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Solutions V

1 From class,

y =
1 + x

x
− ε

(1− x)(1 + 3x)
2x3 .

In the inner region with x = ε1/2ξ and y = ε−1/2Y, the governing equation becomes

(ξ + Y)Yξ + Y = ε1/2.

The equation for the leading-order term can be integrated to give

ξY0 +
1
2

Y2
0 = A,

where A is a constant. Hence

Y0 = −ξ ±
√

ξ2 + 2A.

Van Dyke’s rule gives

y(0,0) =
ε−1/2

ξ
, Y(0,0) = −ε−1/2x± ε−1/2x

(
1 +

εA
x2

)
.

Hence we take the plus sign and A = 1.

2 Start with the outer solution. At leading order, we find

xy′0 + y0 = 2x

with solution y0 = x + Ax−1. One can look for a boundary layer near x = 1: the resulting
equation can be solved, but the solution becomes singular within the boundary layer. So
there is a boundary layer near the origin, and A = 0. The next equation is

xy′1 + y1 = −y′′0 − y3
0 = −x3, y1(1) = 0,

with solution y1 = 1
4(x−1 − x3). We see that the expansion becomes disordered when

x = O(ε1/2). In that region, y0 ∼ ε1/2, but the boundary condition at the origin is O(1),
so it’s probably best not to rescale y near the origin and write y = Y. Write x = ε1/2X in
the boundary layer. This leads to

YXX + XYx + ε1/2Y3
X + Y + εY3 = 2ε1/2X.
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The leading-order problem is

Y0XX + XY0X + Y0 = 0, Y0(0) = −1.

This equation can be integrated once to give

Y0X + XY0 = A,

where A is a constant. Now consider van Dyke’s rule: the outer solution gives

y(0,.) = ε1/2X.

Hence y(0,0) = Y(0,0) = 0. This means that the limit of Y0(X) for large X is zero. Hence the
constant value Y0X + XY0 vanishes for large X, and A = 0. We now integrate the resulting
equation and apply the boundary condition. The result is Y0 = −e−X2/2. We expand in
powers of ε1/2, so at the next order,

Y1XX + XY1X + Y1 = 2X−Y3
0X = 2X + X3e−3X2/2, Y1(0) = 0.

We can integrate again, giving

Y1X + XY1 = X2 − 3X2 + 2
9

e−3X2/2 + B.

Writing Y1 = X + F gives

1 + FX + XF = −3X2 + 2
9

e−3X2/2 + B,

Our goal is to find B simply. For large X, the form of y(x) indicates that F will be an
expansion in negative powers of X, i.e. F = F0 + F1X−1 + · · ·, so that FX = −F1X−2 + · · ·.
Plug this into the above relation and find F0 = 0 and 1 + F1 = B. Now Van Dyke’s rule
gives

y(1,1) = ε1/2X +
ε1/2

4X
= Y(1,1) = x +

εF1

x
.

Hence F1 = 1/4 = B− 1. We can now solve for F

F = −e−X2/2
∫ X

0

3u2 + 2
9

e−u2
du +

1
4

e−X2/2
∫ u

0
eu2/2 du.

Finally

Y1 = X− 7π1/2eX2
erf X− 6X
36

e−3X2/2 +
1
4

e−X2/2
∫ u

0
eu2/2 du

(avoiding using error functions of imaginary argument).
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3 The equation becomes
ε2yTT − εTe−TyT + y = 0

in T. Inserting an LG approximant gives

φ2
0T − Te−Tφ0T + 1 = 0, φ0TT + 2φ0Tφ1T − Te−Tφ1T = 0.

The first equation can be solved to give

φ0 =
∫ T τe−τ ± i

√
4− τ2e−2T

2
dτ.

Once again there are two roots. The equation for φ1 can be solved using an integrating
factor, which gives a double integral, and is not nearly as simple as in the standard WKB
case. Liouville normal form (LNF) for the general equation y′′ + ay′ + by = 0 comes from
writing y = eIz and removing the term in z′. One obtains I′ = a/2, so that

I =
1
2

∫
εTe−T dT = −1

2
(T + 1)e−εt.

Then

z′′ +
(

b− a′

2
− a2

4

)
z = 0.

Here this leads to

zTT +

(
1− T2e−2T

4
+

e−T(1− T)
2

ε

)
z = 0.

The WKB solution is not standard because of the term in ε. The equations are

φ2
0T = 1− T2e−2T

4
, φ0TT + 2φ0Tφ1T +

e−T(1− T)
2

= 0.

The first leads to

φ0 = ± i
2

∫ T √
4− τ2e−2T dτ.

We see that we get the same answer, taking into account the multiplying factor eI . The
same will happen for φ1.

4 The WKB solution that satisfies the connection formulas at x = −a is

y ∼ (1− x4/E)−1/4 cos
(

E1/2
∫ x

−a

√
1− u4/E du− π

4

)
where a = E1/4. Even solutions require

cos
(

E1/2
∫ x

−a

√
1− u4/E du− π

4

)
= cos

(
E1/2

∫ −x

−a

√
1− u4/E du− π

4

)
.
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Now cos A = cos B if A = B + 2nπ or A = −B + 2nπ. Changing variable in the second
integral gives

E1/2
∫ x

−a

√
1− u4/E du− π

4
= ±

(
E1/2

∫ a

x

√
1− u4/E du− π

4

)
+ 2nπ.

The plus sign is too restrictive. The minus sign leads to

E1/2
∫ a

−a

√
1− u4/E du =

π

2
+ 2nπ.

For odd solutions, the same procedure leads to

E1/2
∫ a

−a

√
1− u4/E du = −π

2
+ 2nπ.

Now change variables inside the integral using u = E1/4v and include both odd and even
cases:

E3/4
∫ 1

−1

√
1− v4 dv = −π

2
+ nπ.

Hence the eigenvalues are
E ∼ I−4/3π4/3(n− 1

2)
4/3

for n = 1, 2, . . . , where

I =
∫ 1

−1

√
1− v4 dv.

(The integral I = 1.748038369528080 . . . is related to the complete integral elliptic integral
of the first kind.)
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