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Solutions II

1 The equation is
y′′ + p1(x)y′ + p0(x) = 0,

where p1(x) = log x, p0(x) = −1− log x. Since ∑ pk = 0, u = ex is a solution. Then

y = uv, y′ = u′v + uv′, y′′ = u′′v + 2u′v′ + uv′′.

So u′′v + 2u′v′ + uv′′ + p1(u′v + uv′) + p0uv = v(u′′ + p1u′ + p0u) + (uv′′ + 2u′v′ +
p1uv′) = 0. This gives uv′′ + 2u′v′ + p1uv′ = 0 which is a first-order ODE for v′. Sep-
arate variables:

v′′

v′
= −2u′ + p1u

u
= −2u′

u
− p1u,

log v′ = −2 log u−
∫ x

x0

p1(x′)dx′ + C1,

v′ = C2
e−

∫ x
x0

p1(x′)dx′

u2 = C2
e−

∫ x
x0

log x′ dx′

e2x = C3e−x−x log x.

Thus
v = C3

∫ x

x0

e−x′−x′ log x′ dx′ + C4

and
y = C3ex

∫ x

x0

e−x′−x′ log x′ dx′ + C4ex.

2 Looking for simple polynomials shows that y = x is a solution. Writing y = xu gives

u′′ +
(

2
x
+ xp

)
u′ = 0.

This has integrating factor

exp
∫ x

[2b−1 + bp(b)]db = x2 exp
∫ x

bp(b)db.

Hence a second solution is

y(x) = x
∫ x

a−2 exp
(
−
∫ a

bp(b)db
)

da.
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The lower limits are arbitrary. For p(x) = cos x, the integral is−
∫ x a cos a da = −x sin x−

cos x. Then
y(x) = Ax

∫ x

π
a−2e−a sin a−cos a da.

is a solution satisfying the boundary condition at x = π. Applying the second boundary
condition gives

y(x) =
x
∫ x

π
a−2e−a sin a−cos a da

2π
∫ 2π

π
a−2e−a sin a−cos a da

;

note that the denominator is just a number.

3 The Green’s function for this problem satisfies

G′ + G sin x = δ(x− a).

The homogeneous solution is exp (cos x), which comes e.g. from an integrating factor.
The Green’s function is

G(x; a) =

{
A exp cos x x < a,
B exp cos x x > a.

Consider x ≥ 0. From the boundary condition at x = 0, A = 0. The jump condition gives
B exp (cos a) = 1, so

G(x; a) =

{
0 x < a,
exp (cos x− cos a) x > a.

Our final solution is therefore

y(x) =
∫ x

0
f (a)ecos x−cos a da.

Using the integrating factor exp (− cos x) directly gives

y = Aecos x +
∫ x

0
f (a)ecos x−cos a da.

Applying the BC, y(0) = Ae = 0, so A = 0 and we recover the same solution as above.

4 The homogenous equation has constant coefficients, so with y = erx,

r2 + 2r + 1 = (r + 1)2 = 0,

and hence
yh = C1e−x + C2xe−x.

The Green’s function satisfies

dG2(x, z)
dx2 + 2

dG(x, z)
dx

+ G(x, z) = δ(x− z),
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with solution

G(x; z) =

{
A(z)e−x + B(z)xe−x x < z,
C(z)e−x + D(z)xe−x x > z.

Apply BCs: y(0) = 0, so A(z) = 0; and then limx→∞ exy(x) is bounded, so D(z) = 0.
Hence

C(z)e−z − B(z) · z · e−z = 0, −C(z)e−z −
[
B(z)e−z − B(z) · z · e−z] = 1.

This leads to
B(z) = −ez, C(z) = −zez.

Finally we obtain

G(x; z) =

{
−ezxe−x x < z,
−zeze−x x > z.

and

y(x) = −e−x
∫ x

0

zez

1 + e2z dz− xe−x
∫ ∞

x

ez

1 + e2z dz

= −e−x
∫ x

0

zez

1 + e2z dz− xe−x
(π

2
− tan−1 ex

)
.

5 Two independent solutions are r and r−1, with Wronskian −2r−1. The Green’s func-
tion is

G(x; s) =

{
A(s)r + B(s)/r x < s,
C(s)r + D(s)/r x > s.

Apply the BC: f (0) = 0, so B(s) = 0. Hence the jump conditions give

C(s)s + D(s)/s− A(s)s = 0, C(s)− D(s)/s2 − A(s) = 1.

This leads to

C(s) = A(s) + 1/2, D(s) = − s2

2
.

Finally we obtain

G(x; s) =

{
A(s)r x < s,
(A(s) + 1/2)r− s2

2r x > s.

and

f (r) =
∫ r

0

[
(A(s) + 1/2)r− s2

2r

]
g(s)ds + r

∫ R

r
A(s)g(s)ds

= r
∫ R

0
A(s)g(s)ds +

r
2

∫ r

0
g(s)ds− 1

2r

∫ r

0
s2g(s)ds

= A′r +
r
2

∫ r

0
g(s)ds− 1

2r

∫ r

0
s2g(s)ds.
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The constant R would correspond to the location of the second boundary. We see that we
obtain an arbitrary multiple of the homogeneous solution r; the constant A′ would come
from applying a second bounadry condition. We need g(s) to look like sa with a > −1
near the origin for the g(s) integral to exist there. If R is finite, the last integral is well-
behaved at that right endpoint. If R is infinite, we need g(s) ∼ sa with a < −3 for large s
for the last integral to exist. (Logarithmic corrections do not affect convergence.)

6 Consider x < 0 and x > 0 separately. For x < 0 we see

y′′ − y = ex.

The RHS is a homogeneous solution, so try αxex. We find 2αex = ex, so α = 1/2. The
other homogeneous solution is e−x so we have a general solution

y = Aex + Be−x +
x
2

ex.

For x > 0 we see
y′′ + y = e−x.

Now if we try βe−x as a solution we get 2βe−x = e−x so β = 1/2. The homogeneous
solutions are sin x and cos x so we have a general solution

y =
e−x

2
+ C sin x + D cos x.

The equation is second order, so the first and second derivatives must be continuous at
x = 0 in order for the second derivative to satisfy the differential equation. Matching the
solutions yields

B = A− C + 1, D = 2A− C +
1
2

,

and our general solution is

y(x < 0) = Aex + (A− C + 1)e−x +
x
2

ex

y(x > 0) = C sin x +

(
2A− C +

1
2

)
cos x +

e−x

2
.
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