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WKB Examples

1 The vertical normal modes in an ocean with stratification N(z) are found from the

eigenproblem
a" +c2N?*(z)a=0, a(0) =a(h) =0.

The eigenvalue is c, the phase speed. Using WKB (LG might be a more accurate designa-
tion), solve this problem for general N(z).

Solution From the lectures, we can identify E with c =2 and N?(z) with Q(z), giving

zZ
y = CN2(z) sin {c_l/ N(u) du},
0
taking N(z) > 0 (which is physically correct). The eigenvalues are then given by

_ foh N(u)du.

c

(There is a choice for the sign of c; it is conventional to take ¢ > 0.) For orthonormal
eigenfunctions, write

_ Jo N(u)du
foh N(u)du

so that y, = C,N~1/2(2) sin [n@(z)]. Then from the properties of trigonometric functions

¢(z)

1 h
ngCn(Smn = Can/ sinmmesinnmpde = / ym(Z)yn(Z)N(z)% dz.
0 0

Butdg/dz = N(z)/ foh N(u) du, so we take
.
Cp = (E/o N(u)du)

[ i@ (IN) dz =

—-1/2

and obtain

2 Find the large eigenvalues of the problem
y'+E(1—[x])y =0

where y decays at f-co.
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Solution The WKB solution that satisfies the connection formulas at x = —1 is

X
(1 ~1/4 1/2 B T
Y~ (1 |x])"4cos (E /_1 J1— | du 4).

Even solutions require

X —X
v [ =) —cos (EV2 [ il du—Z
cos (E /1 1— |u|du 4> cos (E /1 1—|uldu 4>.

Now cos A = cos B if A = B+ 2nm or A = —B + 2nm. Changing variable in the second
integral gives

x 1
El/z/ \/1—\u]du—g::|:(El/2/ \/1—\u]du—g)+2nn.
-1 X

The plus sign is too restrictive. The minus sign leads to

1 4
El/z/ \/1—|u|du:—E1/2:7—T+2n7t.
-1 3 2

For odd solutions, cos A = —cosBif A = B —m+2nmor A = —B — 7 + 2nm. Changing
variable in the second integral gives

X 1
El/z/ [f(u)]"2 du — ;—T =+ (El/z/ [f(u)]? du — g) — T+ 2nr.
-1 X
The plus sign is too restrictive. The minus sign leads to

1 4
El/z/ V1= luldu = SEV2 = o
-1

Hence the eigenvalues are

forn=1,2,....

3 Find approximations to the large eigenvalues of the problem

vy +EQ(x)y =0, agy’ (0) + boy(0) = 0, a1y’ (1) + byy(1) =0,

where ayg # 0, a1 # 0 and Q(x) > 0 in the interval (0,1). Discuss the role of by and b;.
Compare to the exact solution for Q(x) = 1.



Solution The L-G solution is

y = A[Q(x)] V*sin <E1/2/ qu)—i—B x)] V4 cos (E“Z/ qu)

Differentiating e.g. the sine term gives

2@ Wl 5“su1(EU2/‘V/___du> +EV2[Q(x nlﬂcos<gw2[fwﬁgagdu),

Since E is large, we can neglect the first term. Then in the two boundary conditions the by
and b; terms can also be neglected. The boundary condition at x = 0 gives A = 0 and the
boundary condition at x = 1 gives

BQ(1) **sin (E”z /01 \/@du) =0.

For a non-trivial solution, we obtain

2
. ( nm )
~ 1— .
Jo vV Q(u)du
For the special case Q = 1, the exact solution is

y = Asin (EV2x) + Bcos (E'%x).

The two boundary conditions can be written as a homogeneous matrix equation, and
hence the exact eigenvalue condition is that the determinant

aoEY?(—ayEY2s + byc) — bo(a1EY%c + bys) = 0

vanish, with s = sinE1/2 and ¢ = cos E'/2. The approximation above corresponds to
keeping the O(E) term; apa;s = 0, so that E ~ (n7)?. We can reduce the numbers of
parameters from 4 to 2 by dividing by apa; # 0. Then the eigenvalue condition is

—Es + EY2(dy — dy)c — dodys = 0.

where dy = by/ag and d; = by/a;. This equation can be solve numerically starting with

the guess E ~ (n7)2.

4 Obtain a Liouville-Green type expansion for the fourth-order equation
v a0y’ +b(x)y +A%(x)y =0, A>1.
Find approximate eigenvalues for arbitrary a(x), b(x) and c(x) > 0 on the interval (0,1)

with boundary conditions y(0) = y'(0) = y(1) = y/(1). Why is there no loss of generality
in not having a i’/ term in the equation?



Solution Try the L-G ansatzy = e!? where ¢ = ¢ + APP; + - - -. The two largest terms
when this is substituted into the governing equation give

AR (o)* + A%e(x) + -+ =0.
Hence a = 1/2 and ¢} = {eF1/4,e=317/4}[¢c(x)]!/%. The next terms are
AZTPA(9) 91 + A% 26(0)*90 + -+ = 0.

This gives B = —1/2 and ¢; ~ [c(x)]3/8. Hence the LG expansion is

. . x
y = [c(x)]_3/8 exp )L_l/2{ei1/4,ei3l/4}/ [c(u)]1/4 du} )
0
For the rest of the question, it is most convenient to consider the solution in the form
y = afc(x)]7%8cosh [A1/20] cos [A1/26] + B[c(x)] 38 cosh [A1/26] sin [A1/26]
+[c(x)]73/8 sinh [A1/20] cos [A1/20] + [c(x)] 73/ sinh [A1/26] sin [A1/20),
where 6(x) = 271/2 f )]'/#du. As in 1 above, ignore the prefactor when differ-

entiating. Then writing C = cosh [A1/20(1)], S = sinh [A1/20(1)], ¢ = cos [A1/26(1)],
s = sin [A1/20(1)], the boundary conditions become

1 0 0 0
0 1 1 ol o o
Cc Cs Sc Ss =5 -5 =0

Sc—Cs Ss+Cc Cc—Ss Cs+ Sc

The only real root of this relation is A = 0 which is not interesting.
However, one also has to consider the possibility that in fact A> = —u? < 0. Then the
solution can be written

y = afe(x)] 7P cosh [ 2x] + Ble(x)] 7>/ F sinh [/ %x]

+y[e(x)] 7% cos [u!/2x] + 6lc(x)] 7P sin [ %x],

with x(x) = [y [c(u)]'/*du. The boundary conditions at the origin leads to a + =
v + 6 = 0 and the other boundary conditions give
C—c S-s

Sis o_,|=m20-co=0.

Hence we need to solve the equation coshzcosz = 1. Then u!/2x(1) = z. Graphically
this can be seen to have an infinity of positive solutions z,, so we find

2
e (f&[a(u)]w du) |

Ignoring the root at the origin, the numerical values of the z, are 4.730040744862704,
7.853204624095838, 10.995607838001671, .... For large n, z, ~ (n+ 1/2)m. If there were

a z(x)y" term in the equation, the change of variable y = wg would lead to two terms
I//

in w"”": w"'(zg +4g’). Setting this to zero, which gives ¢ = exp [—(1/4) [ z] removes the

w'” term. Hence one can transform remove the third derivative term from a fourth-order

linear ODE.




