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Solution IV

1 Skip the naive expansion. The leading-order solution is x0 = A(T)eit + c.c. At O(ε),
one finds

x1tt + x1 + 2x0tT + (4 cos αt)x0 = 0.

Secular terms are of the form e±it, so look at the last term:

2(eiαt + e−iαt)(Aeit + A∗eit) = 2A[ei(1+α)t + ei(1−α)t] + 2A∗[ei(−1+α)t + ei(−1−α)t].

Secular terms are hence possible for α = −2, 0, 2. For a real equation, α = −2 is the
same as α = 2. The equation can be solved exactly for α = 0 and gives Aeiωt + c.c with
ω =

√
1 + 4ε: no growth. For α = 2, the amplitude equation is

2iAT + 2A∗ = 0

Writing A = u + iv gives iuT − vT + u− iv = 0, i.e.

uT = v, vT = u.

Hence u = aeT + be−T and v = aeT − be−T. Except for very special initial conditions,
solutions grow exponentially with T.

2 This is MMS. The O(1) equation gives

x0 = A(T) sin [τ + ϕ(T)], A(0) = 1, ϕ(0) = 0.

The O(ε) equation is

x1ττ + x1 + 2x0τT −
1

2 + x0τ
= 0.

Substituting in gives

x1ττ + x1 + 2[AT cos (τ + ϕ)− AϕT sin (τ + ϕ))]− 1
2 + A cos (τ + ϕ)

= 0.

Now integrate against cos (τ + ϕ) and sin (τ + ϕ) over one period. The second integra-
tion gives ϕT = 0, so ϕ vanishes identically. Assuming that 0 < A < 2, the second
gives

2AT

∫ 2π

0
cos2 θ dθ −

∫ 2π

0

cos θ

2 + A cos θ
dθ = 2πAT − 2π

√
4− A2 − 2

A
√

4− A2
= 0.
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We have hence obtained the following equation for A:

AT =

√
4− A2 − 2

A
√

4− A2
.

This is not nice to solve in closed form but we can just use a phase line analysis. It is
evident that AT < 0 for 0 < A < 2 (there is a singularity at the origin). Hence since we
start at A = 1, the solution decays and also stays in the range (0, 2). For small A, the
equation becomes AT ≈ −A/8, so A ∝ e−T/8 in that limit (the proportionality constant is
not 1). For the bonus part, either write z = eiθ and use contour integration with cos θ =
(z + z−1)/2 on the unit circle, or use the change of variable t = tan (θ/2).

3 (i) Skip the naive expansion. The leading-order solution is y0 = A(X) + B(X)e−x At
O(ε), one finds

y1xx + 2y0xX + y1x + y0X − y2
0 = 0.

There are two types of secular terms: constant and e−X. This gives two amplitude equa-
tions

AX − A2 = 0, BX + 2AB = 0.

The boundary conditions give

A(0) + B(0) = 0, A(1) = 1,

where a term of the form e−ε−1
has been neglected in the second condition, since it is

smaller than all orders in ε. The A-equation can be solved first, yielding

A =
1

2− X
.

The B-equation then gives

B = −1
8
(2− X)2.

The MMS solution is then

yMMS =
1

2− εx
− 1

8
(2− εx)2e−x + O(ε)

uniformly in the domain.
(ii) The outer solution is in the variable X, for which the governing equation is

εyXX + yX − y2 = 0.

The leading-order solution satisfies y0X − y2
0 = 0 and y0(1) = 1. We have already solved

this problem and the answer is

y0 =
1

2− X
.
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The leading-order inner solution is in the variable x and satisfies Y′′0 + Y′0 = 0 with the
condition Y0(0) = 0, so Y0 = C(e−x − 1). Matching to the outer solution gives C = −1/2
and hence

Y0 =
1
2
(1− e−x).

The leading-order uniform solution is

yu =
1

2− εx
− 1

2
e−x.

The two solutions are very similar. Neglecting the εx in the denominator of the second
term of yMMS gives yu. Neither satisfies the boundary condition at x = ε−1 exactly, but
the error is smaller than all powers of ε. Figure 1 shows the solutions for ε = 0.02.
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Figure 1: Exact, inner, outer, uniform and MMS solutions for ε = 0.02.
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4 This is a singular perturbation problem. Given the sign of the y′ term, expect the
boundary layer to be at 1. The boundary conditions show that y = O(1) near the bound-
aries so no need to scale y. Writing x = 1− εαX shows that α = 1 and the equation for
the inner solution is

YXX + YX + ε2(1− εX)Y2 = 2ε(1− εX).

Solve the leading-order outer problem:

−y′0 = 2x, y(0) = 2,

giving y0 = 2− x2. The leading-order inner problem is Y0XX + Y0X = 0 with Y(0) = 2.
The solution is Y0 = 2 + C(e−X − 1). Matching naively gives 1 = 2 − C, so the inner
solution becomes Y0 = 1 + e−X. The O(ε) outer solution satisfies

y′′0 − y′1 + xy2
0 = 0, y1(0) = 0,

so y1 = x6/6− x4 + 2x2 − 2x. The next inner problem is Y1XX + Y1X = 2 with Y(0) = 1.
The solution is Y1 = 2X + 1 + D(e−X − 1). To match, use van Dyke’s rule:

E1H1y = E1{2− (1− εX)2 + ε[(1− εX)6/6− (1− εX)4 + 2(1− εX)2 − 2(1− εX)]}
= 1 + ε(2X− 5/6),

H1E1y = H1[1 + e(x−1)/ε + ε{(2(1− x)/ε + 1 + D(e(x−1)/ε − 1)}]
= 3− 2x + ε(1− D) = 1 + ε(2X + 1− D).

Hence D = 11/6 and the outer and inner solutions are

y = 2− x2 + ε(x6/6− x4 + 2x2 − 2x) + O(ε2)

and
Y = 1 + e−X + ε(2X− 5/6 + 11e−X/6) + O(ε2).
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