Solutions V

1 From class,

$$
y=\frac{1+x}{x}-\epsilon \frac{(1-x)(1+3 x)}{2 x^{3}} .
$$

In the inner region with $x=\epsilon^{1 / 2} \xi$ and $y=\epsilon^{-1 / 2} Y$, the governing equation becomes

$$
(\xi+Y) Y_{\xi}+Y=\epsilon^{1 / 2}
$$

The equation for the leading-order term can be integrated to give

$$
\xi Y_{0}+\frac{1}{2} Y_{0}^{2}=A
$$

where A is a constant. Hence

$$
Y_{0}=-\xi \pm \sqrt{\xi^{2}+2 A}
$$

Van Dyke's rule gives

$$
y^{(0,0)}=\frac{\epsilon^{-1 / 2}}{\xi}, \quad Y^{(0,0)}=-\epsilon^{-1 / 2} x \pm \epsilon^{-1 / 2} x\left(1+\frac{\epsilon A}{x^{2}}\right)
$$

Hence we take the plus sign and $A=1$.

2 Start with the outer solution. At leading order, we find

$$
x y_{0}^{\prime}+y_{0}=2 x
$$

with solution $y_{0}=x+A x^{-1}$. One can look for a boundary layer near $x=1$: the resulting equation can be solved, but the solution becomes singular within the boundary layer. So there is a boundary layer near the origin, and $A=0$. The next equation is

$$
x y_{1}^{\prime}+y_{1}=-y_{0}^{\prime \prime}-y_{0}^{3}=-x^{3}, \quad y_{1}(1)=0
$$

with solution $y_{1}=\frac{1}{4}\left(x^{-1}-x^{3}\right)$. We see that the expansion becomes disordered when $x=O\left(\epsilon^{1 / 2}\right)$. In that region, $y_{0} \sim \epsilon^{1 / 2}$, but the boundary condition at the origin is $O(1)$, so it's probably best not to rescale y near the origin and write $y=Y$. Write $x=\epsilon^{1 / 2} X$ in the boundary layer. This leads to

$$
Y_{X X}+X Y_{x}+\epsilon^{1 / 2} Y_{X}^{3}+Y+\epsilon Y^{3}=2 \epsilon^{1 / 2} X
$$

The leading-order problem is

$$
Y_{0 X X}+X Y_{0 X}+Y_{0}=0, \quad Y_{0}(0)=-1
$$

This equation can be integrated once to give

$$
Y_{0 X}+X Y_{0}=A
$$

where A is a constant. Now consider van Dyke's rule: the outer solution gives

$$
y^{(0, .)}=\epsilon^{1 / 2} X
$$

Hence $y^{(0,0)}=Y^{(0,0)}=0$. This means that the limit of $Y_{0}(X)$ for large X is zero. Hence the constant value $Y_{0 X}+X Y_{0}$ vanishes for large X, and $A=0$. We now integrate the resulting equation and apply the boundary condition. The result is $Y_{0}=-\mathrm{e}^{-X^{2} / 2}$. We expand in powers of $\epsilon^{1 / 2}$, so at the next order,

$$
Y_{1 X X}+X Y_{1 X}+Y_{1}=2 X-Y_{0 X}^{3}=2 X+X^{3} \mathrm{e}^{-3 X^{2} / 2}, \quad Y_{1}(0)=0
$$

We can integrate again, giving

$$
Y_{1 X}+X Y_{1}=X^{2}-\frac{3 X^{2}+2}{9} \mathrm{e}^{-3 X^{2} / 2}+B
$$

Writing $Y_{1}=X+F$ gives

$$
1+F_{X}+X F=-\frac{3 X^{2}+2}{9} \mathrm{e}^{-3 X^{2} / 2}+B
$$

Our goal is to find B simply. For large X, the form of $y(x)$ indicates that F will be an expansion in negative powers of X, i.e. $F=F_{0}+F_{1} X^{-1}+\cdots$, so that $F_{X}=-F_{1} X^{-2}+\cdots$. Plug this into the above relation and find $F_{0}=0$ and $1+F_{1}=B$. Now Van Dyke's rule gives

$$
y^{(1,1)}=\epsilon^{1 / 2} X+\frac{\epsilon^{1 / 2}}{4 X}=Y^{(1,1)}=x+\frac{\epsilon F_{1}}{x}
$$

Hence $F_{1}=1 / 4=B-1$. We can now solve for F

$$
F=-\mathrm{e}^{-X^{2} / 2} \int_{0}^{X} \frac{3 u^{2}+2}{9} \mathrm{e}^{-u^{2}} \mathrm{~d} u+\frac{1}{4} \mathrm{e}^{-X^{2} / 2} \int_{0}^{u} \mathrm{e}^{u^{2} / 2} \mathrm{~d} u .
$$

Finally

$$
Y_{1}=X-\frac{7 \pi^{1 / 2} \mathrm{e}^{X^{2}} \operatorname{erf} X-6 X}{36} \mathrm{e}^{-3 X^{2} / 2}+\frac{1}{4} \mathrm{e}^{-X^{2} / 2} \int_{0}^{u} \mathrm{e}^{u^{2} / 2} \mathrm{~d} u
$$

(avoiding using error functions of imaginary argument).

3 The equation becomes

$$
\epsilon^{2} y_{T T}-\epsilon T \mathrm{e}^{-T} y_{T}+y=0
$$

in T. Inserting an LG approximant gives

$$
\phi_{0 T}^{2}-T \mathrm{e}^{-T} \phi_{0 T}+1=0, \quad \phi_{0 T T}+2 \phi_{0 T} \phi_{1 T}-T \mathrm{e}^{-T} \phi_{1 T}=0
$$

The first equation can be solved to give

$$
\phi_{0}=\int^{T} \frac{\tau \mathrm{e}^{-\tau} \pm \mathrm{i} \sqrt{4-\tau^{2} \mathrm{e}^{-2 T}}}{2} \mathrm{~d} \tau
$$

Once again there are two roots. The equation for ϕ_{1} can be solved using an integrating factor, which gives a double integral, and is not nearly as simple as in the standard WKB case. Liouville normal form (LNF) for the general equation $y^{\prime \prime}+a y^{\prime}+b y=0$ comes from writing $y=\mathrm{e}^{I} z$ and removing the term in z^{\prime}. One obtains $I^{\prime}=a / 2$, so that

$$
I=\frac{1}{2} \int \epsilon T \mathrm{e}^{-T} \mathrm{~d} T=-\frac{1}{2}(T+1) \mathrm{e}^{-\epsilon t}
$$

Then

$$
z^{\prime \prime}+\left(b-\frac{a^{\prime}}{2}-\frac{a^{2}}{4}\right) z=0
$$

Here this leads to

$$
z_{T T}+\left(1-\frac{T^{2} \mathrm{e}^{-2 T}}{4}+\frac{\mathrm{e}^{-T}(1-T)}{2} \epsilon\right) z=0
$$

The WKB solution is not standard because of the term in ϵ. The equations are

$$
\phi_{0 T}^{2}=1-\frac{T^{2} \mathrm{e}^{-2 T}}{4}, \quad \phi_{0 T T}+2 \phi_{0 T} \phi_{1 T}+\frac{\mathrm{e}^{-T}(1-T)}{2}=0 .
$$

The first leads to

$$
\phi_{0}= \pm \frac{\mathrm{i}}{2} \int^{T} \sqrt{4-\tau^{2} \mathrm{e}^{-2 T}} \mathrm{~d} \tau
$$

We see that we get the same answer, taking into account the multiplying factor e^{I}. The same will happen for ϕ_{1}.

4 The WKB solution that satisfies the connection formulas at $x=-a$ is

$$
y \sim\left(1-x^{4} / E\right)^{-1 / 4} \cos \left(E^{1 / 2} \int_{-a}^{x} \sqrt{1-u^{4} / E} \mathrm{~d} u-\frac{\pi}{4}\right)
$$

where $a=E^{1 / 4}$. Even solutions require

$$
\cos \left(E^{1 / 2} \int_{-a}^{x} \sqrt{1-u^{4} / E} \mathrm{~d} u-\frac{\pi}{4}\right)=\cos \left(E^{1 / 2} \int_{-a}^{-x} \sqrt{1-u^{4} / E} \mathrm{~d} u-\frac{\pi}{4}\right)
$$

Now $\cos A=\cos B$ if $A=B+2 n \pi$ or $A=-B+2 n \pi$. Changing variable in the second integral gives

$$
E^{1 / 2} \int_{-a}^{x} \sqrt{1-u^{4} / E} \mathrm{~d} u-\frac{\pi}{4}= \pm\left(E^{1 / 2} \int_{x}^{a} \sqrt{1-u^{4} / E} \mathrm{~d} u-\frac{\pi}{4}\right)+2 n \pi
$$

The plus sign is too restrictive. The minus sign leads to

$$
E^{1 / 2} \int_{-a}^{a} \sqrt{1-u^{4} / E} \mathrm{~d} u=\frac{\pi}{2}+2 n \pi .
$$

For odd solutions, the same procedure leads to

$$
E^{1 / 2} \int_{-a}^{a} \sqrt{1-u^{4} / E} \mathrm{~d} u=-\frac{\pi}{2}+2 n \pi
$$

Now change variables inside the integral using $u=E^{1 / 4} v$ and include both odd and even cases:

$$
E^{3 / 4} \int_{-1}^{1} \sqrt{1-v^{4}} \mathrm{~d} v=-\frac{\pi}{2}+n \pi
$$

Hence the eigenvalues are

$$
E \sim I^{-4 / 3} \pi^{4 / 3}\left(n-\frac{1}{2}\right)^{4 / 3}
$$

for $n=1,2, \ldots$, where

$$
I=\int_{-1}^{1} \sqrt{1-v^{4}} \mathrm{~d} v
$$

(The integral $I=1.748038369528080 \ldots$ is related to the complete integral elliptic integral of the first kind.)

