boundary conditions are inconsistent with the original differential equation, so there is no solution. It is worth investigating which boundary conditions are acceptable.
(d) We separate variables with $(1+y) \mathrm{d} y=\mathrm{d} x$. Hence $y+\frac{1}{2} y^{2}=x+A$. Applying the boundary condition gives $A=0$. Hence $y+\frac{1}{2} y^{2}=x$, which can be solved to give $y=-1 \pm \sqrt{1+2 x}$. We need the plus sign to satisfy the boundary condition, so $y=$ $-1+\sqrt{1+2 x}$

3 Solving $\operatorname{det}(A-\lambda I)=0$ gives a repeated root $\lambda_{1}=\lambda_{2}=1$. There is only one eigenvector: $[0,1]^{T}$.

4 The function x^{-1} has a singularity at $x=0$, but $\tanh x=x-x^{3} / 3+\ldots$ for small x, so $\lim _{x \rightarrow 0}\left(x^{-1} \tanh x\right)=1$. See Figure 1 .

5 Use Euler's formula:

$$
\sin 4 x=\operatorname{Im}\left(\mathrm{e}^{4 \mathrm{i} x}\right)=\operatorname{Im}\left[(\cos x+\mathrm{i} \sin x)^{4}\right]=4 \sin x \cos ^{3} x-4 \sin ^{3} x \cos x
$$

Figure 1: Problem 4.

6 Substitute in $\lambda g(\lambda x)$ into the equation. This gives

$$
\lambda^{4} g^{\prime \prime \prime}+(\lambda g)\left(\lambda^{3} g^{\prime \prime}\right)=\lambda^{4}\left(g^{\prime \prime \prime}+g g^{\prime \prime}\right)=0
$$

so the equation is satisfied. Solve the IVP with $f(0)=f^{\prime}(0)=0, f^{\prime \prime}(0)=1$. For large x, this has $f^{\prime} \rightarrow \mu$. Now $f^{\prime}=\lambda^{2} g^{\prime}=\lambda^{2}$, where g is the solution with $g^{\prime} \rightarrow 1$ for large x. Hence $\lambda=\mu^{-1 / 2}$ and $g^{\prime \prime}(0)=\lambda^{3}$.
The following Matlab code carries out this procedure (the warning is harmless):

```
format long
options = odeset('RelTol',eps,'AbsTol',eps);
f0 = @(t,y) [y(2) ; y(3) ; -y(1)*y(3)];
[x,f] = ode45(f0,[0 10],[0 0 1],options);
l = sqrt(1/f(end,2)); g0pp = l^3
```

Running this gives $f^{\prime \prime}(0)=0.469599988361012$.

