Solution IV

1 Skip the naive expansion. The leading-order solution is $x_{0}=A(T) \mathrm{e}^{\mathrm{i} t}+$ c.c. At $O(\epsilon)$, one finds

$$
x_{1 t t}+x_{1}+2 x_{0 t T}+(4 \cos \alpha t) x_{0}=0 .
$$

Secular terms are of the form $\mathrm{e}^{ \pm \mathrm{i} t}$, so look at the last term:

$$
2\left(\mathrm{e}^{\mathrm{i} \alpha t}+\mathrm{e}^{-\mathrm{i} \alpha t}\right)\left(A \mathrm{e}^{\mathrm{i} t}+A^{*} \mathrm{e}^{\mathrm{i} t}\right)=2 A\left[\mathrm{e}^{\mathrm{i}(1+\alpha) t}+\mathrm{e}^{\mathrm{i}(1-\alpha) t}\right]+2 A^{*}\left[\mathrm{e}^{\mathrm{i}(-1+\alpha) t}+\mathrm{e}^{\mathrm{i}(-1-\alpha) t}\right] .
$$

Secular terms are hence possible for $\alpha=-2,0,2$. For a real equation, $\alpha=-2$ is the same as $\alpha=2$. The equation can be solved exactly for $\alpha=0$ and gives $A \mathrm{e}^{\mathrm{i} \omega t}+$ c.c with $\omega=\sqrt{1+4 \epsilon}$: no growth. For $\alpha=2$, the amplitude equation is

$$
2 \mathrm{i} A_{T}+2 A^{*}=0
$$

Writing $A=u+\mathrm{i} v$ gives $\mathrm{i} u_{T}-v_{T}+u-\mathrm{i} v=0$, i.e.

$$
u_{T}=v, \quad v_{T}=u
$$

Hence $u=a \mathrm{e}^{T}+b \mathrm{e}^{-T}$ and $v=a \mathrm{e}^{T}-b \mathrm{e}^{-T}$. Except for very special initial conditions, solutions grow exponentially with T.

2 This is MMS. The $O(1)$ equation gives

$$
x_{0}=A(T) \sin [\tau+\varphi(T)], \quad A(0)=1, \quad \varphi(0)=0
$$

The $O(\epsilon)$ equation is

$$
x_{1 \tau \tau}+x_{1}+2 x_{0 \tau T}-\frac{1}{2+x_{0 \tau}}=0
$$

Substituting in gives

$$
\left.x_{1 \tau \tau}+x_{1}+2\left[A_{T} \cos (\tau+\varphi)-A \varphi_{T} \sin (\tau+\varphi)\right)\right]-\frac{1}{2+A \cos (\tau+\varphi)}=0
$$

Now integrate against $\cos (\tau+\varphi)$ and $\sin (\tau+\varphi)$ over one period. The second integration gives $\varphi_{T}=0$, so φ vanishes identically. Assuming that $0<A<2$, the second gives

$$
2 A_{T} \int_{0}^{2 \pi} \cos ^{2} \theta \mathrm{~d} \theta-\int_{0}^{2 \pi} \frac{\cos \theta}{2+A \cos \theta} \mathrm{~d} \theta=2 \pi A_{T}-2 \pi \frac{\sqrt{4-A^{2}}-2}{A \sqrt{4-A^{2}}}=0
$$

We have hence obtained the following equation for A :

$$
A_{T}=\frac{\sqrt{4-A^{2}}-2}{A \sqrt{4-A^{2}}}
$$

This is not nice to solve in closed form but we can just use a phase line analysis. It is evident that $A_{T}<0$ for $0<A<2$ (there is a singularity at the origin). Hence since we start at $A=1$, the solution decays and also stays in the range $(0,2)$. For small A, the equation becomes $A_{T} \approx-A / 8$, so $A \propto \mathrm{e}^{-T / 8}$ in that limit (the proportionality constant is not 1). For the bonus part, either write $z=\mathrm{e}^{\mathrm{i} \theta}$ and use contour integration with $\cos \theta=$ $\left(z+z^{-1}\right) / 2$ on the unit circle, or use the change of variable $t=\tan (\theta / 2)$.

3 (i) Skip the naive expansion. The leading-order solution is $y_{0}=A(X)+B(X) \mathrm{e}^{-x}$ At $O(\epsilon)$, one finds

$$
y_{1 x x}+2 y_{0 x X}+y_{1 x}+y_{0 X}-y_{0}^{2}=0
$$

There are two types of secular terms: constant and e^{-X}. This gives two amplitude equations

$$
A_{X}-A^{2}=0, \quad B_{X}+2 A B=0
$$

The boundary conditions give

$$
A(0)+B(0)=0, \quad A(1)=1
$$

where a term of the form $\mathrm{e}^{-\epsilon^{-1}}$ has been neglected in the second condition, since it is smaller than all orders in ϵ. The A-equation can be solved first, yielding

$$
A=\frac{1}{2-X}
$$

The B-equation then gives

$$
B=-\frac{1}{8}(2-X)^{2}
$$

The MMS solution is then

$$
y_{M M S}=\frac{1}{2-\epsilon x}-\frac{1}{8}(2-\epsilon x)^{2} \mathrm{e}^{-x}+O(\epsilon)
$$

uniformly in the domain.
(ii) The outer solution is in the variable X, for which the governing equation is

$$
\epsilon y_{X X}+y_{X}-y^{2}=0
$$

The leading-order solution satisfies $y_{0 x}-y_{0}^{2}=0$ and $y_{0}(1)=1$. We have already solved this problem and the answer is

$$
y_{0}=\frac{1}{2-X} .
$$

The leading-order inner solution is in the variable x and satisfies $Y_{0}^{\prime \prime}+Y_{0}^{\prime}=0$ with the condition $Y_{0}(0)=0$, so $Y_{0}=C\left(\mathrm{e}^{-x}-1\right)$. Matching to the outer solution gives $C=-1 / 2$ and hence

$$
Y_{0}=\frac{1}{2}\left(1-\mathrm{e}^{-x}\right) .
$$

The leading-order uniform solution is

$$
y_{u}=\frac{1}{2-\epsilon x}-\frac{1}{2} \mathrm{e}^{-x}
$$

The two solutions are very similar. Neglecting the ϵx in the denominator of the second term of $y_{M M S}$ gives y_{u}. Neither satisfies the boundary condition at $x=\epsilon^{-1}$ exactly, but the error is smaller than all powers of ϵ. Figure 1 shows the solutions for $\epsilon=0.02$.

Figure 1: Exact, inner, outer, uniform and MMS solutions for $\epsilon=0.02$.

4 This is a singular perturbation problem. Given the sign of the y^{\prime} term, expect the boundary layer to be at 1 . The boundary conditions show that $y=O(1)$ near the boundaries so no need to scale y. Writing $x=1-\epsilon^{\alpha} X$ shows that $\alpha=1$ and the equation for the inner solution is

$$
Y_{X X}+Y_{X}+\epsilon^{2}(1-\epsilon X) Y^{2}=2 \epsilon(1-\epsilon X)
$$

Solve the leading-order outer problem:

$$
-y_{0}^{\prime}=2 x, \quad y(0)=2
$$

giving $y_{0}=2-x^{2}$. The leading-order inner problem is $Y_{0 X X}+Y_{0 X}=0$ with $Y(0)=2$. The solution is $Y_{0}=2+C\left(\mathrm{e}^{-X}-1\right)$. Matching naively gives $1=2-C$, so the inner solution becomes $Y_{0}=1+\mathrm{e}^{-X}$. The $O(\epsilon)$ outer solution satisfies

$$
y_{0}^{\prime \prime}-y_{1}^{\prime}+x y_{0}^{2}=0, \quad y_{1}(0)=0
$$

so $y_{1}=x^{6} / 6-x^{4}+2 x^{2}-2 x$. The next inner problem is $Y_{1 X X}+Y_{1 X}=2$ with $Y(0)=1$. The solution is $Y_{1}=2 X+1+D\left(\mathrm{e}^{-X}-1\right)$. To match, use van Dyke's rule:

$$
\begin{aligned}
E_{1} H_{1} y & =E_{1}\left\{2-(1-\epsilon X)^{2}+\epsilon\left[(1-\epsilon X)^{6} / 6-(1-\epsilon X)^{4}+2(1-\epsilon X)^{2}-2(1-\epsilon X)\right]\right\} \\
& =1+\epsilon(2 X-5 / 6) \\
H_{1} E_{1} y & =H_{1}\left[1+\mathrm{e}^{(x-1) / \epsilon}+\epsilon\left\{\left(2(1-x) / \epsilon+1+D\left(\mathrm{e}^{(x-1) / \epsilon}-1\right)\right\}\right]\right. \\
& =3-2 x+\epsilon(1-D)=1+\epsilon(2 X+1-D)
\end{aligned}
$$

Hence $D=11 / 6$ and the outer and inner solutions are

$$
y=2-x^{2}+\epsilon\left(x^{6} / 6-x^{4}+2 x^{2}-2 x\right)+O\left(\epsilon^{2}\right)
$$

and

$$
Y=1+\mathrm{e}^{-X}+\epsilon\left(2 X-5 / 6+11 \mathrm{e}^{-X} / 6\right)+O\left(\epsilon^{2}\right)
$$

