MAE294B/SIOC203B: Methods in Applied Mechanics http://web.eng.ucsd.edu/~sgls/MAE294B_2020

Solutions I

1 We showed in class that the pendulum oscillates if 0 < El/g < 2, with the maximum angle θ_* being given by $\cos \theta_* = 1 - El/g$ with $0 < \theta_* < \pi$. The period is the time it takes the pendulum to swing from 0 to the maximum value θ_* , back and around to $-\theta_*$ and finally to the origin again. By symmetry this is 4 times the time it takes to reach θ_* from the origin, during which time $\dot{\theta} \ge 0$. Hence

$$T = 4 \int_0^{\theta_*} \frac{d\theta}{[2E + 2(\cos\theta - 1)g/l]^{1/2}} = 4\sqrt{\frac{l}{g}} \int_0^{\theta_*} \frac{d\theta}{[2(\cos\theta - \cos\theta_*)]^{1/2}}$$

This shows that θ_* is a convenient non-dimensional parameter. Small amplitude means small θ_* ; then in the integral $\theta \ll 1$, so that we can expand the cosines. This leads to the non-dimensional period

$$\sqrt{\frac{g}{l}}T \sim 4\int_0^{\theta_*} \frac{\mathrm{d}\theta}{\sqrt{\theta_*^2 - \theta^2}} = 4\int_0^1 \frac{\mathrm{d}u}{\sqrt{1 - u^2}} = 2\pi,$$

as expected, after making the change of variable $\theta = \theta_* u$. (The answer should be a number in this limit, since *E* and θ_* are related.) The general integral is simple to evaluate numerically if one pays attention to the inverse square-root singularity (Matlab's integral function does fine). Alternatively one can write

$$\sqrt{\frac{g}{l}}T = 4\int_0^{\theta_*} \frac{\mathrm{d}\theta}{[\sin^2(\theta_*/2) - \sin^2(\theta/2)]^{1/2}} = 4\int_0^{\pi/2} \frac{\mathrm{d}u}{\sqrt{1 - k^2\sin^2 u}} = 4K(k)$$

making the substitution $\sin(\theta/2) = \sin u \sin(\theta_*/2)$, where $k = \sin(\theta_*/2)$ and K(k) is the complete elliptical integral of the first kind with modulus k (or alternatively parameter $m = k^2$). Figure 1 shows the non-dimensional period as a function of θ_* .

2 The conditions on f(x) correspond to a double zero of f(x), so that the graph y = f(x) is tangent to the *y*-axis. Vanishing higher derivatives correspond to higher zeros, with the curve being tangent if the highest vanishing derivative is odd. The function $f(x) = x^3 - x^2$ is a cubic, with a double zero at 0 and a simple zero at 1. We find $f'(x) = 3x^2 - 2x$, so that f'(0) = 0 and f'(1) = 1. Hence the fixed point 0 is semi-stable and the fixed point 1 is unstable, as can be seen from the graph. The local behavior near the origin is given by $\dot{x} = -x^2$, with solution

$$x(t) = \frac{1}{t + x_0^{-1}}$$

where x_0 is the initial value of x(t). For $x_0 < 0$, x(t) blows up to $-\infty$ in finite time, while for $x_0 > 0$, x(t) approaches the origin. This is consistent with a semi-stable fixed point

Figure 1: Period of pendulum.

with $\dot{x} < 0$, but is only the approximate behavior since the approximation breaks down as |x(t)| becomes large. The exact solution can be obtained by separation of variables and partial fractions:

$$\frac{\mathrm{d}x}{x^3 - x^2} = \mathrm{d}x \left(\frac{1}{x - 1} - \frac{1}{x} - \frac{1}{x^2} \right) = \mathrm{d}t.$$

This can be integrated to give

$$\log \frac{(x-1)x_0}{(x_0-1)x} + \frac{1}{x} - \frac{1}{x_0} = t.$$

If f(x) becomes $x^3 - x^2 - \delta$, then the fixed point at 1 shifts a little, while the fixed point at 0 either vanishes if $\delta < 0$ or splits into two fixed points if $\delta > 0$ (the location of new fixed points can be obtained approximately using perturbation theory; see later in the course). Hence there is a quantitative change in the dynamics (or structure) of the semi-stable fixed point for a small change in δ . This is the origin of the general semi-stable fixed points are not structurally stable. (For higher odd zeros, the argument is not quite so clear.)

3 The condition $x_* = f(x_*)$ corresponds graphically to an intersection of the curve y = f(x) with the straight line y = x. Writing $x_n = x_* + \xi_n$ and linearizing gives

$$\xi_{n+1}\simeq f'(x_n)\xi_n,$$

with solution $\xi_n = [f'(x_n)]^n \xi_0$. It's important to view ξ_n as a variable that evolves under a mapping. It grows in magnitude if $|f'(x_n)| > 1$ and decays to 0 if $|f'(x_n)| < 1$. Graphically this means that if the slope is less than 1 in magnitude, the fixed point is stable,

Figure 2: Dots: iterates $x_{101}, ..., x_{200}$ starting from $x_1 = 1/2$. Red curve: $1 - r^{-1}$ (fixed point of the map); blue curve: fixed points of the iterated map $f(f(x_n))$ for r > 3. Some transients are visible near r = 3.

while if the slope is greater than 1 in magnitude, the fixed point is unstable. There is a characteristic 'spiderweb' picture as the iteration converges or diverges. There was a typo in the logistic map, which I mean to write as

$$x_{n+1} = rx_n(1-x_n),$$

but this didn't get updated in the final posted version. As a result the values for r in the bonus part of the question were problematic; none of you pointed this out. The logistic map takes (0,1) to itself if $0 \le r \le 4$, since the maximum of x(1-x) is 1/4. The fixed points come from solving the quadratic x = rx(1-x), which has roots at 0 and $1 - r^{-1}$. The stability of these roots can be determined by looking at f'(x) = r(1-2x), so that f'(0) = r and $f'(1-r^{-1}) = 2-r$. The origin is hence unstable for r > 1. The larger fixed point exists for r > 1 and is stable for |2-r| < 1, i.e. 1 < r < 3. The second iterate has fixed points when $xn + 2 = x_n$, that is at $x = r^2x(1-x)(1-rx+rx^2)$. This quartic has roots at 0 and $1 - r^{-1}$, as before, and also at $1/2 + 1/(2r) \pm (1 - 2/r - 3/r^2)^{1/2}/2$. This has real roots for r > 3. Figure 2 shows the iterates for $100 < n \le 200$ starting from $x_1 = 1/2$. The loss of stability of the different iterates is visible. More complicated are the apparently chaotic regions for r > 3.56995 or so. See the literature.

4 There are four fixed points: (0,0), (2,2), (0,1) and (-1,2). The matrix of derivatives is

$$Df = \left(\begin{array}{cc} (1-2x)/3 & (-1+2y)/3 \\ 2-y & -x \end{array} \right).$$

Figure 3: Phase plane for 4.

At (0, 0) we have

$$A = \left(\begin{array}{cc} 1/3 & -1/3 \\ 2 & 0 \end{array}\right),$$

This has eigenvalues $(1 \pm i\sqrt{23})/6$, so an unstable focus going anticlockwise (check behavior on axes). At (2,2) we have

$$A = \left(\begin{array}{cc} -1 & 1 \\ 0 & -2 \end{array}\right).$$

This has eigenvalue -1 corresponding to eigenvector (1,0) and eigenvector -2 corresponding to eigenvector (-1,1), so a stable node tangential to (1,0). At (0,1) we have

$$A = \left(\begin{array}{cc} 1/3 & 1/3 \\ 1 & 0 \end{array}\right).$$

This has positive eigenvalue $(1 + \sqrt{13})/6$ corresponding to approximate eigenvector (0.61, 0.79) and negative eigenvector $(1 - \sqrt{13})/6$ corresponding to approximate eigenvector (-0.40, 0.92), so a saddle. At (-1, 2) we have

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

This has a repeated eigenvalue of 1 and is the canonical degenerate unstable node with eigenvector (1, -1). Combining these four local behaviors gives the phase plane shown in Figure 3.