## Midterm Solution

1 The fixed points are at $(-1,0),(1,0)$ and $(2,3)$. The Jacobian matrix is

$$
J=\left(\begin{array}{ll}
2 x & -1 \\
y & x-2
\end{array}\right)
$$

For $(-1,0)$,

$$
J=\left(\begin{array}{ll}
-2 & -1 \\
0 & -3
\end{array}\right)
$$

with eigenvalues/vectors $-2:(1,0)^{T}$ and $-3:(1,1)^{T}$. This is stable node with trajectories tangential to the first eigenvector. For $(1,0)$,

$$
J=\left(\begin{array}{ll}
2 & -1 \\
0 & -1
\end{array}\right)
$$

with eigenvalues/vectors $-1:(1,3)^{T}$ and $2:(1,0)^{T}$. This is a saddle. For $(2,3)$,

$$
J=\left(\begin{array}{ll}
4 & -1 \\
3 & 0
\end{array}\right)
$$

with eigenvalues/vectors $1:(1,3)^{T}$ and $3:(1,1)^{T}$. This is an unstable node with trajectories tangential to the first eigenvector. Figure 1 shows the phase plane.

2 Infinity is an ISP, as can be checked. Write $w=\mathbf{e}^{S}$, giving

$$
\left(1-\zeta^{2}\right)\left(S^{\prime \prime}+S^{\prime 2}\right)-\zeta S^{\prime}+a+2 q-4 q \zeta^{2}=0
$$

Assume as usual that $S^{\prime \prime} \ll S^{\prime 2}$, and also that $\zeta S^{\prime} \gg 1$, which does not seem very restrictive. Then the dominant balance is

$$
S^{\prime 2} \sim-4 q
$$

We find $S \sim \pm 2 \mathrm{i} q^{1 / 2} \zeta$, which satisfies the assumptions above. Now write $S= \pm 2 \mathrm{i} q^{1 / 2} \zeta+$ $T$, where $T \ll \zeta$. This leads to

$$
\left(1-\zeta^{2}\right)\left(T^{\prime \prime}-4 q \pm 4 \mathrm{i} q^{1 / 2} T^{\prime}+T^{\prime 2}\right)-\zeta\left( \pm 2 \mathrm{i} q^{1 / 2}+T^{\prime}\right)+a+2 q-4 q \zeta^{2}=0
$$

The dominant balance now comes from the two terms $\mp 4 \mathrm{i} q^{1 / 2} T^{\prime} \zeta^{2}$ and $\mp 2 \mathrm{i} q^{1 / 2} \zeta$, so that

$$
T \sim-\frac{1}{2} \log \zeta .
$$

This is enough to obtain the controlling behavior as

$$
w=\zeta^{-1 / 2} \mathrm{e}^{ \pm 2 i q^{1 / 2} \zeta}
$$



Figure 1: Phase plane.

3 (a) The distinguished scalings are 1 and $\epsilon^{-1}$. The leading-order behavior for the $O(1)$ solution is the double root -1 , so we expect the possibility of a different scaling for the expansion. Try $x=-1+\delta_{1} x_{1}+\cdots$. Then

$$
\epsilon(-1+\cdots)+1-2 \delta_{1} x_{1}+\delta_{1}^{2} x_{1}^{2}+\cdots+2\left(-1+\delta_{1} x_{1}+\cdots\right)+\epsilon(-1+\cdots)+1=0 .
$$

The leading order balance after cancellation is $-2 \epsilon+\delta_{1}^{2} x_{1}^{2}=0$, so

$$
x=-1 \pm \sqrt{2} \epsilon^{1 / 2}+\cdots .
$$

The $O\left(\epsilon^{-1}\right)$ root is of the form $x=\epsilon^{-1} x_{-1}+x_{0}+\cdots$, where

$$
x_{-1}^{3}+x_{-1}^{2}=0, \quad\left(3 x_{-1}^{2}+2 x_{-1}\right) x_{0}+2 x_{-1}=0
$$

We ignore the double root $x_{-1}=0$, which corresponds to the previous scaling and find

$$
x=-\epsilon^{-1}+2+\cdots
$$

(b) Now $x=-1$ is an exact solution. A look at the preceding equations for the $O(1)$ root shows that due to cancellation, the correction term is $O(\epsilon)$. Algebra gives

$$
x=-1-2 \epsilon+\cdots .
$$

The equations giving the first two terms of the singular root are not affected by the change in the equation, so again

$$
x=-\epsilon^{-1}+2+\cdots
$$

4 The native expansion has a secular term at first order of the form $t \mathrm{e}^{\mathrm{i} t}$. Hence there is a slow time scale $T \equiv \epsilon t$ and we use MMS to obtain a solution uniformly valid for $T=\operatorname{ord}(1)$. The fast time is $\tau \equiv t$ the usual process gives is $y_{0}=A(T) \mathrm{e}^{\mathrm{i} \tau}+c . c$. , so that the first-order equation is

$$
\frac{\partial^{2} y_{1}}{\partial \tau^{2}}+y_{1}=-2 \frac{\partial^{2} y_{0}}{\partial \tau \partial T}-\left[\left(\frac{\partial y_{0}}{\partial \tau}\right)^{2}-1\right] \frac{\partial y_{0}}{\partial \tau}
$$

The right-hand side is

$$
-2 \mathrm{i} A_{T} \mathrm{e}^{\mathrm{i} \tau}+2 \mathrm{i} A_{T}^{*} \mathrm{e}^{-\mathrm{i} \tau}-\left(-A^{2} \mathrm{e}^{2 \mathrm{i} \tau}-A^{* 2} \mathrm{e}^{-2 \mathrm{i} \tau}+2 A A^{*}-1\right)\left(\mathrm{i} A \mathrm{e}^{\mathrm{i} \tau}-\mathrm{i} A^{*} \mathrm{e}^{-\mathrm{i} \tau}\right)
$$

The secularity condition may hence be written as

$$
2 A_{T}=\left(1-3|A|^{2}\right) A
$$

Writing $A=R \mathrm{e}^{\mathrm{i} \Theta}$ gives

$$
2 R_{T}=\left(1-3 R^{2}\right) R, \quad R \Theta_{t}=0
$$

The fixed point of the $R$-equation is $R^{2}=1 / 3$. It is stable and the solution will ultimately tend to this amplitude, provided the initial condition is not $y(0)=\dot{y}(0)=0$. Hence the large-time behavior of the oscillator is

$$
y \sim \frac{1}{\sqrt{3}} \mathrm{e}^{\mathrm{i}\left(\tau+\theta_{0}\right)}+\text { c.c. }
$$

which is an oscillation with peak-to-peak displacement $4 / \sqrt{3}$.

