Homework I

Due Jan 17, 2019.

1 In class we showed that the pendulum equation

$$
\ddot{\theta}+\frac{g}{l} \sin \theta=0
$$

can be integrated to give the conversation law

$$
\frac{1}{2} \dot{\theta}^{2}+\frac{g}{l}(1-\cos \theta)=E
$$

with $E \geq 0$. Hence obtain the period of a pendulum as an integral in the form

$$
T=4 \int_{0}^{\theta_{*}} \frac{\mathrm{~d} \theta}{\sqrt{F(\theta)}}
$$

where you should determine the function $F(\theta)$ and give an expression for θ_{*}. Obtain an approximation to the integral for small-amplitude oscillations, defining "small amplitude" carefully in terms of a non-dimensional parameter. Bonus: compute the integral numerically, either directly or by transforming it into an elliptic integral, as a function of the non-dimensional parameter.

2 Semi-stable points on the phase line have $f\left(x_{*}\right)=f^{\prime}\left(x_{*}\right)=0$ (and possible vanishing higher derivatives as well). Interpret this graphically. Examine the phase line for the equation

$$
\dot{x}=x^{3}-x^{2} .
$$

Discuss the stability of the fixed points. Show that the fixed point at the origin is semistable. Solve for its local dynamics by neglecting the higher-order term, and discuss the behavior for large t. Now solve the problem exactly. What happens to the fixed points if $f(x)$ becomes $x^{3}-x^{2}-\delta$, where δ is a small positive number (a graphical argument will suffice)? Hence explain why semi-stable points are not "structurally stable."

3 Similar ideas to the phase line apply to the dynamics of maps, where we write $x_{n+1}=$ $f\left(x_{n}\right)$. For a general map, interpret graphically the condition to have a fixed point $x_{*}=$ $f\left(x_{*}\right)$. Linearize about a fixed point and show that the fixed point x_{*} is unstable (resp. unstable) if $\left|f^{\prime}\left(x_{*}\right)\right|<1$ (resp. $\left|f^{\prime}\left(x_{*}\right)\right|>1$). Interpret this condition graphically. One of the most famous maps is the logistic map, given by

$$
x_{n+1}=4 r x_{n}\left(1-x_{n}\right),
$$

where we are interested in $0 \leq x \leq 1$. What is the range of r for which the map takes the interval $(0,1)$ to itself? Find the fixed points of the map as a function of r. Discuss fixed points of the iterated map $x_{n+2}=x_{n}$. Bonus: produce a diagram of the attractor of the map as a function of r, say between 2.4 and 4 , by iterating the map from a lot of initial conditions and plotting the x-values after discarding a number of early iterates. What do you see? [There are lots of sources of further information about this that you can find.]

4 Analyze the fixed points of the system

$$
\dot{x}=(x-y)(1-x-y) / 3, \quad \dot{y}=x(2-y)
$$

Sketch the phase plane.

