Solutions IV

1 The equation is equidimensional, so try a solution $y=x^{\alpha}$. The polynomial gives $\alpha^{2}-\alpha+\lambda=0$. The two roots are $\alpha_{1,2}=\frac{1 \pm \sqrt{1-4 \lambda}}{2}$. When $\lambda=\frac{1}{4}$, the general solution is $y=A_{1} \sqrt{x}+B_{1} \sqrt{x} \log x$, which only has the trivial solution from the BCs. We can write the general solution as

$$
y=A x^{\frac{1+\sqrt{1-4 \lambda}}{2}}+A x^{\frac{1-\sqrt{1+4 \lambda}}{2}} .
$$

From the BCs, we obtain

$$
A+B=0, \quad 2^{\frac{1+\sqrt{1-4 \lambda}}{2}} A+2^{\frac{1-\sqrt{1+4 \lambda}}{2}} B=0 .
$$

Non-trivial solutions are possible when

$$
2^{\frac{1+\sqrt{1-4 \lambda}}{2}}=2^{\frac{1-\sqrt{1-4 \lambda}}{2}}
$$

which requires

$$
2^{\sqrt{1-4 \lambda}}=1
$$

For $\lambda<1 / 4$, there is no solution. For $\lambda>1 / 4$, we have

$$
1=2^{\sqrt{4 \lambda-1} i}=\cos (\sqrt{4 \lambda-1} \log 2)+i \sin (\sqrt{4 \lambda-1} \log 2)
$$

which gives

$$
\lambda_{n}=\frac{1+(2 n \pi / \log 2)^{2}}{4}
$$

The two lowest eigenvalues are $\lambda_{1}=20.792$ and 82.419 . For large n, λ_{n} behaves like $(n \pi / \log 2)^{2}$.

2 The Sturm-Liouville form gives $p=1, q=0, w=\mathrm{e}^{x}$. Try test function $y=\sin \pi x+$ $a \sin 2 \pi x$. The first derivative of y is $y^{\prime}=\pi \cos \pi x+2 a \pi \cos 2 \pi x$. We obtain

$$
\begin{aligned}
& I=\int_{0}^{1}(\pi \cos \pi x+2 a \pi \cos 2 \pi x)^{2} \mathrm{~d} x=\frac{1}{2} \pi^{2}+2 a^{2} \pi^{2} \\
& J=\int_{0}^{1} \mathrm{e}^{x}(\sin \pi x+a \sin 2 \pi x)^{2} \mathrm{~d} x=\frac{2(\mathrm{e}-1) \pi^{2}}{1+4 \pi^{2}}-\frac{8 a(1+\mathrm{e}) \pi^{2}}{\left(1+\pi^{2}\right)\left(1+9 \pi^{2}\right)}+\frac{8(\mathrm{e}-1) a^{2} \pi^{2}}{1+16 \pi^{2}}
\end{aligned}
$$

The Rayleigh quotient is given by $K=I / J$, and its minimum is 5.827 .

The exact solution can be obtained using the change of variable $t=2 \sqrt{\lambda} \mathrm{e}^{x / 2}$. Then the equation becomes

$$
y_{t t}+\frac{1}{t} y_{t}+y=0
$$

which is a Bessel equqtion with solution $y=A J_{0}(t)+B Y_{0}(t)=A J_{0}\left(2 \sqrt{\lambda} \mathrm{e}^{x / 2}\right)+B Y_{0}\left(2 \sqrt{\lambda} \mathrm{e}^{x / 2}\right)$. The BCs give

$$
\begin{gathered}
A J_{0}\left(2 \sqrt{\lambda_{n}}\right)+B Y_{0}\left(2 \sqrt{\lambda_{n}}\right)=0, \\
A J_{0}\left(2 \sqrt{\lambda_{n}} \mathrm{e}^{1 / 2}\right)+B Y_{0}\left(2 \sqrt{\lambda_{n}} \mathrm{e}^{1 / 2}\right)=0 .
\end{gathered}
$$

The condition for non-trivial solutions is

$$
J_{0}\left(2 \sqrt{\lambda_{n}}\right) Y_{0}\left(2 \sqrt{\lambda_{n}} \mathrm{e}^{1 / 2}\right)=Y_{0}\left(2 \sqrt{\lambda_{n}}\right) J_{0}\left(2 \sqrt{\lambda_{n}} \mathrm{e}^{1 / 2}\right)
$$

The eigenvalues can be found numerically and $\lambda_{1} \approx 5.82654627418$.

3 This is a Ricatti equation. We can spot the solution $y_{1}=\sin x$, and then use the substitution $y=\sin x+u$ to get

$$
u^{\prime}=u \sin x+u^{2}
$$

which is now Bernoulli with $p=2$. Use $v=u^{1-p}=u^{-1}$ to get

$$
-v^{\prime}=v \sin x+1 .
$$

Use the integrating factor $\mathrm{e}^{\int^{x} \sin a \mathrm{~d} a}=\mathrm{e}^{-\cos x}$ to get

$$
v(x)=\mathrm{e}^{\cos x}\left(A-\int^{x} \mathrm{e}^{-\cos a \mathrm{~d} a} \mathrm{~d} x\right) .
$$

so the general solution is

$$
y(x)=\sin x+\frac{\mathrm{e}^{-\cos x}}{A-\int^{x} \mathrm{e}^{-\cos a} \mathrm{~d} a}
$$

4 Reexpress in terms of differentials:

$$
x \mathrm{e}^{-y} \mathrm{~d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y=0
$$

with $A=x \mathrm{e}^{-y}$ and $B=x^{2}+y^{2}$. Then

$$
\frac{1}{A}\left(\frac{\partial B}{\partial x}-\frac{\partial A}{\partial y}\right)=\frac{1}{x \mathrm{e}^{-y}}\left(2 x+x \mathrm{e}^{-y}\right)=2 \mathrm{e}^{y}+1=f(y)
$$

Hence inexact with integrating factor satisfying

$$
\frac{\mathrm{d} \mu}{\mu}=\left(2 \mathrm{e}^{y}+1\right) \mathrm{d} y
$$

which integrates to give

$$
\mu=\exp \left(2 \mathrm{e}^{y}+y\right)
$$

The exact equation is

$$
x \exp \left(2 \mathrm{e}^{y}\right) \mathrm{d} x+\left(x^{2}+y^{2}\right) \exp \left(2 \mathrm{e}^{y}+y\right) \mathrm{d} y=0
$$

The resulting integral is

$$
\frac{x^{2}}{2} \exp \left(2 \mathrm{e}^{y}\right)+\int^{y} u^{2} \exp \left(2 \mathrm{e}^{u}+u\right) \mathrm{d} u=C
$$

This can be solved explicitly for $x(y)$.
5 This is an equidimensional-in- x equation. Let $x=\mathrm{e}^{t}$ and find

$$
y_{t t}-y_{t}+y_{t}+y^{2}=y_{t t}+y^{2}=0
$$

Now this is autonomous and the first integral is automatic by multiplying by y_{t} :

$$
\frac{1}{2} y_{t}^{2}+\frac{1}{3} y^{3}=A
$$

Now separate variables and get

$$
x(y)=\exp \left(\int^{y} \frac{\mathrm{~d} u}{\left[2\left(A-u^{3} / 3\right)\right]^{1 / 2}}+B\right) .
$$

The solution $y(x)$ can be written in terms of the Weierstrass elliptic function (\wp).

6 This is an equidimensional-in- y equation. Let $y=\mathrm{e}^{u}$ and find

$$
u^{\prime}-\frac{x}{1+u^{\prime}}=0
$$

This is a quadratic equation in u^{\prime} with roots

$$
u^{\prime}=\frac{-1 \pm \sqrt{1+4 x}}{2}
$$

This integrates up to

$$
u=\frac{-x \pm(1+4 x)^{3 / 2} / 6}{2}+C
$$

The final answer is

$$
y(x)=D \exp \left(-\frac{x}{2} \pm \frac{(1+4 x)^{3 / 2}}{12}\right)
$$

