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Solutions I

1 We showed in class that the pendulum oscillates if 0 < El/g < 2, with the maximum
angle θ∗ being given by cos θ∗ = 1− El/g with 0 < θ∗ < π. The period is the time it takes
the pendulum to swing from 0 to the maximum value θ∗, back and around to −θ∗ and
finally to the origin again. By symmetry this is 4 times the time it takes to reach θ∗ from
the origin, during which time θ̇ ≥ 0. Hence

T = 4
∫ θ∗

0

dθ

[2E + 2(cos θ − 1)g/l]1/2 = 4

√
l
g

∫ θ∗

0

dθ

[2(cos θ − cos θ∗)]1/2 .

This shows that θ∗ is a convenient non-dimensional parameter. Small amplitude means
small θ∗; then in the integral θ � 1, so that we can expand the cosines. This leads to the
non-dimensional period√

g
l

T ∼ 4
∫ θ∗

0

dθ√
θ2
∗ − θ2

= 4
∫ 1

0

du√
1− u2

= 2π,

as expected, after making the change of variable θ = θ∗u. (The answer should be a num-
ber in this limit, since E and θ∗ are related.) The general integral is simple to evaluate nu-
merically if one pays attention to the inverse square-root singularity (Matlab’s integral

function does fine). Alternatively one can write√
g
l

T = 4
∫ θ∗

0

dθ

[sin2 (θ∗/2)− sin2 (θ/2)]1/2
= 4

∫ π/2

0

du√
1− k2 sin2 u

= 4K(k),

making the substitution sin (θ/2) = sin u sin (θ∗/2), where k = sin (θ∗/2) and K(k) is the
complete elliptical integral of the first kind with modulus k (or alternatively parameter
m = k2). Figure 1 shows the non-dimensional period as a function of θ∗.

2 The conditions on f (x) correspond to a double zero of f (x), so that the graph y = f (x)
is tangent to the y-axis. Vanishing higher derivatives correspond to higher zeros, with
the curve being tangent if the highest vanishing derivative is odd. The function f (x) =
x3− x2 is a cubic, with a double zero at 0 and a simple zero at 1. We find f ′(x) = 3x2− 2x,
so that f ′(0) = 0 and f ′(1) = 1. Hence the fixed point 0 is semi-stable and the fixed point
1 is unstable, as can be seen from the graph. The local behavior near the origin is given
by ẋ = −x2, with solution

x(t) =
1

t + x−1
0

.

where x0 is the initial value of x(t). For x0 < 0, x(t) blows up to −∞ in finite time, while
for x0 > 0, x(t) approaches the origin. This is consistent with a semi-stable fixed point
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Figure 1: Period of pendulum.

with ẋ < 0, but is only the approximate behavior since the approximation breaks down
as |x(t)| becomes large. The exact solution can be obtained by separation of variables and
partial fractions:

dx
x3 − x2 = dx

(
1

x− 1
− 1

x
− 1

x2

)
= dt.

This can be integrated to give

log
(x− 1)x0

(x0 − 1)x
+

1
x
− 1

x0
= t.

If f (x) becomes x3− x2− δ, then the fixed point at 1 shifts a little, while the fixed point at
0 either vanishes if δ < 0 or splits into two fixed points if δ > 0 (the location of new fixed
points can be obtained approximately using perturbation theory; see later in the course).
Hence there is a quantitative change in the dynamics (or structure) of the semi-stable fixed
point for a small change in δ. This is the origin of the general semi-stable fixed points are
not structurally stable. (For higher odd zeros, the argument is not quite so clear.)

3 The condition x∗ = f (x∗) corresponds graphically to an intersection of the curve y =
f (x) with the straight line y = x. Writing xn = x∗ + ξn and linearizing gives

ξn+1 ' f ′(xn)ξn,

with solution ξn = [ f ′(xn)]nξ0. It’s important to view ξn as a variable that evolves under
a mapping. It grows in magnitude if | f ′(xn)| > 1 and decays to 0 if | f ′(xn)| < 1. Graph-
ically this means that if the slope is less than 1 in magnitude, the fixed point is stable,
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Figure 2: Dots: iterates x101, . . . , x200 starting from x1 = 1/2. Red curve: 1− r−1 (fixed
point of the map); blue curve: fixed points of the iterated map f ( f (xn)) for r > 3. Some
transients are visible near r = 3.

while if the slope is greater than 1 in magnitude, the fixed point is unstable. There is a
characteristic ’spiderweb’ picture as the iteration converges or diverges. There was a typo
in the logistic map, which I mean to write as

xn+1 = rxn(1− xn),

but this didn’t get updated in the final posted version. As a result the values for r in the
bonus part of the question were problematic; none of you pointed this out. The logistic
map takes (0, 1) to itself if 0 ≤ r ≤ 4, since the maximum of x(1− x) is 1/4. The fixed
points come from solving the quadratic x = rx(1− x), which has roots at 0 and 1− r−1.
The stability of these roots can be determined by looking at f ′(x) = r(1− 2x), so that
f ′(0) = r and f ′(1− r−1) = 2− r. The origin is hence unstable for r > 1. The larger
fixed point exists for r > 1 and is stable for |2− r| < 1, i.e. 1 < r < 3. The second iterate
has fixed points when xn + 2 = xn, that is at x = r2x(1− x)(1− rx + rx2). This quartic
has roots at 0 and 1− r−1, as before, and also at 1/2 + 1/(2r) ± (1− 2/r − 3/r2)1/2/2.
This has real roots for r > 3. Figure 2 shows the iterates for 100 < n ≤ 200 starting from
x1 = 1/2. The loss of stability of the different iterates is visible. More complicated are the
apparently chaotic regions for r > 3.56995 or so. See the literature.

4 There are four fixed points: (0, 0), (2, 2), (0, 1) and (−1, 2). The matrix of derivatives
is

D f =

(
(1− 2x)/3 (−1 + 2y)/3

2− y −x

)
.
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Figure 3: Phase plane for 4.

At (0, 0) we have

A =

(
1/3 −1/3

2 0

)
,

This has eigenvalues (1± i
√

23)/6, so an unstable focus going anticlockwise (check be-
havior on axes). At (2, 2) we have

A =

(
−1 1

0 −2

)
.

This has eigenvalue −1 corresponding to eigenvector (1, 0) and eigenvector −2 corre-
sponding to eigenvector (−1, 1), so a stable node tangential to (1, 0). At (0, 1) we have

A =

(
1/3 1/3

1 0

)
.

This has positive eigenvalue (1+
√

13)/6 corresponding to approximate eigenvector (0.61, 0.79)
and negative eigenvector (1−

√
13)/6 corresponding to approximate eigenvector (−0.40, 0.92),

so a saddle. At (−1, 2) we have

A =

(
1 1
0 1

)
.

This has a repeated eigenvalue of 1 and is the canonical degenerate unstable node with
eigenvector (1,−1). Combining these four local behaviors gives the phase plane shown
in Figure 3.
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