Solutions II

1 The equation is

$$
y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{0}(x)=0
$$

where $p_{1}(x)=\log x, p_{0}(x)=-1-\log x$. Since $\sum p_{k}=0, u=\mathrm{e}^{x}$ is a solution. Then

$$
y=u v, y^{\prime}=u^{\prime} v+u v^{\prime}, \quad y^{\prime \prime}=u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}
$$

So $u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}+p_{1}\left(u^{\prime} v+u v^{\prime}\right)+p_{0} u v=v\left(u^{\prime \prime}+p_{1} u^{\prime}+p_{0} u\right)+\left(u v^{\prime \prime}+2 u^{\prime} v^{\prime}+\right.$ $\left.p_{1} u v^{\prime}\right)=0$. This gives $u v^{\prime \prime}+2 u^{\prime} v^{\prime}+p_{1} u v^{\prime}=0$ which is a first-order ODE for v^{\prime}. Separate variables:

$$
\begin{aligned}
\frac{v^{\prime \prime}}{v^{\prime}} & =-\frac{2 u^{\prime}+p_{1} u}{u}=-\frac{2 u^{\prime}}{u}-p_{1} u \\
\log v^{\prime} & =-2 \log u-\int_{x_{0}}^{x} p_{1}\left(x^{\prime}\right) \mathrm{d} x^{\prime}+C_{1} \\
v^{\prime} & =C_{2} \frac{\mathrm{e}^{-\int_{x_{0}}^{x} p_{1}\left(x^{\prime}\right) \mathrm{d} x^{\prime}}}{u^{2}}=C_{2} \frac{\mathrm{e}^{-\int_{x_{0}}^{x} \log x^{\prime} \mathrm{d} x^{\prime}}}{\mathrm{e}^{2 x}}=C_{3} \mathrm{e}^{-x-x \log x}
\end{aligned}
$$

Thus

$$
v=C_{3} \int_{x_{0}}^{x} \mathrm{e}^{-x^{\prime}-x^{\prime} \log x^{\prime}} \mathrm{d} x^{\prime}+C_{4}
$$

and

$$
y=C_{3} \mathrm{e}^{x} \int_{x_{0}}^{x} \mathrm{e}^{-x^{\prime}-x^{\prime} \log x^{\prime}} \mathrm{d} x^{\prime}+C_{4} \mathrm{e}^{x} .
$$

2 Looking for simple polynomials shows that $y=x$ is a solution. Writing $y=x u$ gives

$$
u^{\prime \prime}+\left(\frac{2}{x}+x p\right) u^{\prime}=0
$$

This has integrating factor

$$
\exp \int^{x}\left[2 b^{-1}+b p(b)\right] \mathrm{d} b=x^{2} \exp \int^{x} b p(b) \mathrm{d} b
$$

Hence a second solution is

$$
y(x)=x \int^{x} a^{-2} \exp \left(-\int^{a} b p(b) \mathrm{d} b\right) \mathrm{d} a .
$$

The lower limits are arbitrary. For $p(x)=\cos x$, the integral is $-\int^{x} a \cos a \mathrm{~d} a=-x \sin x-$ $\cos x$. Then

$$
y(x)=A x \int_{\pi}^{x} a^{-2} \mathrm{e}^{-a \sin a-\cos a} \mathrm{~d} a .
$$

is a solution satisfying the boundary condition at $x=\pi$. Applying the second boundary condition gives

$$
y(x)=\frac{x \int_{\pi}^{x} a^{-2} \mathrm{e}^{-a \sin a-\cos a} \mathrm{~d} a}{2 \pi \int_{\pi}^{2 \pi} a^{-2} \mathrm{e}^{-a \sin a-\cos a} \mathrm{~d} a}
$$

note that the denominator is just a number.
3 The Green's function for this problem satisfies

$$
G^{\prime}+G \sin x=\delta(x-a)
$$

The homogeneous solution is $\exp (\cos x)$, which comes e.g. from an integrating factor. The Green's function is

$$
G(x ; a)= \begin{cases}A \exp \cos x & x<a \\ B \exp \cos x & x>a\end{cases}
$$

Consider $x \geq 0$. From the boundary condition at $x=0, A=0$. The jump condition gives $B \exp (\cos a)=1$, so

$$
G(x ; a)= \begin{cases}0 & x<a \\ \exp (\cos x-\cos a) & x>a\end{cases}
$$

Our final solution is therefore

$$
y(x)=\int_{0}^{x} f(a) \mathrm{e}^{\cos x-\cos a} \mathrm{~d} a
$$

Using the integrating factor $\exp (-\cos x)$ directly gives

$$
y=A \mathrm{e}^{\cos x}+\int_{0}^{x} f(a) \mathrm{e}^{\cos x-\cos a} \mathrm{~d} a .
$$

Applying the $\mathrm{BC}, y(0)=A \mathrm{e}=0$, so $A=0$ and we recover the same solution as above.

4 The homogenous equation has constant coefficients, so with $y=\mathrm{e}^{r x}$,

$$
r^{2}+2 r+1=(r+1)^{2}=0
$$

and hence

$$
y_{h}=C_{1} \mathrm{e}^{-x}+C_{2} x \mathrm{e}^{-x}
$$

The Green's function satisfies

$$
\frac{\mathrm{d} G^{2}(x, z)}{\mathrm{d} x^{2}}+2 \frac{\mathrm{~d} G(x, z)}{\mathrm{d} x}+G(x, z)=\delta(x-z)
$$

with solution

$$
G(x ; z)= \begin{cases}A(z) \mathrm{e}^{-x}+B(z) x \mathrm{e}^{-x} & x<z \\ C(z) \mathrm{e}^{-x}+D(z) x \mathrm{e}^{-x} & x>z\end{cases}
$$

Apply BCs: $y(0)=0$, so $A(z)=0$; and then $\lim _{x \rightarrow \infty} \mathrm{e}^{x} y(x)$ is bounded, so $D(z)=0$. Hence

$$
C(z) \mathrm{e}^{-z}-B(z) \cdot z \cdot \mathrm{e}^{-z}=0, \quad-C(z) \mathrm{e}^{-z}-\left[B(z) \mathrm{e}^{-z}-B(z) \cdot z \cdot \mathrm{e}^{-z}\right]=1 .
$$

This leads to

$$
B(z)=-\mathrm{e}^{z}, \quad C(z)=-z \mathrm{e}^{z}
$$

Finally we obtain

$$
G(x ; z)= \begin{cases}-\mathrm{e}^{z} x \mathrm{e}^{-x} & x<z \\ -z \mathrm{e}^{z} \mathrm{e}^{-x} & x>z\end{cases}
$$

and

$$
\begin{aligned}
y(x) & =-\mathrm{e}^{-x} \int_{0}^{x} \frac{z \mathrm{e}^{z}}{1+\mathrm{e}^{2 z}} \mathrm{~d} z-x \mathrm{e}^{-x} \int_{x}^{\infty} \frac{\mathrm{e}^{z}}{1+\mathrm{e}^{2 z}} \mathrm{~d} z \\
& =-\mathrm{e}^{-x} \int_{0}^{x} \frac{z \mathrm{e}^{z}}{1+\mathrm{e}^{2 z}} \mathrm{~d} z-x \mathrm{e}^{-x}\left(\frac{\pi}{2}-\tan ^{-1} \mathrm{e}^{x}\right)
\end{aligned}
$$

5 Two independent solutions are r and r^{-1}, with Wronskian $-2 r^{-1}$. The Green's function is

$$
G(x ; s)= \begin{cases}A(s) r+B(s) / r & x<s \\ C(s) r+D(s) / r & x>s\end{cases}
$$

Apply the BC: $f(0)=0$, so $B(s)=0$. Hence the jump conditions give

$$
C(s) s+D(s) / s-A(s) s=0, \quad C(s)-D(s) / s^{2}-A(s)=1
$$

This leads to

$$
C(s)=A(s)+1 / 2, \quad D(s)=-\frac{s^{2}}{2}
$$

Finally we obtain

$$
G(x ; s)= \begin{cases}A(s) r & x<s \\ (A(s)+1 / 2) r-\frac{s^{2}}{2 r} & x>s\end{cases}
$$

and

$$
\begin{aligned}
f(r) & =\int_{0}^{r}\left[(A(s)+1 / 2) r-\frac{s^{2}}{2 r}\right] g(s) \mathrm{d} s+r \int_{r}^{R} A(s) g(s) \mathrm{d} s \\
& =r \int_{0}^{R} A(s) g(s) \mathrm{d} s+\frac{r}{2} \int_{0}^{r} g(s) \mathrm{d} s-\frac{1}{2 r} \int_{0}^{r} s^{2} g(s) \mathrm{d} s \\
& =A^{\prime} r+\frac{r}{2} \int_{0}^{r} g(s) \mathrm{d} s-\frac{1}{2 r} \int_{0}^{r} s^{2} g(s) \mathrm{d} s .
\end{aligned}
$$

The constant R would correspond to the location of the second boundary. We see that we obtain an arbitrary multiple of the homogeneous solution r; the constant A^{\prime} would come from applying a second bounadry condition. We need $g(s)$ to look like s^{a} with $a>-1$ near the origin for the $g(s)$ integral to exist there. If R is finite, the last integral is wellbehaved at that right endpoint. If R is infinite, we need $g(s) \sim s^{a}$ with $a<-3$ for large s for the last integral to exist. (Logarithmic corrections do not affect convergence.)

6 Consider $x<0$ and $x>0$ separately. For $x<0$ we see

$$
y^{\prime \prime}-y=\mathrm{e}^{x}
$$

The RHS is a homogeneous solution, so try $\alpha x \mathrm{e}^{x}$. We find $2 \alpha \mathrm{e}^{x}=\mathrm{e}^{x}$, so $\alpha=1 / 2$. The other homogeneous solution is e^{-x} so we have a general solution

$$
y=A \mathrm{e}^{x}+B \mathrm{e}^{-x}+\frac{x}{2} \mathrm{e}^{x} .
$$

For $x>0$ we see

$$
y^{\prime \prime}+y=\mathrm{e}^{-x} .
$$

Now if we try $\beta \mathrm{e}^{-x}$ as a solution we get $2 \beta \mathrm{e}^{-x}=\mathrm{e}^{-x}$ so $\beta=1 / 2$. The homogeneous solutions are $\sin x$ and $\cos x$ so we have a general solution

$$
y=\frac{\mathrm{e}^{-x}}{2}+C \sin x+D \cos x
$$

The equation is second order, so the first and second derivatives must be continuous at $x=0$ in order for the second derivative to satisfy the differential equation. Matching the solutions yields

$$
B=A-C+1, \quad D=2 A-C+\frac{1}{2}
$$

and our general solution is

$$
\begin{aligned}
& y(x<0)=A \mathrm{e}^{x}+(A-C+1) \mathrm{e}^{-x}+\frac{x}{2} \mathrm{e}^{x} \\
& y(x>0)=C \sin x+\left(2 A-C+\frac{1}{2}\right) \cos x+\frac{\mathrm{e}^{-x}}{2}
\end{aligned}
$$

