Solutions I

1 Constant coefficients, so seek solutions of the form $\mathrm{e}^{r x}$. The associated polynomial is $r^{3}+1=0$, so $r=\mathrm{e}^{\mathrm{i} \pi / 3}, \mathrm{e}^{\mathrm{i} \pi}=-1, \mathrm{e}^{-\mathrm{i} \pi / 3}$. The general solution is then

$$
y=A \mathrm{e}^{x \mathrm{e}^{\mathrm{i} \pi / 3}}+B \mathrm{e}^{-x}+C \mathrm{e}^{x \mathrm{e}^{5 \mathrm{i} \pi / 3}}
$$

This can be rewritten as

$$
\begin{aligned}
y & =A e^{x / 2+\mathrm{i} x \sqrt{3} / 2}+B e^{-x}+C e^{x / 2-\mathrm{i} x \sqrt{3} / 2} \\
& =\alpha \mathrm{e}^{x / 2} \cos (x \sqrt{3} / 2)+\beta \mathrm{e}^{x / 2} \sin (x \sqrt{3} / 2)+B \mathrm{e}^{-x}
\end{aligned}
$$

where $\alpha=A+C$ and $\beta=A-C$.
2 Constant coefficients again. The polynomial is $r^{2}+4=0$, so $r= \pm 2 \mathrm{i}$ and the general solution can be written as $y=A \mathrm{e}^{2 \mathrm{i} x}+B \mathrm{e}^{-2 \mathrm{i} x}$ or $y=C \cos 2 x+D \sin 2 x$. Applying the boundary condition at $x=0$, we find that $C=0$. Applying the condition at $x=1$, we find that $D=(\sin 2)^{-1}$. The solution is

$$
y=\frac{\sin 2 x}{\sin 2}
$$

3 Equidimensional equation, so try a solution $y=x^{\alpha}$. The polynomial gives $\alpha^{3}+1=0$. This is the same as in 1 with $\alpha=\mathrm{e}^{\mathrm{i} \pi / 3}, \mathrm{e}^{\mathrm{i} \pi}=-1, \mathrm{e}^{-\mathrm{i} \pi / 3}$. This leads to

$$
y=A x^{\mathrm{e}^{\mathrm{i} \pi / 3}}+\frac{B}{x}+C x^{\mathrm{e}^{5 \mathrm{i} \pi / 3}}=\alpha x^{1 / 2} \cos (\sqrt{3} / 2 \log x)+\beta x^{1 / 2} \sin (\sqrt{3} / 2 \log x)+B x^{-1}
$$

4 By inspection $y=1$ is a particular integral. The homogeneous equation is equidimensional. Substituting $y=x^{\alpha}$ gives $\alpha^{2}+4 \alpha+5=(\alpha+2)^{2}+1=0$. Hence $\alpha=-2 \pm \mathrm{i}$ and the solution is $y=A x^{-2+i}+B x^{-2-\mathrm{i}}+1$. The boundary conditions give

$$
A+B+1=1, \quad(-2+\mathrm{i}) A+(-2-\mathrm{i}) B=1
$$

This gives $B=-A$ and $2 \mathrm{i} A=1$. Hence

$$
y(x)=\frac{x^{-2+\mathrm{i}}}{2 \mathrm{i}}-\frac{x^{-2-\mathrm{i}}}{2 \mathrm{i}}+1=\frac{\sin (\log x)}{x^{2}}+1
$$

$$
\left(\mathrm{e}^{-\mathrm{e}^{-x}} y\right)^{\prime}=\mathrm{e}^{-\mathrm{e}^{-x}} \sin x
$$

Integrating gives

$$
y(x)=\mathrm{e}^{\mathrm{e}^{-x}}\left(A+\int^{x} \mathrm{e}^{-\mathrm{e}^{-x^{\prime}}} \sin x^{\prime} \mathrm{d} x^{\prime}\right)
$$

6 Applying the operator to f gives the equidimensional equation

$$
f^{(4)}+\frac{2 f^{\prime \prime \prime}}{r}-\frac{3 f^{\prime \prime}}{r^{2}}+\frac{3 f^{\prime}}{r^{3}}-\frac{3 f}{r^{4}}=0 .
$$

For the solution $f=r^{\alpha}$, the resulting polynomial factors to give

$$
(\alpha-3)(\alpha-1)^{2}(\alpha+1)=0
$$

A simpler way to arrive at this equation for α is to notice that the operator is going to result in an equidimensional equation. Taking $f=r^{\alpha}$ and applying the operator once gives

$$
(\alpha(\alpha-1)+\alpha-1) r^{\alpha-2}=(\alpha-1)(\alpha+1) r^{\alpha-2}
$$

Applying the operator again leads to

$$
(\alpha-1)(\alpha+1)[(\alpha-2)(\alpha-3)+(\alpha-2)-1] r^{\alpha-4}=0
$$

This clearly factors to the same thing found above:

$$
(\alpha-3)(\alpha-1)^{2}(\alpha+1)=0
$$

The general solution is therefore

$$
f=A r^{3}+B r \ln r+C r+\frac{D}{r} .
$$

The boundary condition for large r forces $A=B=0$. Our solution now has the form $f=C r+D / r$. Applying the condition on $f(a)$, we find that $D=-C a^{2}$. However, applying the condition in $f^{\prime}(a)$ leads to $D=C a^{2}$. The only way these can both be true is if $C=D=0$. This means there is no non-trivial solution to the problem.

