Solutions III

1 Investigating the behavior near the origin shows that $p_{1} \sim(3 / 2) x^{-1}$ and $p_{0} \sim-(1 / 2) x^{-2}$. Hence the origin is a regular singular point and (a) is not possible since it is not a Frobenius series. The indicial equation is $s(s-1)+3 s / 2-1 / 2$, which has roots -1 and $1 / 2$. Hence (b) is impossible since the roots do not differ by an integer and (d) is impossible since 0 is not a root. The only possibility is (c).

2 The origin is an ordinary point. Multiply through by $2 x+1$ and substitute in $y(x)=$ $\sum_{n=0}^{\infty} a_{n} x^{n}$:

$$
\sum_{n=0}^{\infty}\left[n(n-1) a_{n}\left(2 x^{n-1}+x^{n-2}\right)-2 n a_{n} x^{n-1}-a_{n}\left(2 x^{n+1}+3 x^{n}\right)\right]=0
$$

Shifting variables gives the recurrence relation

$$
\begin{aligned}
& 2(n+1) n a_{n+1}+(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}-2 a_{n-1}-3 a_{n} \\
= & (n+2)(n+1) a_{n+2}+2(n+1)(n-1) a_{n+1}-3 a_{n}-2 a_{n-1}=0,
\end{aligned}
$$

where a_{-1} is taken to be zero in the $n=0$ equation. There are two solutions. One can be obtained from $a_{0}=0$ and $a_{1}=1$; this leads to the series

$$
x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\cdots
$$

which looks like $x \mathrm{e}^{x}$. If one then substitutes $a_{n}=1 /(n-1)$! for $n \geq 1$, one obtains

$$
\frac{n+2}{n!}+\frac{2(n+1)(n-1)}{n!}-\frac{3}{(n-1)!}-\frac{2}{(n-2)!}=\frac{1}{n!}\left[n+2+2\left(n^{2}-1\right)-3 n-2\left(n^{2}-n\right)\right]
$$

for $n \geq 1$, which vanishes, and $2 a_{2}-2 a_{1}-3 a_{0}=2-2=0$. Hence one solution is indeed $x \mathrm{e}^{x}$. For the second, take $a_{0}=1$ and $a_{1}=-1$; this leads to the series

$$
1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\cdots
$$

which looks like e^{-x}. If one then substitutes $a_{n}=(-1)^{n} / n$!, one obtains

$$
\frac{(-1)^{n+2}}{n!}+\frac{2(n-1)(-1)^{n+1}}{n!}-\frac{3(-1)^{n}}{n!}-\frac{2(-1)^{n-1}}{(n-1)!}=\frac{(-1)^{n}}{n!}[1-2(n-1)-3+2 n]
$$

for $n \geq 1$, which vanishes, and $2 a_{2}-2 a_{1}-3 a_{0}=1+2-3=0$. Hence another solution is indeed e^{-x}.

3 The origin is an ordinary point, so substitute in $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, yielding the recurrence relation

$$
a_{n+2}=\frac{n^{2}-p^{2}}{(n+2)(n+1)} a_{n}
$$

Hence if p is an integer, one series terminates (the even series if p is even and the odd series if p is odd). The series for p up to 3 are

$$
y_{0}=1, \quad y_{1}=x, \quad y_{2}=1-2 x^{2}, \quad y_{3}=x-4 x^{3} / 3 .
$$

Starting from $x=\cos \theta$, the chain rule gives

$$
\frac{\mathrm{d}}{\mathrm{~d} x}=\frac{1}{x_{\theta}} \frac{\mathrm{d}}{\mathrm{~d} \theta}=-\frac{1}{\sin \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta}, \quad \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}=-\frac{1}{\sin \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta}\left(-\frac{1}{\sin \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta}\right)=\frac{1}{\sin ^{2} \theta} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \theta^{2}}-\frac{\cos \theta}{\sin ^{3} \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta}
$$

The equation transforms to

$$
\left(1-\cos ^{2} \theta\right)\left(\frac{1}{\sin ^{2} \theta} y_{\theta \theta}-\frac{\cos \theta}{\sin ^{3} \theta} y_{\theta}\right)+\frac{\cos \theta}{\sin \theta} y_{\theta}+p^{2} y=y_{\theta \theta}+p^{2} y=0
$$

the simple harmonic oscillator equation. This has solution $y=A \cos p \theta=\cos \left(p \cos ^{-1} x\right)$ and $y=B \sin p \theta=B \sin \left(p \cos ^{-1} x\right)$. The former solution leads to polynomials if p is an integer. Taking $A=1$ gives

$$
y_{0}=1, \quad y_{1}=\cos \theta=x, \quad y_{2}=\cos 2 \theta=2 \cos ^{2} \theta-1=2 x^{2}-1
$$

and

$$
\begin{aligned}
y_{3} & =\cos 3 \theta=\cos \theta \cos 2 \theta-\sin \theta \sin 2 \theta=\cos \theta \cos 2 \theta-2 \sin ^{2} \theta \cos \theta \\
& =x\left(2 x^{2}-1\right)-2\left(1-x^{2}\right) x=4 x^{3}-3 x
\end{aligned}
$$

clearly the same as before up to normalization

4 The origin is an RSP. Substituting in the Frobenius form gives

$$
\sum_{n=0}^{\infty}(n+s) a_{n} x^{n+s-1}-\sum_{n=0}^{\infty} a_{n}\left[x^{n+s-1}-x^{n+s+1}\right]=0
$$

Hence the indicial equation is $s-1=0$ and hence $s=1$. This gives successively $a_{1}=0$ and the recurrence relation

$$
(n+2) a_{n+2}+a_{n}=0
$$

This can be solved to give
$a_{n}=-\frac{1}{n} a_{n-2}=\cdots=\frac{(-1)^{n / 2}}{n(n-2) \cdots 4 \cdot 2} a_{0}=\frac{(-1)^{n / 2}}{2^{n / 2}(n / 2)(n / 2-1) \cdots 2 \cdot 1} a_{0}=\frac{(-1)^{n / 2}}{2^{n / 2}(n / 2)!} a_{0}$,
since n is even. Hence the series becomes

$$
y(x)=x a_{0} \sum_{n=0}^{\infty} \frac{\left(-x^{2} / 2\right)^{m}}{m!}=x \mathrm{e}^{-x^{2} / 2} a_{0}
$$

The integrating factor is $\exp \int\left(-x^{-1}+x\right) \mathrm{d} x=\exp \left(-\log x+x^{2} / 2\right)=x^{-1} \mathrm{e}^{x^{2} / 2}$, so the solution is $y(x)=A x \mathrm{e}^{-x^{2} / 2}$, as above.

5 The point $x=1$ is an RSP, as is $x=-1$. Substitute the Frobenius series $(x-$ $1)^{s} \sum_{n=0}^{\infty}(x-1)^{n}$ into the equation. Write $y=x-1$, so that $1-x^{2}=-2 y-y^{2}$, so the recurrence relation becomes

$$
-2 \sum_{n=0}^{\infty}(n+s)^{2} a_{n} y^{n+s-1}-\sum_{n=0}^{\infty}[(n+s)(n+s+1)-l(l+1)] a_{n} y^{n+s}=0
$$

The indicial equation is $s^{2}=0$, so there is one Frobenius (actually Taylor) series with $s=0$. Solving the recurrence relation gives

$$
a_{n+1}=\frac{l(l+1)-n(n+1)}{2(n+1)^{2}} a_{n} .
$$

This terminates when l is an integer. The first three solutions are

$$
1=P_{0}(x), \quad y+1=x=P_{1}(x), \quad \frac{3}{2} y^{2}-3 y+1=\frac{3}{2} x^{2}-\frac{1}{2}=P_{2}(x)
$$

as before. Since the indicial root has two identical solutions, the second solution must be logarithmic.

6 We have $p_{1}(x)=0$ and $x^{2} p_{0}(x)=x$, both of which are finite as $x \rightarrow 0$, so the origin is an RSP. Substituting in the Frobenius form gives

$$
\sum_{n=0}^{\infty}(n+s)(n+s-2) a_{n} x^{n+s-2}+\sum_{n=0}^{\infty} a_{n} x^{n+s-1}=0
$$

Taking $n=0$ gives the indicial equation $s(s-1)=0$ and hence $s=0,1$. The larger of these will give a Frobenius solution; the smaller might have a logarithmic term since the solutions to the indicial equation differ by an integer. Taking $s=1$ gives the recurrence relation

$$
(n+2)(n+1) a_{n+1}+a_{n}=0
$$

This leads to
$a_{n}=-\frac{a_{n-1}}{(n+1) n}=\frac{a_{n-2}}{(n+1) n^{2}(n-1)}=\cdots=\frac{(-1)^{n}}{(n+1) n^{2}(n-1)^{2} \cdots 2} a_{0}=\frac{(-1)^{n}}{(n+1)(n!)^{2}} a_{0}$.
With the given change of variable, the chain rule gives

$$
y^{\prime}=\frac{1}{2 \sqrt{x}} f+f^{\prime}, \quad y^{\prime \prime}=-\frac{1}{4 x^{3 / 2}} f+\frac{1}{2 x} f^{\prime}+\frac{1}{\sqrt{x}} f^{\prime \prime}
$$

Hence, with $r=2 \sqrt{x}$,

$$
\frac{1}{\sqrt{x}} f^{\prime \prime}+\frac{1}{2 x} f^{\prime}+\left(\frac{1}{\sqrt{x}}-1 \frac{1}{4 x^{3 / 2}}\right) f=\frac{1}{\sqrt{x}}\left[f^{\prime \prime}+\frac{1}{r} f^{\prime}+\left(1-\frac{1}{r^{2}}\right) f\right]=0
$$

This is Bessel's equation with $n=1$, so the solution can be written as

$$
y(x)=A \sqrt{x} J_{1}(\sqrt{x})+B \sqrt{x} Y_{1}(2 \sqrt{x})
$$

From the expansion of $Y_{1}(r)$, the second series in the RSP analysis has a logarithmic term.

