http://web.eng.ucsd.edu/~sgls/MAE294B_2020

Solution IV

1 Skip the naive expansion. The leading-order solution is $x_0 = A(T)e^{it} + c.c.$ At $O(\epsilon)$, one finds

$$x_{1tt} + x_1 + 2x_{0tT} + (4\cos\alpha t)x_0 = 0.$$

Secular terms are of the form $e^{\pm it}$, so look at the last term:

$$2(e^{i\alpha t} + e^{-i\alpha t})(Ae^{it} + A^*e^{it}) = 2A[e^{i(1+\alpha)t} + e^{i(1-\alpha)t}] + 2A^*[e^{i(-1+\alpha)t} + e^{i(-1-\alpha)t}].$$

Secular terms are hence possible for $\alpha=-2$, 0, 2. For a real equation, $\alpha=-2$ is the same as $\alpha=2$. The equation can be solved exactly for $\alpha=0$ and gives $Ae^{i\omega t}+c.c$ with $\omega=\sqrt{1+4\epsilon}$: no growth. For $\alpha=2$, the amplitude equation is

$$2iA_T + 2A^* = 0$$

Writing A = u + iv gives $iu_T - v_T + u - iv = 0$, i.e.

$$u_T = v$$
, $v_T = u$.

Hence $u = ae^T + be^{-T}$ and $v = ae^T - be^{-T}$. Except for very special initial conditions, solutions grow exponentially with T.

2 This is MMS. The O(1) equation gives

$$x_0 = A(T)\sin{[\tau + \varphi(T)]}, \qquad A(0) = 1, \quad \varphi(0) = 0.$$

The $O(\epsilon)$ equation is

$$x_{1\tau\tau} + x_1 + 2x_{0\tau T} - \frac{1}{2 + x_{0\tau}} = 0.$$

Substituting in gives

$$x_{1\tau\tau} + x_1 + 2[A_T \cos(\tau + \varphi) - A\varphi_T \sin(\tau + \varphi))] - \frac{1}{2 + A\cos(\tau + \varphi)} = 0.$$

Now integrate against $\cos(\tau + \varphi)$ and $\sin(\tau + \varphi)$ over one period. The second integration gives $\varphi_T = 0$, so φ vanishes identically. Assuming that 0 < A < 2, the second gives

$$2A_T \int_0^{2\pi} \cos^2 \theta \, d\theta - \int_0^{2\pi} \frac{\cos \theta}{2 + A \cos \theta} \, d\theta = 2\pi A_T - 2\pi \frac{\sqrt{4 - A^2} - 2}{A\sqrt{4 - A^2}} = 0.$$

We have hence obtained the following equation for *A*:

$$A_T = rac{\sqrt{4 - A^2} - 2}{A\sqrt{4 - A^2}}.$$

This is not nice to solve in closed form but we can just use a phase line analysis. It is evident that $A_T < 0$ for 0 < A < 2 (there is a singularity at the origin). Hence since we start at A = 1, the solution decays and also stays in the range (0,2). For small A, the equation becomes $A_T \approx -A/8$, so $A \propto e^{-T/8}$ in that limit (the proportionality constant is not 1). For the bonus part, either write $z = e^{i\theta}$ and use contour integration with $\cos \theta = (z + z^{-1})/2$ on the unit circle, or use the change of variable $t = \tan (\theta/2)$.

3 (i) Skip the naive expansion. The leading-order solution is $y_0 = A(X) + B(X)e^{-x}$ At $O(\epsilon)$, one finds

$$y_{1xx} + 2y_{0xX} + y_{1x} + y_{0X} - y_0^2 = 0.$$

There are two types of secular terms: constant and e^{-X} . This gives two amplitude equations

$$A_X - A^2 = 0$$
, $B_X + 2AB = 0$.

The boundary conditions give

$$A(0) + B(0) = 0,$$
 $A(1) = 1,$

where a term of the form $e^{-\epsilon^{-1}}$ has been neglected in the second condition, since it is smaller than all orders in ϵ . The *A*-equation can be solved first, yielding

$$A = \frac{1}{2 - X}.$$

The *B*-equation then gives

$$B = -\frac{1}{8}(2 - X)^2.$$

The MMS solution is then

$$y_{MMS} = \frac{1}{2 - \epsilon x} - \frac{1}{8} (2 - \epsilon x)^2 e^{-x} + O(\epsilon)$$

uniformly in the domain.

(ii) The outer solution is in the variable *X*, for which the governing equation is

$$\epsilon y_{XX} + y_X - y^2 = 0.$$

The leading-order solution satisfies $y_{0X} - y_0^2 = 0$ and $y_0(1) = 1$. We have already solved this problem and the answer is

$$y_0 = \frac{1}{2 - X}.$$

The leading-order inner solution is in the variable x and satisfies $Y_0'' + Y_0' = 0$ with the condition $Y_0(0) = 0$, so $Y_0 = C(e^{-x} - 1)$. Matching to the outer solution gives C = -1/2 and hence

$$Y_0 = \frac{1}{2}(1 - e^{-x}).$$

The leading-order uniform solution is

$$y_u = \frac{1}{2 - \epsilon x} - \frac{1}{2} e^{-x}.$$

The two solutions are very similar. Neglecting the ϵx in the denominator of the second term of y_{MMS} gives y_u . Neither satisfies the boundary condition at $x = \epsilon^{-1}$ exactly, but the error is smaller than all powers of ϵ . Figure 1 shows the solutions for $\epsilon = 0.02$.

Figure 1: Exact, inner, outer, uniform and MMS solutions for $\epsilon = 0.02$.

4 This is a singular perturbation problem. Given the sign of the y' term, expect the boundary layer to be at 1. The boundary conditions show that y = O(1) near the boundaries so no need to scale y. Writing $x = 1 - \epsilon^{\alpha} X$ shows that $\alpha = 1$ and the equation for the inner solution is

$$Y_{XX} + Y_X + \epsilon^2 (1 - \epsilon X) Y^2 = 2\epsilon (1 - \epsilon X).$$

Solve the leading-order outer problem:

$$-y_0' = 2x$$
, $y(0) = 2$,

giving $y_0 = 2 - x^2$. The leading-order inner problem is $Y_{0XX} + Y_{0X} = 0$ with Y(0) = 2. The solution is $Y_0 = 2 + C(e^{-X} - 1)$. Matching naively gives 1 = 2 - C, so the inner solution becomes $Y_0 = 1 + e^{-X}$. The $O(\epsilon)$ outer solution satisfies

$$y_0'' - y_1' + xy_0^2 = 0, y_1(0) = 0,$$

so $y_1 = x^6/6 - x^4 + 2x^2 - 2x$. The next inner problem is $Y_{1XX} + Y_{1X} = 2$ with Y(0) = 1. The solution is $Y_1 = 2X + 1 + D(e^{-X} - 1)$. To match, use van Dyke's rule:

$$E_{1}H_{1}y = E_{1}\{2 - (1 - \epsilon X)^{2} + \epsilon[(1 - \epsilon X)^{6}/6 - (1 - \epsilon X)^{4} + 2(1 - \epsilon X)^{2} - 2(1 - \epsilon X)]\}$$

$$= 1 + \epsilon(2X - 5/6),$$

$$H_{1}E_{1}y = H_{1}[1 + e^{(x-1)/\epsilon} + \epsilon\{(2(1 - x)/\epsilon + 1 + D(e^{(x-1)/\epsilon} - 1)\}]$$

$$= 3 - 2x + \epsilon(1 - D) = 1 + \epsilon(2X + 1 - D).$$

Hence D = 11/6 and the outer and inner solutions are

$$y = 2 - x^2 + \epsilon(x^6/6 - x^4 + 2x^2 - 2x) + O(\epsilon^2)$$

and

$$Y = 1 + e^{-X} + \epsilon(2X - 5/6 + 11e^{-X}/6) + O(\epsilon^2).$$