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Solution VI

1 The first term
f0 = 1− x

satisfies the boundary conditions. The second term comes from

f ′′1 =
f0

f ′0
xm =

x− 1
xm ,

so that for m ≤ 0

f1 =
x3−m

(3−m)(2−m)
− x2−m

(2−m)(1−m)
+

2x
(3−m)(2−m)(1−m)

.

This gives a solution that satisfies both boundary conditions. i.e. a regular perturbation
problem. For m = 1, the same approach gives

f1 =
x2 − x

2
− x log x,

satisfying both boundary conditions, so again a regular perturbation problem (presum-
ably this is true for m ≤ 1). For m = 2, the correction term becomes

f1 = log x + x log x + a1(1− x),

satisfying the condition at x = 1. It cannot satisfy the condition at the origin. Obtaining
an outer solution in the form shown gives

f0 = a0(1− x), f1 = a1(1− x), f2 = a2
0[log x + x log x + a2(1− x)].

In the inner variable the governing equation is

FXX −
FFX

X2 = 0, F(0) = 1.

We see that F0 = 1 is a solution to

F0XX −
F0F0X

X2 = 0, F0(0) = 1.

(One can argue that we must have F0X = 0 at the origin using l’Hopital’s rule.) The next
two terms both satisfy the same equation (given here for F1):

F1XX −
F1X

X2 = 0, F1(0) = 0.
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Hence, separating variables and applying the boundary condition,

F1 = B1

∫ X

0
e−1/u du, F2 = B2

∫ X

0
e−1/u du.

Now match using van Dyke’s rule

f (0,0) = a0 = F(0,0) = 1.

Next f (1,1) = f (1,1) gives

1− εX + ε log ε−1a1 + ε[log εX + a2] = 1 + ε(B1 log ε−1 + B2)
[x

ε
− log

x
ε
+ γ− 1

]
.

This leads to 0, B1 = 0, B2 = −1, a1 = 1 and a2 = 1− γ. See Hinch § 5.2. For m = 0, the
equation can be integrated once to give

f ′ − 1
2

ε f 2 = −D.

We see that the right-hand side is negative, since f (1) = 0 and f is decreasing at x = 1.
Now separate variables and obtain

f =
2B
ε

tanh B(a− x).

From the boundary condition at x = 1, a = 1. The other boundary condition gives the
transcendental relation 2B tanh B = ε. An approximate solution can be obtained since
tanh B ∼ D for small B, so that B ∼ (ε/2)1/2. We see that

f ∼ 2B
ε

B(1− x) ∼ 1− x,

consistent with the regular perturbation expansion. For m = 1, the equation is equidi-
mensional, so make the change of variable t = log x. Solving gives

f = −1
ε
− 2A

ε
tanh A(log x− a).

Applying the boundary condition at x = 0 gives A = (1 + ε)/2, while the boundary
condition at x = 1 leads to the relation 2A tanh Aa = 1, which can be solved for a, leading
to

f = −1
ε
− (1 + ε−1) tanh

(
2 log x
1 + ε

− tanh−1 (1 + ε−1)

)
.

This can be expanded to give

f = 1− x− εx
(
− log x +

1− x
2

)
+ · · · ,

which is consistent with the regular pertubation solution found earlier.
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2 There are three regions: local when ε ∼ x, global where x = O(1) and local when
εx = O(1). Divide the range at δ and M where ε� δ� 1 and 1� M� ε−1. Then

IL1 =
∫ δ/ε

0

du
(1 + u)(1 + ε2u)

=
∫ δ/ε

0

du
1 + u

[1− ε2u + O(ε4u2)]

= [log (1 + u)]δ/ε
0 − ε2[u− log (1 + u)]δ/ε

0 + O(ε2δ2)

= log
δ

ε
+

ε

δ
− εδ + ε2 log

δ

ε
+ O

(
ε2

δ2 ,
ε3

δ
, ε2δ2

)
is the first local contribution. The global contribution is

IG =
∫ M

δ

dx
x

(
1 +

ε

x

)
(1 + εx)−1 =

∫ M

δ

dx
x

[
1− ε

x
− εx + O

(
ε2

x2 , ε2x2, ε2
)]

= log
M
δ

+
ε

M
− ε

δ
− εM + εδ + O

(
ε2

M2 ,
ε2

δ2 , ε2M2, ε2δ2, ε2 log M, ε2 log δ

)
.

The second local contribution is

IL2 =
∫ ∞

εM

dv
(1 + v)v

(
1 +

ε2

v

)−1

=
∫ ∞

εM

dv
(1 + v)v

[
1− ε2

v
+ O

(
ε4

v2

)]
=

[
log

v
1 + v

]∞

εM
− ε2

[
log

1 + v
v
− 1

v

]∞

εM
+ O

(
ε2

M2

)
= − log εM + εM− ε2 log εM− ε

M
+ O

(
ε2M2, ε3M,

ε2

M2

)
.

Putting this together gives −2 log ε(1 + ε2). Exact solution:∫ ∞

0

dx
(ε + x)(1 + εx)

=
∫ ∞

0

1
1− ε2

[
1

ε + x
− ε

1 + εx

]
dx =

1
1− ε2 [log (ε + x)− log (1 + εx)]∞0

= −2
log ε

1− ε2 = −2 log ε(1 + ε2 + · · ·).

3 The function h(t) in the exponent has maxima at t = nπ for integer n, with

h(nπ) = 0, h′(nπ) = 0, h′′(nπ) = 2.

The maxima have the same value of h, so we add up their contributions and the integral
is asymptotic to

∞

∑
n=1

(
2π

2x

)1/2 1
(nπ)2 =

√
π

x
1

π2

∞

∑
n=1

n−2 =
1
6

√
π

x
.
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4 Use the double-angle formula to write

I = Re
∫ ∞

0

(
1
2

eix(a+b)t2
+

1
2

eix[(a−b)t2−2t]
)

dt.

The first integral can be computed exactly as 1
4

√
π/(a + b)xeiπ/4. For the second inte-

gral, there is a critical point at t = (a − b)−1 which is in the range of integration and
hence dominates over the endpoint. The standard stationary phase argument gives the
contribution 1

2

√
π/(a− b)e−ix/(a−b)+iπ/4. Putting this together gives

I ∼ 1
4

√
π

2(a + b)x
+

1
2

√
π

(a− b)x
cos

(
x

a− b
− π

4

)
.

As a→ b, the original integral no longer exists and the approximation also blows up.
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