Solutions I

1 We showed in class that the pendulum oscillates if $0<E l / g<2$, with the maximum angle θ_{*} being given by $\cos \theta_{*}=1-E l / g$ with $0<\theta_{*}<\pi$. The period is the time it takes the pendulum to swing from 0 to the maximum value θ_{*}, back and around to $-\theta_{*}$ and finally to the origin again. By symmetry this is 4 times the time it takes to reach θ_{*} from the origin, during which time $\dot{\theta} \geq 0$. Hence

$$
T=4 \int_{0}^{\theta_{*}} \frac{\mathrm{~d} \theta}{[2 E+2(\cos \theta-1) g / l]^{1 / 2}}=4 \sqrt{\frac{l}{g}} \int_{0}^{\theta_{*}} \frac{\mathrm{~d} \theta}{\left[2\left(\cos \theta-\cos \theta_{*}\right)\right]^{1 / 2}}
$$

This shows that θ_{*} is a convenient non-dimensional parameter. Small amplitude means small θ_{*}; then in the integral $\theta \ll 1$, so that we can expand the cosines. This leads to the non-dimensional period

$$
\sqrt{\frac{g}{l}} T \sim 4 \int_{0}^{\theta_{*}} \frac{\mathrm{~d} \theta}{\sqrt{\theta_{*}^{2}-\theta^{2}}}=4 \int_{0}^{1} \frac{\mathrm{~d} u}{\sqrt{1-u^{2}}}=2 \pi
$$

as expected, after making the change of variable $\theta=\theta_{*} u$. (The answer should be a number in this limit, since E and θ_{*} are related.) The general integral is simple to evaluate numerically if one pays attention to the inverse square-root singularity (Matlab's integral function does fine). Alternatively one can write

$$
\sqrt{\frac{g}{l}} T=4 \int_{0}^{\theta_{*}} \frac{\mathrm{~d} \theta}{\left[\sin ^{2}\left(\theta_{*} / 2\right)-\sin ^{2}(\theta / 2)\right]^{1 / 2}}=4 \int_{0}^{\pi / 2} \frac{\mathrm{~d} u}{\sqrt{1-k^{2} \sin ^{2} u}}=4 K(k),
$$

making the substitution $\sin (\theta / 2)=\sin u \sin \left(\theta_{*} / 2\right)$, where $k=\sin \left(\theta_{*} / 2\right)$ and $K(k)$ is the complete elliptical integral of the first kind with modulus k (or alternatively parameter $m=k^{2}$). Figure 1 shows the non-dimensional period as a function of θ_{*}.

2 The conditions on $f(x)$ correspond to a double zero of $f(x)$, so that the graph $y=f(x)$ is tangent to the y-axis. Vanishing higher derivatives correspond to higher zeros, with the curve being tangent if the highest vanishing derivative is odd. The function $f(x)=$ $x^{3}-x^{2}$ is a cubic, with a double zero at 0 and a simple zero at 1 . We find $f^{\prime}(x)=3 x^{2}-2 x$, so that $f^{\prime}(0)=0$ and $f^{\prime}(1)=1$. Hence the fixed point 0 is semi-stable and the fixed point 1 is unstable, as can be seen from the graph. The local behavior near the origin is given by $\dot{x}=-x^{2}$, with solution

$$
x(t)=\frac{1}{t+x_{0}^{-1}}
$$

where x_{0} is the initial value of $x(t)$. For $x_{0}<0, x(t)$ blows up to $-\infty$ in finite time, while for $x_{0}>0, x(t)$ approaches the origin. This is consistent with a semi-stable fixed point

Figure 1: Period of pendulum.
with $\dot{x}<0$, but is only the approximate behavior since the approximation breaks down as $|x(t)|$ becomes large. The exact solution can be obtained by separation of variables and partial fractions:

$$
\frac{\mathrm{d} x}{x^{3}-x^{2}}=\mathrm{d} x\left(\frac{1}{x-1}-\frac{1}{x}-\frac{1}{x^{2}}\right)=\mathrm{d} t
$$

This can be integrated to give

$$
\log \frac{(x-1) x_{0}}{\left(x_{0}-1\right) x}+\frac{1}{x}-\frac{1}{x_{0}}=t
$$

If $f(x)$ becomes $x^{3}-x^{2}-\delta$, then the fixed point at 1 shifts a little, while the fixed point at 0 either vanishes if $\delta<0$ or splits into two fixed points if $\delta>0$ (the location of new fixed points can be obtained approximately using perturbation theory; see later in the course). Hence there is a quantitative change in the dynamics (or structure) of the semi-stable fixed point for a small change in δ. This is the origin of the general semi-stable fixed points are not structurally stable. (For higher odd zeros, the argument is not quite so clear.)

3 The condition $x_{*}=f\left(x_{*}\right)$ corresponds graphically to an intersection of the curve $y=$ $f(x)$ with the straight line $y=x$. Writing $x_{n}=x_{*}+\xi_{n}$ and linearizing gives

$$
\xi_{n+1} \simeq f^{\prime}\left(x_{n}\right) \xi_{n}
$$

with solution $\xi_{n}=\left[f^{\prime}\left(x_{n}\right)\right]^{n} \xi_{0}$. It's important to view ξ_{n} as a variable that evolves under a mapping. It grows in magnitude if $\left|f^{\prime}\left(x_{n}\right)\right|>1$ and decays to 0 if $\left|f^{\prime}\left(x_{n}\right)\right|<1$. Graphically this means that if the slope is less than 1 in magnitude, the fixed point is stable,

Figure 2: Dots: iterates x_{101}, \ldots, x_{200} starting from $x_{1}=1 / 2$. Red curve: $1-r^{-1}$ (fixed point of the map); blue curve: fixed points of the iterated map $f\left(f\left(x_{n}\right)\right)$ for $r>3$. Some transients are visible near $r=3$.
while if the slope is greater than 1 in magnitude, the fixed point is unstable. There is a characteristic 'spiderweb' picture as the iteration converges or diverges. There was a typo in the logistic map, which I mean to write as

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right),
$$

but this didn't get updated in the final posted version. As a result the values for r in the bonus part of the question were problematic; none of you pointed this out. The logistic map takes $(0,1)$ to itself if $0 \leq r \leq 4$, since the maximum of $x(1-x)$ is $1 / 4$. The fixed points come from solving the quadratic $x=r x(1-x)$, which has roots at 0 and $1-r^{-1}$. The stability of these roots can be determined by looking at $f^{\prime}(x)=r(1-2 x)$, so that $f^{\prime}(0)=r$ and $f^{\prime}\left(1-r^{-1}\right)=2-r$. The origin is hence unstable for $r>1$. The larger fixed point exists for $r>1$ and is stable for $|2-r|<1$, i.e. $1<r<3$. The second iterate has fixed points when $x n+2=x_{n}$, that is at $x=r^{2} x(1-x)\left(1-r x+r x^{2}\right)$. This quartic has roots at 0 and $1-r^{-1}$, as before, and also at $1 / 2+1 /(2 r) \pm\left(1-2 / r-3 / r^{2}\right)^{1 / 2} / 2$. This has real roots for $r>3$. Figure 2 shows the iterates for $100<n \leq 200$ starting from $x_{1}=1 / 2$. The loss of stability of the different iterates is visible. More complicated are the apparently chaotic regions for $r>3.56995$ or so. See the literature.

4 There are four fixed points: $(0,0),(2,2),(0,1)$ and $(-1,2)$. The matrix of derivatives is

$$
D f=\left(\begin{array}{rr}
(1-2 x) / 3 & (-1+2 y) / 3 \\
2-y & -x
\end{array}\right)
$$

Figure 3: Phase plane for 4.

At $(0,0)$ we have

$$
A=\left(\begin{array}{rr}
1 / 3 & -1 / 3 \\
2 & 0
\end{array}\right)
$$

This has eigenvalues $(1 \pm \mathrm{i} \sqrt{23}) / 6$, so an unstable focus going anticlockwise (check behavior on axes). At $(2,2)$ we have

$$
A=\left(\begin{array}{rr}
-1 & 1 \\
0 & -2
\end{array}\right)
$$

This has eigenvalue -1 corresponding to eigenvector (1,0) and eigenvector -2 corresponding to eigenvector $(-1,1)$, so a stable node tangential to $(1,0)$. At $(0,1)$ we have

$$
A=\left(\begin{array}{rr}
1 / 3 & 1 / 3 \\
1 & 0
\end{array}\right)
$$

This has positive eigenvalue $(1+\sqrt{13}) / 6$ corresponding to approximate eigenvector $(0.61,0.79)$ and negative eigenvector $(1-\sqrt{13}) / 6$ corresponding to approximate eigenvector $(-0.40,0.92)$, so a saddle. At $(-1,2)$ we have

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

This has a repeated eigenvalue of 1 and is the canonical degenerate unstable node with eigenvector $(1,-1)$. Combining these four local behaviors gives the phase plane shown in Figure 3 .

