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Solutions III

1 Investigating the behavior near the origin shows that p1 ∼ (3/2)x−1 and p0 ∼ −(1/2)x−2.
Hence the origin is a regular singular point and (a) is not possible since it is not a Frobe-
nius series. The indicial equation is s(s− 1) + 3s/2− 1/2, which has roots −1 and 1/2.
Hence (b) is impossible since the roots do not differ by an integer and (d) is impossible
since 0 is not a root. The only possibility is (c).

2 The origin is an ordinary point. Multiply through by 2x + 1 and substitute in y(x) =
∑∞

n=0 anxn:

∞

∑
n=0

[n(n− 1)an(2xn−1 + xn−2)− 2nanxn−1 − an(2xn+1 + 3xn)] = 0.

Shifting variables gives the recurrence relation

2(n + 1)nan+1 + (n + 2)(n + 1)an+2 − 2(n + 1)an+1 − 2an−1 − 3an

= (n + 2)(n + 1)an+2 + 2(n + 1)(n− 1)an+1 − 3an − 2an−1 = 0,

where a−1 is taken to be zero in the n = 0 equation. There are two solutions. One can be
obtained from a0 = 0 and a1 = 1; this leads to the series

x + x2 +
x3

2
+

x4

6
+ · · ·

which looks like xex. If one then substitutes an = 1/(n− 1)! for n ≥ 1, one obtains

n + 2
n!

+
2(n + 1)(n− 1)

n!
− 3

(n− 1)!
− 2

(n− 2)!
=

1
n!

[
n + 2 + 2(n2 − 1)− 3n− 2(n2 − n)

]
for n ≥ 1, which vanishes, and 2a2− 2a1− 3a0 = 2− 2 = 0. Hence one solution is indeed
xex. For the second, take a0 = 1 and a1 = −1; this leads to the series

1− x +
x2

2
− x3

6
+ · · ·

which looks like e−x. If one then substitutes an = (−1)n/n!, one obtains

(−1)n+2

n!
+

2(n− 1)(−1)n+1

n!
− 3(−1)n

n!
− 2(−1)n−1

(n− 1)!
=

(−1)n

n!
[1− 2(n− 1)− 3 + 2n]

for n ≥ 1, which vanishes, and 2a2 − 2a1 − 3a0 = 1 + 2− 3 = 0. Hence another solution
is indeed e−x.
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3 The origin is an ordinary point, so substitute in y(x) = ∑∞
n=0 anxn, yielding the recur-

rence relation

an+2 =
n2 − p2

(n + 2)(n + 1)
an.

Hence if p is an integer, one series terminates (the even series if p is even and the odd
series if p is odd). The series for p up to 3 are

y0 = 1, y1 = x, y2 = 1− 2x2, y3 = x− 4x3/3.

Starting from x = cos θ, the chain rule gives

d
dx

=
1
xθ

d
dθ

= − 1
sin θ

d
dθ

,
d2

dx2 = − 1
sin θ

d
dθ

(
− 1

sin θ

d
dθ

)
=

1
sin2 θ

d2

dθ2 −
cos θ

sin3 θ

d
dθ

.

The equation transforms to

(1− cos2 θ)

(
1

sin2 θ
yθθ −

cos θ

sin3 θ
yθ

)
+

cos θ

sin θ
yθ + p2y = yθθ + p2y = 0,

the simple harmonic oscillator equation. This has solution y = A cos pθ = cos (p cos−1 x)
and y = B sin pθ = B sin (p cos−1 x). The former solution leads to polynomials if p is an
integer. Taking A = 1 gives

y0 = 1, y1 = cos θ = x, y2 = cos 2θ = 2 cos2 θ − 1 = 2x2 − 1,

and

y3 = cos 3θ = cos θ cos 2θ − sin θ sin 2θ = cos θ cos 2θ − 2 sin2 θ cos θ

= x(2x2 − 1)− 2(1− x2)x = 4x3 − 3x,

clearly the same as before up to normalization

4 The origin is an RSP. Substituting in the Frobenius form gives
∞

∑
n=0

(n + s)anxn+s−1 −
∞

∑
n=0

an[xn+s−1 − xn+s+1] = 0.

Hence the indicial equation is s− 1 = 0 and hence s = 1. This gives successively a1 = 0
and the recurrence relation

(n + 2)an+2 + an = 0.

This can be solved to give

an = − 1
n

an−2 = · · · = (−1)n/2

n(n− 2) · · · 4 · 2 a0 =
(−1)n/2

2n/2(n/2)(n/2− 1) · · · 2 · 1
a0 =

(−1)n/2

2n/2(n/2)!
a0,

since n is even. Hence the series becomes

y(x) = xa0

∞

∑
n=0

(−x2/2)m

m!
= xe−x2/2a0.

The integrating factor is exp
∫
(−x−1 + x)dx = exp (− log x + x2/2) = x−1ex2/2, so the

solution is y(x) = Axe−x2/2, as above.
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5 The point x = 1 is an RSP, as is x = −1. Substitute the Frobenius series (x −
1)s ∑∞

n=0(x − 1)n into the equation. Write y = x − 1, so that 1− x2 = −2y − y2, so the
recurrence relation becomes

−2
∞

∑
n=0

(n + s)2anyn+s−1 −
∞

∑
n=0

[(n + s)(n + s + 1)− l(l + 1)]anyn+s = 0.

The indicial equation is s2 = 0, so there is one Frobenius (actually Taylor) series with
s = 0. Solving the recurrence relation gives

an+1 =
l(l + 1)− n(n + 1)

2(n + 1)2 an.

This terminates when l is an integer. The first three solutions are

1 = P0(x), y + 1 = x = P1(x),
3
2

y2 − 3y + 1 =
3
2

x2 − 1
2
= P2(x),

as before. Since the indicial root has two identical solutions, the second solution must be
logarithmic.

6 We have p1(x) = 0 and x2p0(x) = x, both of which are finite as x → 0, so the origin is
an RSP. Substituting in the Frobenius form gives

∞

∑
n=0

(n + s)(n + s− 2)anxn+s−2 +
∞

∑
n=0

anxn+s−1 = 0.

Taking n = 0 gives the indicial equation s(s− 1) = 0 and hence s = 0, 1. The larger of
these will give a Frobenius solution; the smaller might have a logarithmic term since the
solutions to the indicial equation differ by an integer. Taking s = 1 gives the recurrence
relation

(n + 2)(n + 1)an+1 + an = 0.

This leads to

an = − an−1

(n + 1)n
=

an−2

(n + 1)n2(n− 1)
= · · · = (−1)n

(n + 1)n2(n− 1)2 · · · 2 a0 =
(−1)n

(n + 1)(n!)2 a0.

With the given change of variable, the chain rule gives

y′ =
1

2
√

x
f + f ′, y′′ = − 1

4x3/2 f +
1

2x
f ′ +

1√
x

f ′′.

Hence, with r = 2
√

x,

1√
x

f ′′ +
1

2x
f ′ +

(
1√
x
− 1

1
4x3/2

)
f =

1√
x

[
f ′′ +

1
r

f ′ +
(

1− 1
r2

)
f
]
= 0.

This is Bessel’s equation with n = 1, so the solution can be written as

y(x) = A
√

xJ1(
√

x) + B
√

xY1(2
√

x).

From the expansion of Y1(r), the second series in the RSP analysis has a logarithmic term.
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