Homework IV

Due Feb 27, 2020.

1 Find the values of α for which solutions to the equation

$$
\ddot{x}+(1+4 \epsilon \cos \alpha t) x=0, \quad 0<\epsilon \ll 1
$$

have increasing amplitude for $\epsilon t=O(1)$.

2 Obtain a solution valid for $\epsilon t=O(1)$ to the equation

$$
\ddot{x}+x-\frac{\epsilon}{2+\dot{x}}=0,
$$

with $x(0)=0, \dot{x}(0)=1$. You may find the following integral useful:

$$
I=\int_{0}^{2 \pi} \frac{\cos \theta}{2+A \cos \theta} \mathrm{~d} \theta=2 \pi \frac{\sqrt{4-A^{2}}-2}{A \sqrt{4-A^{2}}}
$$

for $0<A<2$. Bonus: obtain this integral.

3 (Kevorkian \& Cole 4.3.5) Solve the boundary-value problem

$$
y^{\prime \prime}+y^{\prime}-\epsilon y^{2}=0, \quad y(0, \epsilon)=0, \quad y\left(\epsilon^{-1}, \epsilon\right)=1, \quad 0<\epsilon \ll 1
$$

using (i) the method of multiple scales and (ii) boundary layer theory. Compare the two solutions.

4 (Johnson E2.13) Find (and match) two terms in the inner and outer expansions of the solution to

$$
\epsilon y^{\prime \prime}-y^{\prime}+\epsilon x y^{2}=2 x, \quad y(0)=2, \quad y(1)=2+\epsilon, \quad 0<\epsilon \ll 1
$$

[Hint: be careful to consider all the necessary terms in the matching, e.g. by using van Dyke's rule.]

