Homework III

1 We write $y(x)=\mathrm{e}^{S(x)}$ and obtain

$$
x^{2}\left(S^{\prime \prime}+S^{\prime 2}\right)+2 x S^{\prime}+x^{2}-v(v+1)=0 .
$$

We make the usual assumption that $S^{\prime 2} \gg S^{\prime \prime}$. Then

$$
S^{\prime 2} \sim-1
$$

which may be integrated to give $S \sim \pm \mathrm{i} x$, satisfying the assumption on S^{\prime} and $S^{\prime \prime}$ since $S^{\prime \prime}=0$. We now seek the next term by writing $S= \pm \mathrm{i} x+C$, where $C \ll x$. This leads to

$$
C^{\prime \prime} \pm 2 \mathrm{i} C^{\prime}+C^{\prime 2} \pm \frac{2 \mathrm{i}}{x}+\frac{2 C^{\prime}}{x}-\frac{v(v+1)}{x^{2}}=0
$$

The dominant balance becomes

$$
C^{\prime} \sim-\frac{1}{x}
$$

This gives $C \sim-\log x$. The next term in $S(x)$ will be small, so the controlling behavior is given by

$$
y(x) \sim x^{-1} \mathrm{e}^{ \pm \mathrm{i} x}
$$

We now calculate

$$
j_{0}(x)=\frac{1}{2} \int_{0}^{\pi} \cos (x \cos \theta) \sin \theta \mathrm{d} \theta=\frac{1}{2}\left[-\frac{\sin (x \cos \theta)}{x}\right]_{0}^{\pi}=\frac{\sin x}{x}=\frac{\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}}{2 \mathrm{i} x}
$$

This is a linear combination of the two controlling behaviors obtained.

2 Rescale with $x=\epsilon^{a} X$. The size of the terms is then $2+3 a, 2 a$, a and 1 respectively. The three consistent balances occur for $a=0, a=1$, and $a=-2$. For $a=0$, we have $x_{0}^{2}+2 x_{0}=0$ so $x_{0}=-2$ (the 0 root is the $a=1$ root). Then $2 x_{0} x_{1}+2 x_{1}+1=0$, so $x_{1}=1 / 2$. For $a=1$, the equation becomes $\epsilon^{4} X^{3}+\epsilon X^{2}+2 X+1=0$. Then we have $2 X_{0}+1=0$, so $X_{0}=-1 / 2$. Next $X_{0}^{2}+2 X_{1}=0$, so $X_{1}=-1 / 8$. For $a=-2$, the equation becomes $X^{3}+X^{2}+2 \epsilon^{2} X^{2}+\epsilon^{5}=0$. Then we have $X_{0}^{3}+X_{0}^{2}=0$ so $X_{0}=-1$ (the two 0 roots are the other roots). The next term is at $O\left(\epsilon^{2}\right)$ with $3 X_{0}^{2} X_{2}+2 X_{0} X_{2}+2 X_{0}=0$, so $X_{2}=2$. The three roots are hence

$$
-\epsilon^{-2}+2, \quad-2+\frac{1}{2} \epsilon, \quad-\frac{1}{2} \epsilon-\frac{1}{8} \epsilon^{2} .
$$

3 Let the center of the Earth be O, the point at which the rope leads the Earth's surface A, and the highest point P, with the latter a distance h from the surface. The length of the rope is known, and is made up of twice the arc along the equator and the taut section $A P$ of length d. This may be expressed as

$$
2 \pi R+l=2(\pi-\theta) R+2 d
$$

Now from elementary trigonometry,

$$
\tan \theta=d / R
$$

Combining the two equations, and noting that $\epsilon=l / R$ is a small parameter, we obtain

$$
\epsilon / 2=-\theta+\tan \theta
$$

The left-hand side is small, so θ must also be small. Expanding,

$$
\epsilon / 2=-\theta+\theta+\frac{1}{3} \theta^{3}+\cdots
$$

Hence $\theta=(3 \epsilon / 2)^{1 / 3}$ to leading order. The distance from the Earth, h, is given by the trigonometric relation

$$
\cos \theta=\frac{R}{R+h}=\frac{1}{1+h / R}
$$

The ratio h / R must also be small so

$$
1-\frac{1}{2} \theta^{2}+\cdots=1-h / R+\cdots
$$

Hence, to leading order,

$$
h / R=\frac{1}{2}(3 \epsilon / 2)^{2 / 3} .
$$

Plugging in numbers, $h \approx 5.65 \mathrm{~m}$.

4 The equation may be rewritten as

$$
x^{2}=-\log (\epsilon x)
$$

and since the left-hand side decreases more slowly than the right-hand side, we try the iteration $\left(L_{1}=\log \frac{1}{\epsilon}\right)$

$$
x_{n+1}^{2}=L_{1}-\log x_{n}, \quad x_{0}=L_{1}^{1 / 2}=\left(\log \frac{1}{\epsilon}\right)^{1 / 2}
$$

Then

$$
x_{1}^{2}=L_{1}-\log L_{1}^{1 / 2}=L_{1}-\frac{1}{2} L_{2}=L_{1}\left(1-L_{2} / 2 L_{1}\right)+\cdots, \quad L_{2}=\log \log \frac{1}{\epsilon}
$$

Now $L_{2} \ll L_{1}$, so

$$
x_{1} \approx L_{1}^{1 / 2}\left(1-L_{2} / 4 L_{1}\right)
$$

The next iteration gives

$$
x_{2}^{2}=L_{1}-\log L_{1}^{1 / 2}-\log \left(1-L_{2} / 4 L_{1}\right)=L_{1}-\frac{1}{2} L_{2}+L_{2} / 4 L_{1}+\cdots
$$

so

$$
x_{2} \approx L_{1}^{1 / 2}\left(1-L_{2} / 4 L_{1}+L_{2} / 8 L_{1}^{2}\right)
$$

In fact, as pointed out by Hinch, one should take both $1 / L_{1}^{2}$ terms to minimize error. This requires going to the next order:

$$
x_{3}=L_{1}^{1 / 2}\left(1-L_{2} / 4 L_{1}+L_{2} / 8 L_{1}^{2}-L_{2}^{2} / 32 L_{1}^{2}\right)
$$

