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Solution to Final

1. Dynamical system analysis Phase line analysis (2): we have θ̇ = f (θ), with f (θ) =
eθ − αθ. Fixed points are at α = θ−1eθ. This has a minimum at θ∗ = 1 and α∗ = e.
Hence there are no fixed points with α > e and two fixed points when α < e (2). There
is a saddle-node bifurcation, at which the fixed point is semi-stable. See the bifurcation
diagram below (2). The smaller fixed point is stable ( f ′ < 0) and the larger one is unstable
( f ′ > 0) (1). The smaller one is the relevant one, since the initial condition is to its left and
f ′ < 0 to its left (1). For α � 1, the equation f (θ) = 0 has a small root and a small root.
We try θ0 = α−1x1 + α−2x2. Then

0 = 1 + α−1x1 − x1 − α−1x2 + O(α−2).

Hence θ0 = α−1 + α−2 + · · · (1). For the large root, we expect the exponential to dominate,
so re-express the equation in terms of logarithms and try the iteration

θn+1 = log (αθn), θ0 = log α = L1,

with the usual Ln notation. Then θ1 = log (αL1) = L1 + L2 and θ1 = log [α(L1 + L2)] =
L1 + L2 + log (1 + L2/L1). Hence a two-term expansion is θ0 = log α + log log α + · · · (1).
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2. Ignition time Separating variables gives the exact solution

t =
∫ θ

0

du
eu − αu

.

The integral on the right exists if α < α∗, corresponding to the case when the denominator
does not vanish (2). In that case, we can take θ → ∞ and obtain a well-defined integral on
the left-hand side: this is the singularity time t∗ (3). Now expand the integrand in α (3):

t∗ =
∫ ∞

0
e−u

∞

∑
n=0

(αu)ne−nu du =
∞

∑
n=0

αn
∫ ∞

0
une−(n+1)u du,

interchanging sum and integral. Now the change of variable s = (n + 1)u gives (2)

t∗ =
∞

∑
n=0

αn(n + 1)−(n+1)
∫ ∞

0
sne−s du =

∞

∑
n=0

αnn!(n + 1)−(n+1).

Bonus: if the interchange is permissible, we expect to get a converging series rather than
an asymptotic expansion. We examine the radius of convergence: the relevant ratio is

r =
αnn!nn

αn−1(n− 1)!(n + 1)n+1 = α
n

n + 1

(
1 +

1
n

)−n
→ αe−1

for large n. The series converges if in the limit |r| < 1. Hence the radius of convergence
is exactly e = α∗, so the series always converges to t∗ when t∗ exists. One can also obtain
this result by requiring that the binomial expansion converge, which it does if αue−u < 1
for all u. The minimum value of this quantity in the range of integration is αe−1 at u = 1,
so the radius of convergence is α = e (Bonus 5).

3 Slow ignition The denominator is d(u) = eu− αu. When ε = 0, we recover the critical
point with d(1) = d′(1) = 0, so that d(u) is locally quadratic (3). When ε > 0, we obtain
d(u) = O((u− 1)2) + εu, so the appropriate variable to have these terms balance is v with
u = 1 + ε1/2v. Now D&C (2). There are two global integrals and one local integral. The
local integral is

IL =
∫ δ/ε1/2

−δ/ε1/2

ε1/2 dv
e1+ε1/2v − (e− ε)(1 + ε1/2v)

=
∫ δ/ε1/2

−δ/ε1/2

ε1/2 dv
eεv2/2 + ε + O(ε3/2v3, ε3/2v)

=
1

ε1/2

∫ δ/ε1/2

−δ/ε1/2

dv
ev2/2 + 1

[1 + O(ε1/2v1/2, ε1/2v)]

=

(
2
eε

)1/2 [
tan−1 ev√

2

]δ/ε1/2

−δ/ε1/2
+ O(δ3/2) =

(
2
eε

)1/2

π + O

(
ε1/2

δ
, δ3/2

)
,

with δ� 1 and δ� ε1/2 (5). The global integrals together give

IG =

(∫ 1−δ

0
+
∫ ∞

1+δ

)
du

eu − eu

(
1 +

εu
eu − eu

)−1

,

which appears to be O(1), which can be shown. This is the size of the correction term.
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4 Fast equilibration The rescaled problem is

ΘT = eα−1Θ −Θ, Θ(0) = 0.

Now try the expansion Θ = Θ0(T) + α−1Θ1(T) + · · ·, and go through the orders. At
O(1),

Θ0T = 1−Θ0, Θ0(0) = 0,

with solution Θ0(T) = 1− e−T (3). At O(α−1),

Θ1T = Θ0 −Θ1 = 1− e−T −Θ1, Θ1(0) = 0,

with solution Θ1(T) = 1− (1 + T)e−T (3). The Te−T term is not uniformly valid, so we
try MMS (1). The long time is now the original t. We find Θ0(T, t) = 1 + A(t)e−T with
A(0) = −1, while the O(α−1) equation becomes

Θ1T + Ate−T = 1 + Ae−T −Θ1.

Removing the terms in e−T gives At = A. This has solution A(t) = −et, so the MMS
solution is Θ = 1− e(−1+ε)t + · · · (2). In practice, the non-uniformity is irrelevant since
the non-uniform terms decay (1).

5 Fast ignition Write θ = θ0 + αθ1 + · · ·, and expand the governing equation. At O(1),

θ̇0 = eθ0 , θ0(0) = 0,

with solution θ0(t) = log [1/(1− t)] (2). At O(α), we find

θ̇1 = eθ0θ1 − θ0 =
θ1

1− t
− log

1
1− t

, θ1(0) = 0,

which can be solved to give (3)

θ1(t) =
t2/4− t/2

1− t
+

1
2
(1− t) log

1
1− t

.

We see that the expansion becomes disordered close to t = 1. Substitute θ = log α−1 +
Θ0(T) + · · ·, with t = 1− αT, into the governing equations to obtain the leading-order
equation (1)

Θ0T = −eΘ0 ,

with solution Θ0(T) = log [1/(T + c)] (2). Set up Van Dyke:

θ(1,.) = log
1

αT
+ α

(
(1− αT)t2/4− (1− αT)/2

αT
+

1
2

αT log
1

αT

)
and

Θ(0,.) = log α−1 + log
α

1− t + αc
= log

1
1− t

− log
(

1 +
αc

1− t

)
.

Hence (2)

θ(1,0) = log
1

αT
− 1

4T
= Θ(0,1) = log

1
1− t

− αc
1− t

,

and c = 1/4.

3



6 Frank-Kamenetskii model The result suggests that the expansion starts at O(δ), but
we can start at O(1) anyway. Write θ = θ0 + δθ1 + · · ·. At O(1),

θ0xx = 0, θ0x(0) = 0, θ0(1) = 0,

with solution θ0(x) = 0 (4). At O(δ), we find

θ1xx = −1, θ1x(0) = 0, θ1(1) = 0,

with solution θ1(x) = −1
2(x2− 1) (4) and in particular θ1(0) = 1

2 . This is a regular pertur-
bation problem, so the next term will be at O(δ2). Hence θm = 1

2 δ + O(δ2) (2).
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