Solution VI

1 The first term

$$
f_{0}=1-x
$$

satisfies the boundary conditions. The second term comes from

$$
f_{1}^{\prime \prime}=\frac{f_{0}}{f_{0}^{\prime}} x^{m}=\frac{x-1}{x^{m}}
$$

so that for $m \leq 0$

$$
f_{1}=\frac{x^{3-m}}{(3-m)(2-m)}-\frac{x^{2-m}}{(2-m)(1-m)}+\frac{2 x}{(3-m)(2-m)(1-m)} .
$$

This gives a solution that satisfies both boundary conditions. i.e. a regular perturbation problem. For $m=1$, the same approach gives

$$
f_{1}=\frac{x^{2}-x}{2}-x \log x
$$

satisfying both boundary conditions, so again a regular perturbation problem (presumably this is true for $m \leq 1$). For $m=2$, the correction term becomes

$$
f_{1}=\log x+x \log x+a_{1}(1-x),
$$

satisfying the condition at $x=1$. It cannot satisfy the condition at the origin. Obtaining an outer solution in the form shown gives

$$
f_{0}=a_{0}(1-x), \quad f_{1}=a_{1}(1-x), \quad f_{2}=a_{0}^{2}\left[\log x+x \log x+a_{2}(1-x)\right]
$$

In the inner variable the governing equation is

$$
F_{X X}-\frac{F F_{X}}{X^{2}}=0, \quad F(0)=1
$$

We see that $F_{0}=1$ is a solution to

$$
F_{0 X X}-\frac{F_{0} F_{0 X}}{X^{2}}=0, \quad F_{0}(0)=1
$$

(One can argue that we must have $F_{0 X}=0$ at the origin using l'Hopital's rule.) The next two terms both satisfy the same equation (given here for F_{1}):

$$
F_{1 X X}-\frac{F_{1 X}}{X^{2}}=0, \quad F_{1}(0)=0
$$

Hence, separating variables and applying the boundary condition,

$$
F_{1}=B_{1} \int_{0}^{X} \mathrm{e}^{-1 / u} \mathrm{~d} u, \quad F_{2}=B_{2} \int_{0}^{X} \mathrm{e}^{-1 / u} \mathrm{~d} u
$$

Now match using van Dyke's rule

$$
f^{(0,0)}=a_{0}=F^{(0,0)}=1
$$

$\operatorname{Next} f^{(1,1)}=f^{(1,1)}$ gives

$$
1-\epsilon X+\epsilon \log \epsilon^{-1} a_{1}+\epsilon\left[\log \epsilon X+a_{2}\right]=1+\epsilon\left(B_{1} \log \epsilon^{-1}+B_{2}\right)\left[\frac{x}{\epsilon}-\log \frac{x}{\epsilon}+\gamma-1\right] .
$$

This leads to $0, B_{1}=0, B_{2}=-1, a_{1}=1$ and $a_{2}=1-\gamma$. See Hinch $\S 5.2$. For $m=0$, the equation can be integrated once to give

$$
f^{\prime}-\frac{1}{2} \epsilon f^{2}=-D
$$

We see that the right-hand side is negative, since $f(1)=0$ and f is decreasing at $x=1$. Now separate variables and obtain

$$
f=\frac{2 B}{\epsilon} \tanh B(a-x) .
$$

From the boundary condition at $x=1, a=1$. The other boundary condition gives the transcendental relation $2 B \tanh B=\epsilon$. An approximate solution can be obtained since $\tanh B \sim D$ for small B, so that $B \sim(\epsilon / 2)^{1 / 2}$. We see that

$$
f \sim \frac{2 B}{\epsilon} B(1-x) \sim 1-x
$$

consistent with the regular perturbation expansion. For $m=1$, the equation is equidimensional, so make the change of variable $t=\log x$. Solving gives

$$
f=-\frac{1}{\epsilon}-\frac{2 A}{\epsilon} \tanh A(\log x-a)
$$

Applying the boundary condition at $x=0$ gives $A=(1+\epsilon) / 2$, while the boundary condition at $x=1$ leads to the relation $2 A \tanh A a=1$, which can be solved for a, leading to

$$
f=-\frac{1}{\epsilon}-\left(1+\epsilon^{-1}\right) \tanh \left(\frac{2 \log x}{1+\epsilon}-\tanh ^{-1}\left(1+\epsilon^{-1}\right)\right) .
$$

This can be expanded to give

$$
f=1-x-\epsilon x\left(-\log x+\frac{1-x}{2}\right)+\cdots,
$$

which is consistent with the regular pertubation solution found earlier.

2 There are three regions: local when $\epsilon \sim x$, global where $x=O(1)$ and local when $\epsilon x=O(1)$. Divide the range at δ and M where $\epsilon \ll \delta \ll 1$ and $1 \ll M \ll \epsilon^{-1}$. Then

$$
\begin{aligned}
I_{L 1} & =\int_{0}^{\delta / \epsilon} \frac{\mathrm{d} u}{(1+u)\left(1+\epsilon^{2} u\right)}=\int_{0}^{\delta / \epsilon} \frac{\mathrm{d} u}{1+u}\left[1-\epsilon^{2} u+O\left(\epsilon^{4} u^{2}\right)\right] \\
& =[\log (1+u)]_{0}^{\delta / \epsilon}-\epsilon^{2}[u-\log (1+u)]_{0}^{\delta / \epsilon}+O\left(\epsilon^{2} \delta^{2}\right) \\
& =\log \frac{\delta}{\epsilon}+\frac{\epsilon}{\delta}-\epsilon \delta+\epsilon^{2} \log \frac{\delta}{\epsilon}+O\left(\frac{\epsilon^{2}}{\delta^{2}}, \frac{\epsilon^{3}}{\delta}, \epsilon^{2} \delta^{2}\right)
\end{aligned}
$$

is the first local contribution. The global contribution is

$$
\begin{aligned}
I_{G} & =\int_{\delta}^{M} \frac{\mathrm{~d} x}{x}\left(1+\frac{\epsilon}{x}\right)(1+\epsilon x)^{-1}=\int_{\delta}^{M} \frac{\mathrm{~d} x}{x}\left[1-\frac{\epsilon}{x}-\epsilon x+O\left(\frac{\epsilon^{2}}{x^{2}}, \epsilon^{2} x^{2}, \epsilon^{2}\right)\right] \\
& =\log \frac{M}{\delta}+\frac{\epsilon}{M}-\frac{\epsilon}{\delta}-\epsilon M+\epsilon \delta+O\left(\frac{\epsilon^{2}}{M^{2}}, \frac{\epsilon^{2}}{\delta^{2}}, \epsilon^{2} M^{2}, \epsilon^{2} \delta^{2}, \epsilon^{2} \log M, \epsilon^{2} \log \delta\right) .
\end{aligned}
$$

The second local contribution is

$$
\begin{aligned}
I_{L 2} & =\int_{\epsilon M}^{\infty} \frac{\mathrm{d} v}{(1+v) v}\left(1+\frac{\epsilon^{2}}{v}\right)^{-1}=\int_{\epsilon M}^{\infty} \frac{\mathrm{d} v}{(1+v) v}\left[1-\frac{\epsilon^{2}}{v}+O\left(\frac{\epsilon^{4}}{v^{2}}\right)\right] \\
& =\left[\log \frac{v}{1+v}\right]_{\epsilon M}^{\infty}-\epsilon^{2}\left[\log \frac{1+v}{v}-\frac{1}{v}\right]_{\epsilon M}^{\infty}+O\left(\frac{\epsilon^{2}}{M^{2}}\right) \\
& =-\log \epsilon M+\epsilon M-\epsilon^{2} \log \epsilon M-\frac{\epsilon}{M}+O\left(\epsilon^{2} M^{2}, \epsilon^{3} M, \frac{\epsilon^{2}}{M^{2}}\right)
\end{aligned}
$$

Putting this together gives $-2 \log \epsilon\left(1+\epsilon^{2}\right)$. Exact solution:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\mathrm{d} x}{(\epsilon+x)(1+\epsilon x)} & =\int_{0}^{\infty} \frac{1}{1-\epsilon^{2}}\left[\frac{1}{\epsilon+x}-\frac{\epsilon}{1+\epsilon x}\right] \mathrm{d} x=\frac{1}{1-\epsilon^{2}}[\log (\epsilon+x)-\log (1+\epsilon x)]_{0}^{\infty} \\
& =-2 \frac{\log \epsilon}{1-\epsilon^{2}}=-2 \log \epsilon\left(1+\epsilon^{2}+\cdots\right)
\end{aligned}
$$

3 The function $h(t)$ in the exponent has maxima at $t=n \pi$ for integer n, with

$$
h(n \pi)=0, \quad h^{\prime}(n \pi)=0, \quad h^{\prime \prime}(n \pi)=2 .
$$

The maxima have the same value of h, so we add up their contributions and the integral is asymptotic to

$$
\sum_{n=1}^{\infty}\left(\frac{2 \pi}{2 x}\right)^{1 / 2} \frac{1}{(n \pi)^{2}}=\sqrt{\frac{\pi}{x}} \frac{1}{\pi^{2}} \sum_{n=1}^{\infty} n^{-2}=\frac{1}{6} \sqrt{\frac{\pi}{x}}
$$

4 Use the double-angle formula to write

$$
I=\operatorname{Re} \int_{0}^{\infty}\left(\frac{1}{2} \mathrm{e}^{\mathrm{i} x(a+b) t^{2}}+\frac{1}{2} \mathrm{e}^{\mathrm{i} x\left[(a-b) t^{2}-2 t\right]}\right) \mathrm{d} t
$$

The first integral can be computed exactly as $\frac{1}{4} \sqrt{\pi /(a+b) x} \mathrm{e}^{\mathrm{i} \pi / 4}$. For the second integral, there is a critical point at $t=(a-b)^{-1}$ which is in the range of integration and hence dominates over the endpoint. The standard stationary phase argument gives the contribution $\frac{1}{2} \sqrt{\pi /(a-b)} \mathrm{e}^{-\mathrm{i} x /(a-b)+\mathrm{i} \pi / 4}$. Putting this together gives

$$
I \sim \frac{1}{4} \sqrt{\frac{\pi}{2(a+b) x}}+\frac{1}{2} \sqrt{\frac{\pi}{(a-b) x}} \cos \left(\frac{x}{a-b}-\frac{\pi}{4}\right) .
$$

As $a \rightarrow b$, the original integral no longer exists and the approximation also blows up.

