MMS Examples

1

$$
\ddot{y}+\left[\frac{1}{1+(\epsilon t)^{2}}+1\right]^{2} y=0 .
$$

Solution Use the change of independent variable as in class, with $\mu(T)=\left(1+T^{2}\right)^{-1}+$ 1. Then

$$
t_{*}=\frac{1}{\epsilon} \int_{0}^{T} \mu(S) \mathrm{d} S=\frac{\tan ^{-1} T+T}{\epsilon} .
$$

2

$$
\ddot{y}+\epsilon t \mathrm{e}^{-t} \dot{y}+y=0 .
$$

Solution Use a naive expansion. The leading-order solution is $y_{0}=A \mathrm{e}^{-\mathrm{it}}+$ c.c. At $O(\epsilon)$, find

$$
y_{1 t t}+y_{1}=t \mathrm{e}^{-t}\left(\mathrm{i} A \mathrm{e}^{\mathrm{i} t}+c . c .\right),
$$

with solution

$$
y_{1}=B \mathrm{e}^{\mathrm{i} t}+(C t+D) A \mathrm{e}^{(\mathrm{i}-1) t}+c . c .,
$$

where C and D can be found. There is no resonance.
3

$$
\ddot{y}-\epsilon t \mathrm{e}^{-\epsilon t} y+y=0 .
$$

Solution Use the change of independent variable as in class, with $\mu(T)=\sqrt{1-T \mathrm{e}^{-T}}$. Then

$$
t_{*}=\frac{1}{\epsilon} \int_{0}^{T} \sqrt{1-S \mathrm{e}^{-S}} \mathrm{~d} S
$$

4

$$
\ddot{y}-\epsilon t \mathrm{e}^{\epsilon t} \dot{y}+y=0 .
$$

Solution This is a WKB problem. See later.

$$
\ddot{y}+\left[1+\epsilon \frac{1+y^{2}}{1+\dot{y}^{2}}\right] y=0 .
$$

Solution Skip the naive expansion. The leading-order solution is $x_{0}=A(T) \mathrm{e}^{-\mathrm{i} t}+$ c.c. At $O(\epsilon)$, find

$$
y_{1 t t}+y_{1}+2 y_{0 T t}+\frac{1+y_{0}^{2}}{1+y_{0 t}^{2}} y_{0}=0 .
$$

The resonant term comes from $\mathrm{e}^{\mathrm{it} t}$, so multiplying the equation by $\mathrm{e}^{-\mathrm{it}}$ and integrating over a fast period gives

$$
2 \mathrm{i} A_{T}+\oint \frac{1+\left(A z+A^{*} z^{-1}\right)^{2}}{1+\left(\mathrm{i} A z-\mathrm{i} A^{*} z^{-1}\right)^{2}}\left(A z+A^{*} z^{-1}\right) \frac{\mathrm{d} z}{2 \pi \mathrm{i} z}=0,
$$

using the change of variable $z=\mathrm{e}^{\mathrm{i} t}$ and noting that on the unit circle $\mathrm{e}^{\mathrm{i} t}=z^{-1}$. The result is

$$
2 \mathrm{i} A_{T}+F\left(A, A^{*}\right)=0
$$

where $F\left(A, A^{*}\right)$ is given by evaluating the integral.

