Solution to Final

1. Dynamical system analysis Phase line analysis (2): we have $\dot{\theta}=f(\theta)$, with $f(\theta)=$ $\mathrm{e}^{\theta}-\alpha \theta$. Fixed points are at $\alpha=\theta^{-1} \mathrm{e}^{\theta}$. This has a minimum at $\theta_{*}=1$ and $\alpha_{*}=\mathrm{e}$. Hence there are no fixed points with $\alpha>\mathrm{e}$ and two fixed points when $\alpha<\mathrm{e}$ (2). There is a saddle-node bifurcation, at which the fixed point is semi-stable. See the bifurcation diagram below (2). The smaller fixed point is stable $\left(f^{\prime}<0\right)$ and the larger one is unstable $\left(f^{\prime}>0\right)(1)$. The smaller one is the relevant one, since the initial condition is to its left and $f^{\prime}<0$ to its left (1). For $\alpha \gg 1$, the equation $f(\theta)=0$ has a small root and a small root. We try $\theta_{0}=\alpha^{-1} x_{1}+\alpha^{-2} x_{2}$. Then

$$
0=1+\alpha^{-1} x_{1}-x_{1}-\alpha^{-1} x_{2}+O\left(\alpha^{-2}\right)
$$

Hence $\theta_{0}=\alpha^{-1}+\alpha^{-2}+\cdots$ (1). For the large root, we expect the exponential to dominate, so re-express the equation in terms of logarithms and try the iteration

$$
\theta_{n+1}=\log \left(\alpha \theta_{n}\right), \quad \theta_{0}=\log \alpha=L_{1},
$$

with the usual L_{n} notation. Then $\theta_{1}=\log \left(\alpha L_{1}\right)=L_{1}+L_{2}$ and $\theta_{1}=\log \left[\alpha\left(L_{1}+L_{2}\right)\right]=$ $L_{1}+L_{2}+\log \left(1+L_{2} / L_{1}\right)$. Hence a two-term expansion is $\theta_{0}=\log \alpha+\log \log \alpha+\cdots(1)$.

2. Ignition time Separating variables gives the exact solution

$$
t=\int_{0}^{\theta} \frac{\mathrm{d} u}{\mathrm{e}^{u}-\alpha u}
$$

The integral on the right exists if $\alpha<\alpha_{*}$, corresponding to the case when the denominator does not vanish (2). In that case, we can take $\theta \rightarrow \infty$ and obtain a well-defined integral on the left-hand side: this is the singularity time t_{*} (3). Now expand the integrand in α (3):

$$
t_{*}=\int_{0}^{\infty} \mathrm{e}^{-u} \sum_{n=0}^{\infty}(\alpha u)^{n} \mathrm{e}^{-n u} \mathrm{~d} u=\sum_{n=0}^{\infty} \alpha^{n} \int_{0}^{\infty} u^{n} \mathrm{e}^{-(n+1) u} \mathrm{~d} u,
$$

interchanging sum and integral. Now the change of variable $s=(n+1) u$ gives (2)

$$
t_{*}=\sum_{n=0}^{\infty} \alpha^{n}(n+1)^{-(n+1)} \int_{0}^{\infty} s^{n} \mathrm{e}^{-s} \mathrm{~d} u=\sum_{n=0}^{\infty} \alpha^{n} n!(n+1)^{-(n+1)}
$$

Bonus: if the interchange is permissible, we expect to get a converging series rather than an asymptotic expansion. We examine the radius of convergence: the relevant ratio is

$$
r=\frac{\alpha^{n} n!n^{n}}{\alpha^{n-1}(n-1)!(n+1)^{n+1}}=\alpha \frac{n}{n+1}\left(1+\frac{1}{n}\right)^{-n} \rightarrow \alpha \mathrm{e}^{-1}
$$

for large n. The series converges if in the limit $|r|<1$. Hence the radius of convergence is exactly $\mathrm{e}=\alpha_{*}$, so the series always converges to t_{*} when t_{*} exists. One can also obtain this result by requiring that the binomial expansion converge, which it does if $\alpha u \mathrm{e}^{-u}<1$ for all u. The minimum value of this quantity in the range of integration is $\alpha \mathrm{e}^{-1}$ at $u=1$, so the radius of convergence is $\alpha=\mathrm{e}$ (Bonus 5).

3 Slow ignition The denominator is $d(u)=\mathrm{e}^{u}-\alpha u$. When $\epsilon=0$, we recover the critical point with $d(1)=d^{\prime}(1)=0$, so that $d(u)$ is locally quadratic (3). When $\epsilon>0$, we obtain $d(u)=O\left((u-1)^{2}\right)+\epsilon u$, so the appropriate variable to have these terms balance is v with $u=1+\epsilon^{1 / 2} v$. Now D\&C (2). There are two global integrals and one local integral. The local integral is

$$
\begin{aligned}
I_{L} & =\int_{-\delta / \epsilon^{1 / 2}}^{\delta / \epsilon^{1 / 2}} \frac{\epsilon^{1 / 2} \mathrm{~d} v}{\mathrm{e}^{1+\epsilon^{1 / 2} v}-(\mathrm{e}-\epsilon)\left(1+\epsilon^{1 / 2} v\right)}=\int_{-\delta / \epsilon^{1 / 2}}^{\delta / \epsilon^{1 / 2}} \frac{\epsilon^{1 / 2} \mathrm{~d} v}{\mathrm{e} \epsilon v^{2} / 2+\epsilon+O\left(\epsilon^{3 / 2} v^{3}, \epsilon^{3 / 2} v\right)} \\
& =\frac{1}{\epsilon^{1 / 2}} \int_{-\delta / \epsilon^{1 / 2}}^{\delta / \epsilon^{1 / 2}} \frac{\mathrm{~d} v}{\mathrm{e} v^{2} / 2+1}\left[1+O\left(\epsilon^{1 / 2} v^{1 / 2}, \epsilon^{1 / 2} v\right)\right] \\
& =\left(\frac{2}{\mathrm{e} \epsilon}\right)^{1 / 2}\left[\tan ^{-1} \frac{\mathrm{e} v}{\sqrt{2}}\right]_{-\delta / \epsilon^{1 / 2}}^{\delta / \epsilon^{1 / 2}}+O\left(\delta^{3 / 2}\right)=\left(\frac{2}{\mathrm{e} \epsilon}\right)^{1 / 2} \pi+O\left(\frac{\epsilon^{1 / 2}}{\delta}, \delta^{3 / 2}\right)
\end{aligned}
$$

with $\delta \ll 1$ and $\delta \gg \epsilon^{1 / 2}$ (5). The global integrals together give

$$
I_{G}=\left(\int_{0}^{1-\delta}+\int_{1+\delta}^{\infty}\right) \frac{\mathrm{d} u}{\mathrm{e}^{u}-\mathrm{e} u}\left(1+\frac{\epsilon u}{\mathrm{e}^{u}-\mathrm{e} u}\right)^{-1}
$$

which appears to be $O(1)$, which can be shown. This is the size of the correction term.

4 Fast equilibration The rescaled problem is

$$
\Theta_{T}=\mathrm{e}^{\alpha^{-1} \Theta}-\Theta, \quad \Theta(0)=0
$$

Now try the expansion $\Theta=\Theta_{0}(T)+\alpha^{-1} \Theta_{1}(T)+\cdots$, and go through the orders. At $O(1)$,

$$
\Theta_{0 T}=1-\Theta_{0}, \quad \Theta_{0}(0)=0
$$

with solution $\Theta_{0}(T)=1-\mathrm{e}^{-T}(3)$. At $O\left(\alpha^{-1}\right)$,

$$
\Theta_{1 T}=\Theta_{0}-\Theta_{1}=1-\mathrm{e}^{-T}-\Theta_{1}, \quad \Theta_{1}(0)=0
$$

with solution $\Theta_{1}(T)=1-(1+T) \mathrm{e}^{-T}$ (3). The $T \mathrm{e}^{-T}$ term is not uniformly valid, so we try MMS (1). The long time is now the original t. We find $\Theta_{0}(T, t)=1+A(t) \mathrm{e}^{-T}$ with $A(0)=-1$, while the $O\left(\alpha^{-1}\right)$ equation becomes

$$
\Theta_{1 T}+A_{t} \mathrm{e}^{-T}=1+A \mathrm{e}^{-T}-\Theta_{1} .
$$

Removing the terms in e^{-T} gives $A_{t}=A$. This has solution $A(t)=-\mathrm{e}^{t}$, so the MMS solution is $\Theta=1-\mathrm{e}^{(-1+\epsilon) t}+\cdots$ (2). In practice, the non-uniformity is irrelevant since the non-uniform terms decay (1).

5 Fast ignition Write $\theta=\theta_{0}+\alpha \theta_{1}+\cdots$, and expand the governing equation. At $O(1)$,

$$
\dot{\theta}_{0}=\mathrm{e}^{\theta_{0}}, \quad \theta_{0}(0)=0,
$$

with solution $\theta_{0}(t)=\log [1 /(1-t)]$ (2). At $O(\alpha)$, we find

$$
\dot{\theta}_{1}=\mathrm{e}^{\theta_{0}} \theta_{1}-\theta_{0}=\frac{\theta_{1}}{1-t}-\log \frac{1}{1-t^{\prime}}, \quad \theta_{1}(0)=0,
$$

which can be solved to give (3)

$$
\theta_{1}(t)=\frac{t^{2} / 4-t / 2}{1-t}+\frac{1}{2}(1-t) \log \frac{1}{1-t} .
$$

We see that the expansion becomes disordered close to $t=1$. Substitute $\theta=\log \alpha^{-1}+$ $\Theta_{0}(T)+\cdots$, with $t=1-\alpha T$, into the governing equations to obtain the leading-order equation (1)

$$
\Theta_{0 T}=-\mathrm{e}^{\Theta_{0}}
$$

with solution $\Theta_{0}(T)=\log [1 /(T+c)]$ (2). Set up Van Dyke:

$$
\theta^{(1, .)}=\log \frac{1}{\alpha T}+\alpha\left(\frac{(1-\alpha T) t^{2} / 4-(1-\alpha T) / 2}{\alpha T}+\frac{1}{2} \alpha T \log \frac{1}{\alpha T}\right)
$$

and

$$
\Theta^{(0, \cdot)}=\log \alpha^{-1}+\log \frac{\alpha}{1-t+\alpha c}=\log \frac{1}{1-t}-\log \left(1+\frac{\alpha c}{1-t}\right)
$$

Hence (2)

$$
\theta^{(1,0)}=\log \frac{1}{\alpha T}-\frac{1}{4 T}=\Theta^{(0,1)}=\log \frac{1}{1-t}-\frac{\alpha c}{1-t^{\prime}},
$$

and $c=1 / 4$.

6 Frank-Kamenetskii model The result suggests that the expansion starts at $O(\delta)$, but we can start at $O(1)$ anyway. Write $\theta=\theta_{0}+\delta \theta_{1}+\cdots$. At $O(1)$,

$$
\theta_{0 x x}=0, \quad \theta_{0 x}(0)=0, \quad \theta_{0}(1)=0,
$$

with solution $\theta_{0}(x)=0(4)$. At $O(\delta)$, we find

$$
\theta_{1 x x}=-1, \quad \theta_{1 x}(0)=0, \quad \theta_{1}(1)=0,
$$

with solution $\theta_{1}(x)=-\frac{1}{2}\left(x^{2}-1\right)(4)$ and in particular $\theta_{1}(0)=\frac{1}{2}$. This is a regular perturbation problem, so the next term will be at $\mathrm{O}\left(\delta^{2}\right)$. Hence $\theta_{m}=\frac{1}{2} \delta+O\left(\delta^{2}\right)(2)$.

