Solutions V

1 (a) Characteristic equation:

$$
\frac{\mathrm{d} x}{y-2}=\frac{\mathrm{d} y}{x+1}
$$

Separate variables and obtain

$$
p=\frac{x^{2}}{2}+x-\frac{y^{2}}{2}+2 y
$$

with $u(x, y)=f(p)$. The boundary condition gives $x=f\left(x^{2} / 2+x\right)$, so that $f(z)=$ $\pm \sqrt{2 z+1}-1$ and

$$
u(x, y)= \pm \sqrt{1+x^{2}+2 x-y^{2}+4 y}-1
$$

with the $+\operatorname{sign}$ for $p>-1$ and the $-\operatorname{sign}$ for $p<-1$.
(b) Characteristic equation:

$$
\frac{\mathrm{d} x}{\mathrm{e}^{y}}=\mathrm{d} y
$$

Find $p=x-\mathbf{e}^{y}$. The boundary condition gives $1-x=f(x-1)$, so

$$
u(x, y)=\mathrm{e}^{y}-x
$$

(c) Characteristic equation:

$$
\frac{\mathrm{d} x}{\sin y}=\frac{\mathrm{d} y}{x}
$$

Separate variables and obtain

$$
p=\frac{x^{2}}{2}+\cos y
$$

The boundary condition gives $x^{2}=f\left(x^{2} / 2+1\right)$, so

$$
u(x, y)=x^{2}+2 \cos y-2
$$

(d) Characteristic equation:

$$
\mathrm{d} x=\frac{\mathrm{d} y}{3 x^{2}} .
$$

Find $p=x^{3}-y$. The boundary condition gives $1=f\left(x^{3}-x\right)$. This holds for all x and the argument of f takes all real values, so

$$
u(x, y)=1
$$

2 (a) A particular solution is x. The general solution is

$$
u(x, y)=x+f\left(\frac{x^{2}}{2}+x-\frac{y^{2}}{2}+2 y\right)
$$

The boundary condition gives $x=x+f\left(x^{2} / 2+x\right)$, so that $f=0$ and $u(x, y)=x$. (b) A particular multiplicative solution is $\mathrm{e}^{y^{2} / 2}$. The general solution is

$$
u(x, y)=\mathrm{e}^{y^{2} / 2} f\left(x-\mathrm{e}^{y}\right)
$$

The boundary condition gives $1-x=f(x-1)$ again, so

$$
u(x, y)=\left(\mathrm{e}^{y}-x\right) \mathrm{e}^{y^{2} / 2}
$$

(c) A particular solution is $-\cos y$. The general solution is

$$
u(x, y)=-\cos y+f\left(x^{2} / 2+\cos y\right)
$$

The boundary condition gives $x^{2}=-1+f\left(x^{2} / 2+1\right)$, so so

$$
u(x, y)=x^{2}+\cos y-1
$$

(d) Particular solutions are $x^{3} / 3$ or $y / 3$. The general solution is

$$
u(x, y)=\frac{x^{3}}{3}+f\left(x^{3}-y\right)
$$

The boundary condition gives $1=x^{3} / 3+f\left(x^{3}-x\right)$. This is formally correct. However, Figure 1 shows that the function $f(z)$ is multivalued, which is problematic. It might be safest to say that the problem has no solution.

3 This is a Jacobian equation, as can be seen from

$$
\frac{\partial}{\partial x}(2 x y+\sin y)+\frac{\partial}{\partial y}\left(\mathrm{e}^{x}-y^{2}\right)=0
$$

Writing the original equation as $a u_{x}+b u_{y}=0$, the general solution is $u(x, y)=f(v)$, where $v_{y}=a$ and $v_{x}=-b$. This gives

$$
v=x y^{2}-\mathrm{e}^{x}-\cos y
$$

The boundary condition leads to $x=f\left(-\mathrm{e}^{x}-1\right)$, so $f(v)=\log (-1-v)$ and the solution is

$$
u(x, y)=\ln \left(-1+\mathrm{e}^{x}-x y^{2}+\cos y\right)
$$

Figure 1: Multivalued function $f\left(x^{3}-x\right)$.

4 For this problem, $A=1, B=1, C=-2$. This leads to $\lambda=1,-1 / 2$. There are three simple choices for the particular solution: $x^{2}, 2 x y$ and $-y^{2} / 2$. Take the last, so that the general solution is

$$
u(x, y)=f(x+y)+g(x-y / 2)-\frac{y^{2}}{2}
$$

The two boundary conditions give

$$
f(x)+g(x)=3 x, \quad f^{\prime}(x)-\frac{1}{2} g^{\prime}(x)=2
$$

Differentiating the first expression and solving gives $f^{\prime}(x)=7 / 3$ and $g^{\prime}(x)=2 / 3$. The constant of integration is zero from the first boundary condition, so that

$$
u(x, y)=\frac{7}{3}(x+y)+\frac{2}{3}\left(x-\frac{y}{2}\right)-\frac{y^{2}}{2}=3 x+2 y-\frac{y^{2}}{2}
$$

5 For this problem, $A=1, B=-1, C=-1$. This leads to $\lambda_{ \pm}=(-1 \pm \sqrt{5}) / 2$. The two boundary conditions give

$$
f\left(x+\lambda_{+} x\right)+g\left(x+\lambda_{-} x\right)=3, \quad f^{\prime}\left(x+\lambda_{+} x\right)+g^{\prime}\left(x+\lambda_{-} x\right)=1
$$

One can solve these equation to find the solution. A more efficient approach is to note from these boundary conditions that the solution must take the form $u(x, y)=a x+b y+$ c. The boundary conditions become $a x+b x+c=3$ and $a=1$ on $y=x$. Hence $a+b=0$, $c=3$ and $a=1$. The final solution is

$$
u(x, y)=x-y+3
$$

6 For this problem, $A=1, B=-2, C=2$. This leads to $\lambda_{ \pm}=(1 \pm i) / 2$. The general solution is

$$
u(x, y)=f\left(x+\frac{1+\mathrm{i}}{2} y\right)+g\left(x+\frac{1-\mathrm{i}}{2} y\right)
$$

