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Solution to Final

1. Dynamical system analysis Phase line analysis (2): we have § = f(0), with () =
e? — af. Fixed points are at x = 6~ 1e?. This has a minimum at 6, = 1 and a, = e.
Hence there are no fixed points with & > e and two fixed points when a < e (2). There
is a saddle-node bifurcation, at which the fixed point is semi-stable. See the bifurcation
diagram below (2). The smaller fixed point is stable (f’ < 0) and the larger one is unstable
(f' > 0) (1). The smaller one is the relevant one, since the initial condition is to its left and
f' < 0toits left (1). For a > 1, the equation f(6) = 0 has a small root and a small root.
We try 8) = a~'x; + a~2x,. Then

0=1+4atxy—x;—alep+0(a2).

Hence 6y = a~! +a~2+ - - (1). For the large root, we expect the exponential to dominate,
so re-express the equation in terms of logarithms and try the iteration

0,41 = log (ab,), 6o = loga =Ly,

with the usual L, notation. Then 6; = log (aL;) = L1 + Ly and 6; = log [a(L1 + Lp)] =
L1+ Ly +1log (1 + Lp/Lq). Hence a two-term expansion is 6y = loga + logloga + - - - (1).
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2. Ignition time Separating variables gives the exact solution

. /9 du
~Jo et —au’
The integral on the right exists if x < a4, corresponding to the case when the denominator

does not vanish (2). In that case, we can take & — oo and obtain a well-defined integral on
the left-hand side: this is the singularity time ¢, (3). Now expand the integrand in « (3):

o) o o0 o)
te = / e Y (au)'e™du=Yy_ (x”/ ue” U gy,
0 n=0 n=0 0

interchanging sum and integral. Now the change of variable s = (n + 1)u gives (2)

(o]

t, = Z lxn(n—i—l)_(”ﬂ)/

s"e fdu =Y a'nl(n+ 1)~ (D),
n=0 0 n=0

Bonus: if the interchange is permissible, we expect to get a converging series rather than
an asymptotic expansion. We examine the radius of convergence: the relevant ratio is

r= o nin” S 1+ O — ae !
S ar i n—-DI(n+1) T Tn41 n

for large n. The series converges if in the limit |r| < 1. Hence the radius of convergence
is exactly e = a, so the series always converges to t. when t, exists. One can also obtain
this result by requiring that the binomial expansion converge, which it does if aue™ < 1
for all #. The minimum value of this quantity in the range of integrationis we ' atu = 1,
so the radius of convergence is &« = e (Bonus 5).

3 Slow ignition The denominator is d(u) = e — au. When € = 0, we recover the critical
point with d(1) = d’(1) = 0, so that d(u) is locally quadratic (3). When € > 0, we obtain
d(u) = O((u —1)?) + eu, so the appropriate variable to have these terms balance is v with
u =1+ €'/?v. Now D&C (2). There are two global integrals and one local integral. The
local integral is

I /‘”6“2 €172 dy /wem €72 do
L = =

—5/el/2 elHe 0 (o — ) (14 €l/20)  J-s/e1/2 e€v? /2 + € + O(€3/203,€3/2p)
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with 6 < 1and 6 > €72 (5). The global integrals together give

I — /15+/°° du 1+ €u -1
¢ 0 1+6/) e —eu el —eu !

which appears to be O(1), which can be shown. This is the size of the correction term.




4 Fast equilibration The rescaled problem is
Or=e" ©—@®,  ©(0)=0.
Now try the expansion ® = @y(T) +a'@1(T) + - - -, and go through the orders. At
o Or=1-0),  ©(0)=0,
with solution @y(T) =1 —e~T (3). AtO(a™1),
OIr=0)—0,=1-e7-0;, ©00) =0,

with solution ®(T) = 1 — (14 T)e~T (3). The Te~T term is not uniformly valid, so we
try MMS (1). The long time is now the original t. We find @o(T,t) = 1+ A(t)e~ T with
A(0) = —1, while the O(a~!) equation becomes

Or+Ae T=14+Ae T -0;.

Removing the terms in e~T gives A; = A. This has solution A(t) = —e!, so the MMS
solutionis @ = 1 —e(=14e)t 4 ... (2). In practice, the non-uniformity is irrelevant since
the non-uniform terms decay (1).

5 Fast ignition Write 6 = 6y + af; + - - -, and expand the governing equation. At O(1),
6o =¢e%,  6,(0) =0,
with solution 6y(t) = log [1/(1 —t)] (2). At O(«), we find

. 0 1
= fo — = —1 — D -
01 = e, — 6, T log1 — 61(0) =0,
which can be solved to give (3)
24 —t/2 1

We see that the expansion becomes disordered close to t = 1. Substitute § = loga ™! +
©o(T) + -+, with t = 1 — T, into the governing equations to obtain the leading-order
equation (1)

®
®OT = —¢€ O/

with solution @y(T) = log [1/(T + ¢)] (2). Set up Van Dyke:

1 (1—aT)t?/4—(1—aT)/2 1 1
1) = log — - —

0 log T +a < T + 2ochog T

and .
0) = Joga? L P ac

C log « +log1_t+M logl_t log(1+1_t :

Hence (2)
1 1 1 xc
(10) — g0 — — — = @O — _
f log (747 = © g1 "1+

and c = 1/4.



6 Frank-Kamenetskii model The result suggests that the expansion starts at O(J), but
we can start at O(1) anyway. Write 6 = 6y + 561 + - - -. At O(1),

90xx =0, 90x (0) =0, 90(1) =0,
with solution 6y(x) = 0 (4). At O(6), we find
elxx =-1, le(O) =0, 61(1) =0,

with solution 61 (x) = —1(x? — 1) (4) and in particular 6;(0) = 1. This is a regular pertur-
bation problem, so the next term will be at O(6?). Hence 6, = 36 + O(6%) (2).



