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WKB Examples

1 The vertical normal modes in an ocean with stratification N(z) are found from the
eigenproblem

a′′ + c−2N2(z)a = 0, a(0) = a(h) = 0.

The eigenvalue is c, the phase speed. Using WKB (LG might be a more accurate designa-
tion), solve this problem for general N(z).

Solution From the lectures, we can identify E with c−2 and N2(z) with Q(z), giving

y = CN−1/2(z) sin
[

c−1
∫ z

0
N(u)du

]
,

taking N(z) > 0 (which is physically correct). The eigenvalues are then given by

c =

∫ h
0 N(u)du

nπ
.

(There is a choice for the sign of c; it is conventional to take c > 0.) For orthonormal
eigenfunctions, write

ϕ(z) =

∫ x
0 N(u)du∫ h
0 N(u)du

so that yn = CnN−1/2(z) sin [nϕ(z)]. Then from the properties of trigonometric functions

π

2
CmCnδmn = CmCn

∫ 1

0
sin mπϕ sin nπϕ dϕ =

∫ h

0
ym(z)yn(z)N(z)

dϕ

dz
dz.

But dϕ/dz = N(z)/
∫ h

0 N(u)du, so we take

Cn =

(
π

2

∫ h

0
N(u)du

)−1/2

and obtain ∫ h

0
ym(z)yn(z)N2(z)dz = δmn.

2 Find the large eigenvalues of the problem

y′′ + E(1− |x|)y = 0

where y decays at ±∞.
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Solution The WKB solution that satisfies the connection formulas at x = −1 is

y ∼ (1− |x|)−1/4 cos
(

E1/2
∫ x

−1

√
1− |u|du− π

4

)
.

Even solutions require

cos
(

E1/2
∫ x

−1

√
1− |u|du− π

4

)
= cos

(
E1/2

∫ −x

−1

√
1− |u|du− π

4

)
.

Now cos A = cos B if A = B + 2nπ or A = −B + 2nπ. Changing variable in the second
integral gives

E1/2
∫ x

−1

√
1− |u|du− π

4
= ±

(
E1/2

∫ 1

x

√
1− |u|du− π

4

)
+ 2nπ.

The plus sign is too restrictive. The minus sign leads to

E1/2
∫ 1

−1

√
1− |u|du =

4
3

E1/2 =
π

2
+ 2nπ.

For odd solutions, cos A = − cos B if A = B− π + 2nπ or A = −B− π + 2nπ. Changing
variable in the second integral gives

E1/2
∫ x

−1
[ f (u)]1/2 du− π

4
= ±

(
E1/2

∫ 1

x
[ f (u)]1/2 du− π

4

)
− π + 2nπ.

The plus sign is too restrictive. The minus sign leads to

E1/2
∫ 1

−1

√
1− |u|du =

4
3

E1/2 = −π

2
+ 2nπ.

Hence the eigenvalues are

E ≈ 9π2

16
(n− 1

2)
2

for n = 1, 2, . . . .

3 Find approximations to the large eigenvalues of the problem

y′′ + EQ(x)y = 0, a0y′(0) + b0y(0) = 0, a1y′(1) + b1y(1) = 0,

where a0 6= 0, a1 6= 0 and Q(x) > 0 in the interval (0, 1). Discuss the role of b0 and b1.
Compare to the exact solution for Q(x) = 1.
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Solution The L-G solution is

y = A[Q(x)]−1/4 sin
(

E1/2
∫ x

0

√
Q(u)du

)
+ B[Q(x)]−1/4 cos

(
E1/2

∫ x

0

√
Q(u)du

)
.

Differentiating e.g. the sine term gives

−1
4

Q′(x)[Q(x)]−5/4 sin
(

E1/2
∫ x

0

√
Q(u)du

)
+ E1/2[Q(x)]1/4 cos

(
E1/2

∫ x

0

√
Q(u)du

)
.

Since E is large, we can neglect the first term. Then in the two boundary conditions the b0
and b1 terms can also be neglected. The boundary condition at x = 0 gives A = 0 and the
boundary condition at x = 1 gives

BQ(1)−1/4 sin
(

E1/2
∫ 1

0

√
Q(u)du

)
= 0.

For a non-trivial solution, we obtain

E ∼
(

nπ∫ 1
0

√
Q(u)du

)2

.

For the special case Q = 1, the exact solution is

y = A sin (E1/2x) + B cos (E1/2x).

The two boundary conditions can be written as a homogeneous matrix equation, and
hence the exact eigenvalue condition is that the determinant

a0E1/2(−a1E1/2s + b1c)− b0(a1E1/2c + b1s) = 0

vanish, with s = sin E1/2 and c = cos E1/2. The approximation above corresponds to
keeping the O(E) term; a0a1s = 0, so that E ∼ (nπ)2. We can reduce the numbers of
parameters from 4 to 2 by dividing by a0a1 6= 0. Then the eigenvalue condition is

−Es + E1/2(d1 − d0)c− d0d1s = 0.

where d0 = b0/a0 and d1 = b1/a1. This equation can be solve numerically starting with
the guess E ∼ (nπ)2.

4 Obtain a Liouville–Green type expansion for the fourth-order equation

y(4) + a(x)y′′ + b(x)y′ + λ2c(x)y = 0, λ� 1.

Find approximate eigenvalues for arbitrary a(x), b(x) and c(x) > 0 on the interval (0, 1)
with boundary conditions y(0) = y′(0) = y(1) = y′(1). Why is there no loss of generality
in not having a y′′′ term in the equation?
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Solution Try the L–G ansatz y = eλαφ where φ = φ0 + λβφ1 + · · ·. The two largest terms
when this is substituted into the governing equation give

λ4α(φ′0)
4 + λ2c(x) + · · · = 0.

Hence α = 1/2 and φ′0 = {e±iπ/4, e±3iπ/4}[c(x)]1/4. The next terms are

λ2−β4(φ′0)
3φ′1 + λ3/26(φ′0)

2φ′′0 + · · · = 0.

This gives β = −1/2 and φ1 ∼ [c(x)]−3/8. Hence the LG expansion is

y = [c(x)]−3/8 exp
[

λ−1/2{e±i/4, e±3i/4}
∫ x

0
[c(u)]1/4 du

]
.

For the rest of the question, it is most convenient to consider the solution in the form

y = α[c(x)]−3/8 cosh [λ1/2θ] cos [λ1/2θ] + β[c(x)]−3/8 cosh [λ1/2θ] sin [λ1/2θ]

+γ[c(x)]−3/8 sinh [λ1/2θ] cos [λ1/2θ] + δ[c(x)]−3/8 sinh [λ1/2θ] sin [λ1/2θ],

where θ(x) = 2−1/2
∫ x

0 [c(u)]
1/4 du. As in 1 above, ignore the prefactor when differ-

entiating. Then writing C = cosh [λ1/2θ(1)], S = sinh [λ1/2θ(1)], c = cos [λ1/2θ(1)],
s = sin [λ1/2θ(1)], the boundary conditions become∣∣∣∣∣∣∣∣

1 0 0 0
0 1 1 0

Cc Cs Sc Ss
Sc− Cs Ss + Cc Cc− Ss Cs + Sc

∣∣∣∣∣∣∣∣ = S2 − s2 = 0.

The only real root of this relation is λ = 0 which is not interesting.
However, one also has to consider the possibility that in fact λ2 = −µ2 < 0. Then the
solution can be written

y = α[c(x)]−3/8 cosh [µ1/2χ] + β[c(x)]−3/8 sinh [µ1/2χ]

+γ[c(x)]−3/8 cos [µ1/2χ] + δ[c(x)]−3/8 sin [µ1/2χ],

with χ(x) =
∫ x

0 [c(u)]
1/4 du. The boundary conditions at the origin leads to α + β =

γ + δ = 0 and the other boundary conditions give∣∣∣∣ C− c S− s
S + s C− c

∣∣∣∣ = 2(1− Cc) = 0.

Hence we need to solve the equation cosh z cos z = 1. Then µ1/2χ(1) = z. Graphically
this can be seen to have an infinity of positive solutions zn, so we find

µ =

(
zn∫ 1

0 [c(u)]
1/4 du

)2

.

Ignoring the root at the origin, the numerical values of the zn are 4.730040744862704,
7.853204624095838, 10.995607838001671, . . . . For large n, zn ∼ (n + 1/2)π. If there were
a z(x)y′′′ term in the equation, the change of variable y = wg would lead to two terms
in w′′′: w′′′(zg + 4g′). Setting this to zero, which gives g = exp [−(1/4)

∫
z] removes the

w′′′ term. Hence one can transform remove the third derivative term from a fourth-order
linear ODE.
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