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The influence of the bending rigidity of a flexible heaving wing on its propulsive performance in a
two-dimensional imposed parallel flow is investigated in the inviscid limit. Potential flow theory is
used to describe the flow over the flapping wing. The vortical wake of the wing is accounted for by
the shedding of point vortices with unsteady intensity from the wing’s trailing edge. The
trailing-edge flapping amplitude is shown to be maximal for a discrete set of values of the rigidity,
at which a resonance occurs between the forcing frequency and a natural frequency of the system.
A quantitative comparison of the position of these resonances with linear stability analysis results is
presented. Such resonances induce maximum values of the mean developed thrust and power input.
The flapping efficiency is also shown to be greatly enhanced by flexibility. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3177356�

I. INTRODUCTION

Unlike terrestrial animals that can use solid friction and
a fixed support, insects and fishes must generate from the
surrounding fluid the lift and thrust forces necessary to their
motion in their environment.1–5 Beyond the fundamental in-
terest of understanding the mechanism of insect flight and
fish swimming, recent research on propulsion in fluids has
also been motivated by the development of microaviation
vehicles and of more efficient propulsion techniques based
on biomimetics.

Insects use thin flapping wings to generate an unsteady
flow around them to produce these forces. The flow is char-
acterized by a relatively large Reynolds number Re=UL /�
with U as the typical wing velocity, L its characteristic chord,
and � as the kinematic viscosity of the surrounding fluid:
Typically, Re�100–5000;5 in that range, the forces on the
wings are dominated by the pressure contribution and vis-
cous effects are concentrated in thin boundary layers near the
solid’s boundary. These boundary layers separate during the
unsteady wing motion and roll up into strong coherent
vortices6 that carry momentum away from the insect, thereby
generating the propulsive forces. The flow around the insect
is highly unsteady, and an ongoing research challenge resides
in the ability to describe the forces on the flapping structure
without solving explicitly for the details of the flow.7–11

An important physical insight into the generation of pro-
pulsive forces by flapping or deforming solids has been pro-
vided by the study of active motion and deformation. In such
experimental,12,13 theoretical,1,14 and numerical studies,15–18

the position of the solid is prescribed and the influence of the
swimming stroke on the propulsive performance is analyzed.

The recent development of experimental imaging tech-
niques has however shown that most insect wings are not
purely rigid and that their deformation is not entirely con-

trolled by the animal: The wing can experience large passive
deformations during the stroke period19 under the action of
the outside flow and its internal bending rigidity, whose
spanwise and chordwise distributions result from the vena-
tion pattern of the wing.20,21 The forcing is generally applied
by the insect on its wing through a main axis whose rigidity
is significantly higher than the rest of the structure �e.g., the
leading edge of the wing�. An important challenge now is to
understand the impact of such passive deformation on the
propulsive performance of a flapping structure. In particular,
one may be interested in potential reduction in energy usage
induced by the flexibility, and examine if the values of the
rigidity for these structures lie within an “optimal” range for
which the flapping efficiency is the highest. The definition of
optimality in this work in terms only of thrust production and
propulsive efficiency is purposely restrictive: From a biologi-
cal point of view many other factors must be taken into ac-
count to define the optimal structure of an insect wing, in-
cluding but not limited to material resistance and
maneuverability.

The purpose of the present study is to investigate nu-
merically the effect of flexibility on the propulsive character-
istics of a flapping appendage. In the following, this structure
will be referred to as a wing, understanding that the model
could also be applied to a fish fin if it is allowed to deform
passively under the effect of the flow and of its bending
rigidity. Solving for the coupled motion of a flexible solid
and a fluid is computationally challenging and expensive,
primarily due to the coupling occurring on a moving bound-
ary whose position is a priori unknown and must be solved
for as well. Popular techniques to overcome this difficulty
are the use of coupled fluid and solid solvers using fitted
grids22 and immersed boundary methods.23,24 The use of
low-order models for the flexible wing also simplifies the
computation while still retaining important physical results
on the reaction of the body to the fluid flow.25,26a�Electronic mail: smichelin@ucsd.edu.
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The model used here focuses on a simplified two-
dimensional propulsion problem using a flexible wing of in-
finite span, actuated at its leading edge in a purely heaving
motion and reacting passively to the flow forces and its in-
ternal elasticity. The present model does not aim to represent
a particular flying or swimming pattern, but rather considers
a one degree of freedom forcing to focus on the influence of
flexibility on the performance of the apparatus. In the limit of
high Re, viscous forces are neglected and the viscosity’s in-
fluence on the flow is retained in this potential flow formu-
lation by the irreversible shedding of vorticity from the trail-
ing edge of the flapping structure, in the form of point
vortices whose unsteady intensity is determined so as to sat-
isfy the regularity condition at the solid’s trailing edge.27,28

A similar approach was recently proposed by Alben29 for
a pitching elastic sheet using a vortex sheet representation of
the wake. Optimal values of the solid’s rigidity were dis-
cussed in the limit of negligible solid inertia �that is particu-
larly relevant in the case of fish swimming� and of infinitesi-
mally small displacements of the solid. The present work
builds on these results and considers the general case of non-
linear deformations of the sheet with non-negligible inertia
�as is the case for a flapping insect wing�. The use of the
unsteady point vortex model rather than the full vortex sheet
description also allows for a simpler treatment. Similar reso-
nance patterns are observed and a theoretical argument is
provided for their origin and position. The relation between
thrust or drag production and vortex wake structure is also
investigated.

In Sec. II, the fluid-solid model is presented and the
propulsive performance quantities of interest are defined.
Section III discusses briefly the numerical methods used as
well as the existence of a periodic regime. Section IV then
investigates the influence of the solid’s rigidity on the pro-
pulsion forces and efficiency and relates them to the structure
of the solid’s wake. Peaks of thrust are observed for particu-
lar values of the rigidity and in Sec. V, the occurrence of
such peaks is showed to correspond to a resonance between
the forcing frequency and the natural frequencies of the
fluid-solid system. Finally, Sec. VI presents some general
conclusions and discusses the limitations of the model.

II. DESCRIPTION OF THE MODEL

A. Solid model

The following two-dimensional model for the flapping
structure is considered �see Fig. 1�. The wing is represented
by an elastic sheet of chord L and infinite span, clamped at
its leading edge on an attachment pole of negligible thick-

ness, actuated by the operator �e.g., main body of the insect�.
The operator applies a purely vertical motion to the sheet’s
leading edge, whose orientation is constrained to be strictly
horizontal. The vertical position and orientation of the wing
at the leading edge are then

h�t� = h0�1 − cos �t� and �0�t� = 0 �1�

so that A=2h0 and f =� /2� are the amplitude and frequency
of the flapping motion, respectively �to avoid confusion, � or
its nondimensional form will be referred to as the angular
frequency in the following�. The flapping wing has a chord-
wise flexural rigidity per unit length B and a mass per unit
area �s. Its thickness is negligible compared to L. The wing
is placed in a uniform horizontal flow U� of density �. The
motion of the wing’s leading edge is entirely prescribed by
Eq. �1� but the rest of the wing has a purely passive motion
in response to its internal elasticity, the leading-edge forcing,
and the pressure forces applied by the surrounding flow.

In the following, L, U� and � are used as reference quan-
tities to nondimensionalize the problem. The properties of
the elastic sheet are characterized by the mass ratio � and
nondimensional rigidity � defined as

� =
�s

�L
, � =

B

�U�
2 L3 , �2�

and the leading-edge forcing is characterized by the nondi-

mensional forcing amplitude 	 and frequency f̄ ,

	 =
h0

L
=

A

2L
, f̄ =

fL

U�

· �3�

The forcing Strouhal number is defined in accordance with
previous experimental studies12 as

St =
fA

U�

= 2	 f̄ . �4�

The motion of the wing is described using an inextensible
Euler–Bernoulli beam representation.28 We are interested in
large displacements of the wing so all nonlinear geometric
terms must be included. The linear Euler–Bernoulli assump-
tion remains valid if the curvature radius of the wing is much
larger than its thickness, which is assumed here. The position
of the wing is described using complex notation as 
�s , t�
=x�s , t�+ iy�s , t� and its orientation is defined as ��s , t� with
0�s�1 the curvilinear coordinate along the wing. The clas-
sical notation for the complex flow velocity is also used here:
w=u− iv with �u ,v� the Cartesian components of the veloc-
ity vector. The conservation of momentum for each element
of the wing and the inextensibility condition can be written
as

�
̈ = ��T − i��ss�ei��s − i�p��ei�, 
s = ei�, �5�

where �p�� is the pressure difference between the top and
bottom sides of the wing and T is the wing chordwise tension
that must be solved for at each time step to enforce the in-
extensibility condition. The clamped-free boundary condi-
tions imposed by forcing �Eq. �1�� are


�0,t� = 
0�t� = i	�1 − cos�2� f̄ t��, ��0,t� = 0, �6�

U
∞

zn(t),Γn

zN (t),ΓN (t)

ζ(s, t)
θ(s, t)ζ0(t)

ζe(t)

L

A

FIG. 1. Heaving flexible wing in a steady axial flow. The heaving motion of
amplitude A is imposed at the leading edge and vortices are shed from the
trailing edge.
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�s�1,t� = �ss�1,t� = T�1,t� = 0. �7�

Equations �5�–�7� can be rewritten as a system for � and T
only,28

Tss − �s
2T = − �p���s − 2��s�sss − ��ss

2 − ��̇2, �8�

��̈ = − �p�s
� − ��ssss + �T + ��s

2��ss + 2Ts�s, �9�

��0,t� = �s�1,t� = �ss�1,t� = T�1,t� = 0, �10�

�
̈0 + ��
0

1 �
0

s

ei��i�̈ − �̇2�ds�ds

= − T�0� + i��ss�0� − i�
0

1

�p��ei�ds . �11�

B. Representation of the flow
around the flapping wing

The flow around the wing is taken potential. The ex-
pected boundary layer separation at the trailing edge and its
subsequent roll-up into vortices is represented in this inviscid
formulation by a discrete shedding of point vortices from the
trailing edge 
e=
�1, t� of the flapping wing �Fig. 1�. The
intensity of the last shed vortex is determined so as to cancel
exactly the square-root singularity arising in the velocity
field due to the presence of the flat sharp corner.27,28,30,31

When the intensity of the unsteady vortex reaches a maxi-
mum, a new vortex is created from the generating corner,
thereby expressing the irreversible nature of vortex roll-up in
the formalism of this inviscid model. From that point on, the
intensity of the previous vortex is frozen. The unsteady point
vortices satisfy the modified equation of motion

żn + �zn − 
e�
̇n

n
= w̃n, �12�

where zn and n refer to the position and intensity of the
point vortex, respectively. w̃n is the desingularized complex
velocity at the vortex position and the overbar denotes a
complex conjugate. Equation �12� is known as the Brown–
Michael equation,32 and enforces the conservation of fluid
momentum around the vortex and associated branch cut in an
integral sense.27 The omission of the corrective term on the
left-hand side would lead to an unphysical unbalanced force
on the branch cut linking the vortex to its generating corner

e.

33

The shedding of vorticity from the leading edge is ne-
glected here, as we focus mostly on situations where the
angle of attack remains small at the leading edge.29 Alterna-
tively, this representation can also be seen as the limit case of
a smoothed leading edge of very small curvature radius �as
in an airfoil profile for example�. Only one unsteady vortex
is shed at a time �from the trailing edge�. Noting N as the
number of vortices at a particular time, all vortex intensities
n are therefore independent of time except for the last one
N�t�.

In the absence of viscosity, the tangential velocity of the
flow can be discontinuous across the wing. The potential
flow around the wing is then computed by representing the
infinitely thin solid as a bound-vorticity distribution �.18,34,35

The complex flow velocity is obtained by superposition of
the flow at infinity and the contribution of the bound and
wake vorticity

w�z,t� = 1 +
1

2�i��0

1 �ds

z − 
�s�
+ �

n=1

N
n

z − zn
	 . �13�

The regularity condition at the trailing edge imposes
w�
e , t��� or equivalently ��1, t�=0. The total circulation at
infinity is conserved and, assuming the system is started
from rest, must be zero at all times. The bound vorticity � is
the solution of a singular Fredholm equation obtained by
applying the continuity of normal velocity on the wing.18

The corresponding system of equations for � and N is

1

2�
�

0

1

Re� ei��s�


�s0� − 
�s�	��s�ds

= Im�ei�
1 +
1

2�i
�
n=1

N
n


 − zn
− 
̇̄�	 , �14�

�
0

1

��s�ds + �
n=1

N

n = 0, �15�

��1,t� = 0. �16�

From �, the pressure jump �p�� across the wing can be com-
puted by integration of Bernoulli’s theorem along the wing

�p���s0� = �
0

s0

�̇�s�ds + ��s0�wp�s0� , �17�

with wp as the principal value of the relative tangential ve-
locity on the wing28

wp�s0� = Re�ei��s0��1 +
1

2�i

�

0

1 ��s�ds


�s0� − 
�s�

+ �
j=1

N
 j


�s0� − zj
� − 
̇̄�s0�	 . �18�

C. Energy conservation

From Eq. �5�, the conservation of energy can be written
for the wing

d

dt
�Ek + Ep� = Wp + Pin, �19�

where

Ek =
1

2
��

0

1

�
̇�2ds , �20�

Ep =
1

2
��

0

1

�s
2ds , �21�
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Wp = − �
0

1

�p��Im�
̇e−i��ds , �22�

Pin = − Re��
̇�0�e−i��0���T�0� + i��ss�0��� − ��̇�0��s�0� , �23�

are the kinetic and elastic potential energy of the wing, the
rate of work of the pressure forces on the wing, and the rate
of work of the force and torque applied by the attachment
pole on the rest of the wing, respectively. In the particular
case of a purely heaving motion considered here, ��0�=0 and


̇�0�= iḣ is purely imaginary, so

Pin = ��ss�0�ḣ . �24�

D. Propulsive performance

We are interested in the thrust generated by the flapping
wing. The forces applied on the leading-edge attachment are
as follows:

— the elastic forces applied by the sheet on its attachment
�T�0�− i��ss�0��ei��0�;

— the force applied by the operator �or animal� to prescribe
the leading-edge motion Fop=Fop

x + iFop
y ;

— the suction force created at the leading edge by the in-
verse square-root behavior of the pressure. This suction
force is the limit of the suction force obtained on a
smoothed contour when the curvature radius of the air-
foil’s leading edge tends to zero. This suction force is
equal to29,36,37

Fs = −
�ei��0�

4 
lim
s→0

��s�1 − s���s���2. �25�

Neglecting the inertia of the attachment and defining the
thrust �counted positively to the left� as T=Fop

x , the force
balance along the horizontal direction together with Eqs. �6�
and �7� leads to

T =
�

4 
lim
s→0

��s�1 − s���s���2 − T�0� . �26�

The instantaneous power input P by the operator is

P = Re�Fop
̇̄0� = Fop
y ḣ�t� = ��ss�0,t�ḣ�t� = Pin, �27�

and is equal to the rate of work Pin of the attachment pole on
the wing. Note that this equality would not hold if the motion
of the leading edge was a combination of both heaving and
pitching, as the suction force Fs would have a nonzero rate of
work along the vertical direction.

The useful power output is simply the rate of work TU�

of the thrust force in the horizontal motion. In nondimen-
sional units, the flapping efficiency is then defined as the
ratio of the average developed thrust to the average input
power

r =
�T�

�P+�
, �28�

where � · � is the averaging operator over a flapping period

�g� =
1

�
�

0

�

g�t�dt , �29�

with �=1 / f̄ as the nondimensional period of the flapping
motion and P+ as the positive part of P. In the following, the
mean power input is understood as �P+�, thereby assuming
that the animal cannot store and reuse the energy possibly
extracted from the fluid if P�0 during a fraction of the
flapping period. For the range of parameter values used here,
it was observed that P�0 for most of the flapping period
and �P+���P�, except for very rigid wings. The results and
discussions presented here are therefore not affected by this
choice.

Finally, the following �nondimensionalized� quantities
are defined for convenience:

— the trailing-edge peak-to-peak flapping amplitude D;
— the intensity of the wake m, defined as the mean value

of the amplitude of the successive vortices �positive and
negative�;

— the induced velocity of the wake vortices V defined as the
horizontal velocity of the wake vortices relative to the
imposed unit flow. V is positive if the wake vortices
move faster than the background flow, and negative
otherwise.

III. NUMERICAL SIMULATION OF THE INITIAL VALUE
PROBLEM AND CONVERGENCE TO A PERIODIC
STEADY STATE

Equations �8�–�12� and �14�–�17� are solved numerically
expanding ��s , t� into a finite series of Chebyshev polynomi-
als of the first kind and using a semi-implicit second-order
time-stepping scheme. Taking advantage of the linear rela-
tion between �p�� and �̇, added inertia terms can be isolated
from the part of the pressure that can be explicitly computed
at each time step, thereby avoiding the use of an iterative
solver and greatly enhancing the computational efficiency.28

The system is started from rest. At t=0, the horizontal
flow is ramped up to its long time unit value and the motion
of the leading edge �Eq. �1�� is imposed. After a transient
regime of a few heaving periods, a permanent periodic re-
gime is achieved for large enough values of the rigidity �
�Fig. 2�a��.

However, the harmonic heaving forcing can lead to
highly unsteady behaviors if � becomes too small: Below a
certain critical value of the solid’s rigidity �m���, the purely
passive elastic sheet �as in the flag problem� becomes un-
stable to fluttering modes and flapping can occur even in the
absence of leading-edge forcing28,35,38 ��m��� was found
equal to �m=2�10−3 for �=0.2 and �m=4.8�10−2 for
�=2, using the same point vortex model28�. In such cases,
the spectrum of the trailing-edge motion can display several
peaks, corresponding to the forcing frequency and to the fre-
quency of the unstable modes �Fig. 2�b��. The motion is of
large enough amplitude for the regime to be nonlinear and
mode coupling is also expected. As � is reduced further, the
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periodicity is lost and the power spectrum is full; in such a
case, determining averaged quantities is not possible
anymore.

This explains the difficulty to observe a steady perma-
nent regime when � is decreased below the critical value �m.
This difficulty was not present in the linear study by Alben29

as the inertia of the solid was neglected ��→0�. The inertia
of the solid is essential to the development of fluttering in-
stability and in the limit �→0, all the modes are linearly
stable.28,35,38 In the following, unless indicated otherwise, the
range of parameter values is chosen such that a periodic state
is achieved.

IV. WING FLEXIBILITY AND PROPULSIVE
PERFORMANCE

In this section, the behavior of the propulsive perfor-
mance �mean thrust, mean power input, and efficiency� is
studied when the rigidity � of the wing is varied. Several

values of the forcing frequency f̄ , forcing amplitude 	, and
mass ratio � were investigated.

A. Optimal flexibility for thrust generation
and propulsion efficiency

For given mass ratio, forcing amplitude and frequency,
the mean thrust, mean power input, and propulsive efficiency
were computed for each value of the rigidity �. As a general
result, starting from the case of a rigid wing ��→��, the
mean thrust �T� and power input �P+� both increase when

flexibility is introduced in the problem; however, the former
increases faster and the resulting efficiency is an increasing
function of flexibility �decreasing function of �� for large
values of � �Fig. 3�. When the solid’s flexibility is further
reduced, �T� and �P+� display successive peaks occurring for
the same values of �. The propulsive efficiency r displays, in
general, one large peak �in general, for a different value of
the rigidity � than the thrust peaks� before dropping sharply
to zero as the mean thrust vanishes �drag-thrust transition�.
The increase in the flapping efficiency and developed mean
thrust for a flexible wing is significant compared to the case

of a rigid wing: For f̄ =5 /2�, the peak value of the mean
thrust can be greater than twice its value in the rigid case and
the efficiency can increase from 27% to almost 60% �Fig.

3�b��. Similar behavior is observed for f̄ =1 /� �Fig. 3�a��.
Flexibility has therefore a significant impact on the perfor-
mance of the propulsive apparatus considered here.

Figure 3 shows the evolution of the propulsive properties
for the lowest possible value of � leading to a permanent

periodic regime. In the higher frequency case � f̄ =5 /2��, the
drag-thrust transition was clearly observed while at lower

frequency � f̄ =1 /��, this transition is less well defined as
unsteady phenomena start developing around the same value
of the rigidity. Several factors lead to unsteadiness of the
problem, including transitions in the wake behind the flap-
ping wing and development of the fluttering instability for
low values of the rigidity �see Sec. III�.

The behavior of �T�, �P+�, and r collapse rather well for
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(a) µ = 2 and η = 0.2 (b) µ = 2 and η = 0.04

FIG. 2. �Top� Frequency spectrum and �bottom� time evolution of the trailing-edge absolute vertical displacement for �=2, 	=0.05, and f̄ =5 /2�. �Left�
�=0.2��m��=2� lies in the stability region for the purely passive elastic sheet. The power spectrum displays only one peak �thick arrow� at an angular

frequency of � f =2� f̄ =5. �Right� The rigidity � is below its critical value �m��=2�=0.048 and the elastic sheet is unstable to fluttering. The power spectrum
displays two main peaks: one corresponding to the forcing frequency �� f =5, thick arrow� and one corresponding to the unstable fluttering mode ��r�2.3, thin
arrow� that matches the flapping frequency observed in the purely passive case 	=0. In both cases, small peaks can be seen for ��3� f =15, corresponding
to the third harmonic of the forced flapping. The fact that only odd harmonics appear in the tail motion was already previously observed in the case of a
passive flag �Ref. 28�.
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leading-edge flapping amplitudes up to 50% of the wing’s
length and lower frequencies �Fig. 3�a��. However, for higher
frequencies, the influence of the forcing amplitude can be
seen for values of 	 as low as 0.1 �Fig. 3�b��. As a general
result, the propulsive efficiency and the normalized mean
thrust and power input are observed to decrease with 	 when
all other parameters are held fixed. The optimal values of �
for maximal thrust or maximal efficiency are also observed
to increase with 	.

It must be emphasized here that the decrease in the
achievable thrust and power input with the forcing amplitude
	 is only relative to the rigid case: For higher forcing ampli-
tudes, the absolute mean thrust and power input are larger in
magnitude and, in the rigid limit, are observed to scale like
	5/2.

B. Wake structure and thrust production

1. Evolution of the wake structure
with increasing flexibility

For given mass ratio �, forcing frequency f̄ , and forcing
amplitude 	, the variation of the flexibility of the wing in-
duces important changes in the developed thrust and energy
use. As � is decreased from the rigid case ��→��, the wake
behind the flapping wing also undergoes important modifica-
tions. Figure 4 shows the evolution of the flow pattern
around the heaving wing for varying �. In the high-rigidity
case �Fig. 4�a��, the trailing-edge deflection is small. The
wake vortices are arranged in a reverse Von Kármán vortex
street, in which vortices with positive �negative� intensity are
positioned above �below� the horizontal axis. This arrange-
ment induces an acceleration of the fluid on the horizontal
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FIG. 3. Evolution of the mean thrust �T� �top�, power input �P+� �center�, and propulsive efficiency �bottom� with the wing’s rigidity �, for a flapping wing

of mass ratio �=0.2, flapping frequency �a� f̄ =1 /� and �b� f̄ =5 /2�, forcing amplitude 	=0.1 �solid circle�, 	=0.2 �dash-star�, and 	=0.5 �dot-square�. For
comparison purposes, the mean power input and thrust have been normalized using their rigid-case value as �→�.
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axis to the right and the vortices have a higher velocity than
the imposed background flow �V�0�. This jet carries mo-
mentum to the right which is consistent with the formation of
a mean thrust on the wing. The formation of a reverse Von
Kármán vortex street in thrust-producing propulsion schemes
is well known and has been observed in several experimental
studies.12,13

When � is decreased, the solid is more flexible and the
trailing-edge flapping amplitude D increases. As a result, the
intensity of the wake vortices increases with decreasing ri-
gidity and so does the thrust generated by the flapping mo-
tion. Figure 4�b� shows the streamlines and arrangement of
the wake vortices for �=3.2 which corresponds to the first
peak in thrust production in Fig. 3�b�. The phase between the
leading and trailing-edge displacements has also been modi-
fied compared to the rigid case. The increase in the vortex
advection velocity can be seen as the distance between two
successive vortices is slightly increased �the vortex shedding
frequency is unchanged and equal to the forcing frequency�.

As a comparison, Fig. 4�c� shows the flow pattern for the
value of � corresponding to the thrust-drag transition. One
observes immediately that the intensity of the wake vortices
has decreased significantly and the width of the vortex street
has almost vanished. In intermediate-Re experiments, the
formation of a classical Von Kármán street is associated with
drag on the generating solid body. It appears here that even at
the transition between thrust and drag production, the reverse
Von Kármán pattern persists, although largely weakened.
This result is consistent with the observation in recent
experiments13 that the thrust-drag transition does not neces-
sarily occur at the same time as the transition in the wake
structure. A theoretical argument for this difference is also
presented in the next subsection. Furthermore, in purely in-
viscid simulations, the Von Kármán street in the drag-
producing case is generally much weaker and instead the
vortices tend to align along the axis.28,35

2. Classical and reverse Von Kármán streets
and thrust/drag production

Here, theoretical results on vortex streets are used to
understand the relationship between drag/thrust production
and vortex wake structures. We focus on highly periodic
cases where the structure of the reverse Von Kármán or clas-
sical Von Kármán streets is easily identified.

For a given vortex wake intensity and vortex arrange-
ment, the advection velocity of the vortices is the superposi-
tion of the incoming flow velocity �equal to 1 in nondimen-
sional units� and of the induced velocity V of the vortex
street, which is itself a direct function of the width of the
vortex street �vertical distance between the two rows of op-
posite sign vortices�, its intensity, and its wavelength �hori-
zontal distance between two successive vortices of identical
sign�. If the vortex street was infinite, its induced velocity V
would be39

V =
w

2a
tanh
�b

a
� , �30�

where w is the magnitude of the vortices, b is the width of
the vortex street, and a is its horizontal wavelength. In Eq.
�30�, the following convention is chosen: b�0 �b�0� for a
reverse �classical� Von Kármán street in which positive vor-
tices are located above �below� the horizontal axis. If the

shedding frequency �equal to the flapping frequency f̄� is

fixed, then a= �1+V� / f̄ . Measuring the width of the vortex
street b and its intensity w, Eq. �31� leads to a nonlinear
equation for VL, the predicted value of the induced velocity
that can be solved numerically for given b and w,

VL =
wf̄

2�1 + VL�
tanh
 �bf̄

�1 + VL�
� . �31�

Figure 5 shows a very good agreement between the mea-
sured value V and the expected value VL for varying � �the
other parameters taking the same values as in Fig. 4�, par-
ticularly above the thrust-drag transition at �=8�10−3 �Fig.
5�. This agreement shows that the induced velocity is mostly
determined by the neighboring vortices, and the semi-infinite
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(c) Thrust-Drag transition η = 810−3

(b) Maximum Thrust η = 3.2

(a) Rigid case η = 890

FIG. 4. Streamlines of the flow over the flapping wing for �=0.2, 	=0.1,

and f̄ =5 /2� and decreasing rigidity �. The positive �negative� vortices are
represented with upward- �downward-� pointing triangles with sizes scaled
to the intensity of the vortices. The streamlines are plotted for t=20 when
the leading edge crosses the horizontal axis, and the leading-edge forcing for
0� t�20 was the same in all three cases.
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or infinite nature of the vortex street does not influence the
induced velocity significantly.

The drag on a solid body placed in a uniform parallel
flow and shedding vortices in the pattern of a staggered vor-
tex street �regular or reverse Von Kármán street� was com-
puted by Von Kármán using the conservation of momentum
around the solid body and part of its wake.36,40 The only
important elements in the derivation are again the intensity
w, wavelength a, and width b of the vortex street. In par-
ticular, the motion �other than the main translation� and de-
formation of the body are irrelevant in Von Kármán’s deri-
vation. These results can easily be generalized to the case of
a reverse Von Kármán street and in our notation, the pre-
dicted mean thrust TS is obtained as

TS = −
w

2

2�a
+

wb

a
�1 + 2V�, with a = �1 + V�/ f̄ . �32�

This theoretical prediction compares very well to the results
obtained for the mean thrust in our simulations �Fig. 6�. In
particular, the transition between thrust and drag production
is well reproduced. The agreement is lost at low values of �:
For such low values of the rigidity, the highly regular struc-
ture of the wake is also lost as some natural modes of the
passive elastic sheet become unstable to fluttering and the
motion of the wing loses its strong periodicity, making the
definition of a, w, and b difficult.

In Eq. �32�, the thrust consists of two terms. The second
term is positive in the case of a reverse Von Kármán street
�b�0� and negative in the classical Von Kármán street �with
b�0 and V�0, as long as V�−1 /2, which always occur in
the weak Von Kármán streets observed here�. The presence
of the first term �which is always negative and therefore al-
ways leads to drag production� is responsible for the experi-
mentally and numerically observed differences between the
thrust/drag transition and the transition in the wake structure.
As in the passive flapping flag case,28,35 it is possible to have
net drag produced by a weak reverse Von Kármán street as
the first term in Eq. �32� dominates the second one.

C. Resonance and optimal flexibility
for thrust production

In Fig. 3�b�, successive peaks in the mean thrust created
by the heaving wing can be observed, but also a peak in the
mean drag �or negative thrust� below the drag-thrust transi-
tion that occurs around ��8�10−3. Figure 7 shows the evo-
lution of the mean thrust, flapping amplitude D, wake inten-
sity w, and wake induced velocity V for the same values of

the parameters �, 	, and f̄ as in Fig. 3.
A very clear correlation is observed between the occur-

rence of the maxima �in magnitude� for the mean thrust �or
drag� and for the other quantities, which confirms the argu-
ment presented in Sec. IV B: The mean thrust and drag peaks
are created by an increase in the flapping motion at the trail-
ing edge, where the vortex wake is formed. An increase in D
�with a constant flapping frequency� induces higher relative
velocity at the trailing edge, and therefore stronger shed vor-
tices. While this increase in m with D is physical, it is
however not possible to find a simple scaling of m with D,
as other factors that depend on � must be taken into account
�e.g., the orientation of the trailing edge relative to its veloc-
ity�. The induced velocity on the vortex street V is therefore
also increased and the wake carries a larger fluid momentum
downstream, thereby creating a greater thrust on the profile.

It is also interesting to notice that the maximum drag
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FIG. 5. �Square� Induced wake vortices velocity V behind the flapping wing

for varying � and �=0.2, 	=0.1, and f̄ =5 /2�. The predicted value obtained
for an infinite reverse Von Kármán vortex street �Ref. 39� is plotted for
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on impulse conservation �Refs. 36 and 40� is also plotted for comparison
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observed for ��5�10−3 is also associated with a maximum
in D and m. In that case, the large amplitude of motion at
the trailing edge opposes the imposed flow and creates a net
drag on the body.

V. INFLUENCE OF FLEXIBILITY ON THE FLAPPING
AMPLITUDE AND MODE SHAPE

A. Resonances between the forcing frequency
and the natural frequencies of the system

In this section, we are interested in the origin of the
maxima in the trailing-edge flapping amplitude D. The suc-
cessive peaks in D as � is varied suggest a resonance phe-
nomenon. By varying the rigidity of the solid �, the natural
frequencies of the system are also modified. For an elastic
sheet in vacuum, these frequencies scale like �B /�s. Looking
for solutions of Eqs. �8�–�11� in the linear limit with no fluid
forcing, the fundamental angular frequencies �0n=2�fn of a
clamped-free elastic sheet in vacuum are obtained in nondi-
mensional form as

�0n = �n
2��

�
, with 1 + cosh �n cos �n = 0. �33�

The ratio �� /� can be thought of as the nondimensional
time scale associated with the frequency of the sheet’s natu-
ral oscillations in vacuum, or alternatively as the outside
flow velocity nondimensionalized by the characteristic ve-
locity associated with the sheet’s properties.

1. Influence of � and ε on the position
of the resonance peaks in D

However, the resonance peaks observed in Fig. 7 do not
correspond to a resonance with the natural frequency of the
elastic sheet in vacuum. If this were the case, then the reso-
nance would be achieved for all values of the mass ratio � at
the same value of �� /�. Such a coincidence does not occur
�Fig. 8�: The position of the successive resonances is actually
strongly influenced by the fluid-solid inertia ratio �. This
difference makes sense physically, as the eigenfrequencies of
the system are modified by the presence of the forcing hori-
zontal flow, and such effects as added inertia are expected to
be important. Instead, the natural frequencies of the system

�wing+outside uniform flow� should be considered. A com-
parison with linear analysis predictions is proposed below in
Sec. V A 3.

Before comparing the numerical results to the linear
analysis, we study the influence of the forcing amplitude 	
on the position of the resonances. It was noticed in Sec. IV A
that the normalized thrust and power input follow similar
patterns for values of 	 up to 0.2–0.5 depending on the value
of �. In an attempt to determine the exact value of � leading
to a resonance, we study how the resonance peaks in D are
modified as 	 is varied between 0.01 and 0.5. Starting from
small 	, one observes that the increase in 	 induces a shift of
the resonance peaks toward larger values of � and a smooth-
ing of the resonance peaks �Fig. 9�. Also, the convergence
toward the limit case of small 	 is faster for the second and
third resonance peaks than for the first one �labeling the
peaks from the right as � is decreased from the rigid-case
limit�.

2. Absolute and relative trailing-edge
flapping amplitude

In Secs. II–IV, D was defined as the peak-to-peak am-
plitude of the trailing-edge flapping motion in the laboratory
frame �thereafter referred to as absolute flapping amplitude�.
In the following, we are also interested in the motion of the
wing in the frame moving with the leading edge. In this
frame, the peak-to-peak trailing-edge flapping amplitude is
D� �thereafter referred to as relative flapping amplitude�. D
and D� are not necessarily equal because of the phase differ-
ence between the motion of the leading and trailing edges
�Fig. 10�. This delay is, in general, a decreasing function of
the solid’s rigidity. In the limit of a rigid wing �→�, the
trailing edge flaps in phase with the leading edge with the
same amplitude �D�=0 and D=2	�. As � is decreased, a
delay appears between the motion of the leading and trailing
edges: The elasticity of the wing takes more time to carry
along its length the signal imposed at the leading edge. As a
result, the relative amplitude D� increases.

One of the main consequences of the appearance of such
a delay is the noncoincidence of the first resonance peak
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FIG. 8. Evolution of the normalized trailing-edge flapping amplitude D with
�� /� for 	=0.05, f̄ =5 /2� and for �=0.2 �solid squares� and �=2 �dash-
circle�. The flapping amplitude was normalized using the asymptotic rigid-
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FIG. 9. Influence of the forcing amplitude 	 on the position of the reso-

nances in the trailing-edge flapping amplitude for �=0.2 and f̄ =5 /2�. The
results are plotted for 	=0.01 �solid circles�, 	=0.05 �dashed line�, 	=0.1
�dot-dashed line�, 	=0.2 �dotted line�, and 	=0.5 �solid line�. The trailing-
edge flapping amplitude was normalized by its rigid-case value ��→��.
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�with largest �� in the flapping amplitude, whether D or D�

is considered. The position of the subsequent peaks is not
significantly affected �Fig. 10�a��.

3. Comparison with the natural frequencies
of the system

In this section, the conjecture that the trailing-edge flap-
ping amplitude peaks are due to a resonance with the natural
frequencies of the �wing+imposed flow� system is tested by
comparing the value of the rigidity � leading to a peak value
for D to the value of � for which the forcing frequency
matches a natural frequency of the system. The position of
the peaks in D is measured in the limit of small forcing
amplitude �typically 	=0.01�. The natural frequencies of a
purely passive wing clamped at its leading edge in a uniform
flow are determined using the linear stability analysis
method developed by Kornecki et al.41 A brief summary of
this method is given in the Appendix. For given � and �, the
eigenfrequencies of the system are computed. The lowest
frequencies are also associated with the modes of lowest or-
der �those with the longest wavelength�. Here, the following

equivalent problem is considered: For a given � and f̄ , we
want to find the values � for which a mode of the passive

elastic sheet in axial flow has the particular frequency f̄ ,
regardless of its growth rate.

Figure 11 shows the position in the �� , f̄�-plane of the
first resonances observed in the trailing-edge flapping ampli-
tude D for small heaving amplitude 	, starting from the rigid
case �→�. Although 	 is small, D can be significant

�greater than 20	 at the resonance in the case of the heavier
wing ��=2�, thereby representing more than 20% of the
wing’s length�. These results are compared to the natural
frequencies of the system �wing+parallel flow� as predicted
by the linear analysis and very good agreement is found be-
tween the numerical results and the theoretical predictions.
The position of the resonances in D� is also indicated. Reso-
nances in D� and D coincide except for the first resonance
peak in the case of the smaller mass ratio �.

The linear analysis seems to underpredict slightly the
values of � corresponding to the resonance for a given fre-
quency �. This difference is consistent with the amplitude of
discrepancy between the point vortex model and the linear
stability analysis observed in the study of a purely passive
elastic sheet or flag.28 Two other factors can also explain the
small discrepancy in the results.

— As pointed out, the motion of the wing is not infinitesi-
mally small here, even for 	=0.01; it is therefore pos-
sible that nonlinear effects modify the exact position of
the resonances. In Sec. V A, the effect of increasing 	
was shown to shift the resonance peaks toward larger �,
particularly for the first peak, and this could account for a
significant part of the observed discrepancy.
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FIG. 10. �a� Comparison between the absolute flapping amplitude D �solid
line� and relative flapping amplitude D� �dashed line� for the trailing edge,

for �=0.2, f̄ =5 /2�, and 	=0.1. �b� Phase difference between the leading-
edge and trailing-edge motions.
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FIG. 11. Position of the resonances for the trailing-edge flapping amplitude

in the �� , f̄�-plane obtained using the present model �symbols� with 	
=0.01 and �a� �=0.2 and �b� �=2. The different symbols correspond to the
nature of the mode: mode 1 has no neck in the flapping envelope �circles�;
mode 2 �squares�, mode 3 �upward-pointing triangle�, and mode 4
�downward-pointing triangles� have one, two, and three necks, respectively,
in their motion envelope. The black symbols correspond to resonances in the
absolute flapping amplitude D. Open symbols correspond to resonances in
the relative flapping amplitude D� when they differ from the resonances in
D. The position of the resonances is compared to the prediction of the linear
analysis �dashed line� for the natural frequency of the purely passive elastic
sheet �or flag� in axial flow �see the Appendix�.
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— The amplitude of flapping in the laboratory frame is con-
sidered here. However, even for small 	, this amplitude
differs from the relative flapping amplitude defined in the
frame moving with the leading edge �see Fig. 10� be-
cause of the existence of a nonzero phase between the
motion of the leading and trailing edges. It was observed
in Fig. 10 that the resonance in relative amplitude occurs
for smaller values of �, particularly for the first reso-
nance �largest ��. In the linear analysis, both amplitudes
�relative and absolute� are identical since the leading
edge is held fixed. For �=0.2, the agreement is improved
for the position of the first resonance if D� is considered
instead of D �Fig. 11�.

Figure 11 also indicates the nature of the observed mode,
in particular, the number of necks in the envelope of the
wing’s motion. One observes that resonances located on a
same branch of the linear analysis prediction share the same
general structure, and the number of necks is consistent with
that predicted by the linear analysis: For given � and �, the
lowest frequency mode has the longest wavelength and no
neck in its envelope. The next lowest frequency corresponds
to a mode with one neck, and so on for the successive fre-
quencies. The evolution of the mode shape for varying � is
studied in more detail in the following subsection.

B. Evolution of the flapping mode shape
with the flexibility of the profile

To confirm that the maxima of flapping amplitude actu-
ally correspond to resonances between the forcing frequency
and the natural frequency of the passive elastic sheet in a
parallel flow, the evolution of the flapping mode shape with
� is now considered. For comparison with the case of a
purely passive flexible elastic sheet, the mode shape is de-
fined as the envelope of the motion of the wing in the frame
moving with the leading edge. Figure 12 shows the mode
shape in permanent regime at the values of � leading to peak
values of the absolute trailing-edge flapping amplitude and to
the minima between two successive peaks. Note that in Fig.
12, case B seems to correspond to a wider envelope than case
A, although the absolute flapping amplitude is smaller for B
than for A. This is the result of the change in frame: If one
considers the flapping amplitude in the moving frame, the
position of the maxima differs from peaks in absolute flap-
ping amplitude �see Fig. 10�. Cases A, C, and E correspond
to the resonances while B, D, and F correspond to local
minima of the absolute flapping amplitude.

The mode shapes C and E are structurally similar to the
envelope of the first two flapping modes observed for the
passive flexible flag,28 which is consistent with C and E cor-
responding to resonances between the flapping frequency
and the flapping modes 2 and 3 �one- and two-neck modes,
respectively�. The mode shape A corresponds to mode 1 of
the passively flapping elastic sheet, which was not observed
in the case of the flapping flag study28 as it is always stable42

and therefore does not lead to spontaneous large-scale flap-
ping.

VI. CONCLUSIONS

Using a reduced-order model for the flow past a two-
dimensional heaving flexible wing, the influence of the
wing’s flexibility on its propulsive performance �mean thrust,
flapping efficiency� was investigated. Starting from the
purely rigid case, we observed that the flexibility of the wing
allowed for a larger trailing-edge flapping amplitude, thereby
generating a stronger wake and an increased mean thrust.
The energy usage also increases with the introduction of
flexibility, but more slowly than the mean thrust, resulting in
a net increase in the flapping efficiency with reduced rigidity.
This efficiency gain can be significant �up to twice the effi-
ciency of the rigid case�. While the mean thrust and power
input display several peaks when the rigidity � is decreased
from the purely rigid case, the flapping efficiency displays
one wide peak before falling sharply as � nears the value
leading to the thrust-drag transition. Below this threshold,
the wing is too flexible to communicate momentum to the
flow and instead starts creating a net drag on the leading-
edge attachment.

The relationship between thrust production and wake
structure was then investigated, taking advantage of the dis-
crete representation of the wake. Analytical predictions for
the induced vortex street velocity and mean thrust in terms of
the vortex street strength and spatial arrangement were suc-
cessfully compared to our simulation results.

The peaks in mean thrust were found to correspond to
maximum values in the trailing-edge amplitude, and shown
to be the result of the resonance between the forcing fre-
quency of the heaving motion and the natural frequencies of
the system. A quantitative comparison showed very good
agreement between the optimal values of the solid’s rigidity
and the linear analysis predictions for the resonances posi-
tion. The existence of these resonance phenomena was fur-
ther confirmed by comparing the flapping mode shape to the
mode shape observed for a freely flapping elastic sheet �e.g.,
the flag problem28�.

The natural frequencies of the system are strongly de-
pendent on both the solid’s flexibility and the ratio of fluid
and solid inertia, and so are the optimal values of the solid’s
rigidity. For a slender neutrally buoyant fish fin, the inertia
ratio � can generally be neglected.29 However, in the case of
an insect wing, the small thickness-to-chord ratio is balanced
by the large difference in density for the fluid and solid, and
the present analysis shows that the mass ratio � plays an
important role in defining the optimal value of the flexibility.

The model presented here used a potential flow represen-
tation and the shedding of point vortices to describe the
highly unsteady flow around the insect wing. Vortices were
shed only from the trailing edge. This approximation is rea-
sonable for small angles of attack �proportional to the Strou-
hal number St in the case of a purely heaving motion�. Then,
the vorticity shed at the leading edge is negligible or merges
with the vorticity shed by separation of the boundary layers
at the trailing edge,12 leading to the shedding of two indi-
vidual vortices every flapping period and so-called 2S
wakes.43 However, when the flapping amplitude and fre-
quency are increased, more complex wakes are expected as
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vorticity is shed from both the trailing and leading edges,
inducing, for example, the formation of the so-called 2P
wake, where a vortex pair is shed during each half period.
The representation of the leading-edge vortex falls however
beyond the scope of inviscid methods such as the present
point vortex model or a vortex sheet approach as the effect of
viscosity cannot be neglected:27,44 The leading-edge vortex is
expected to remain close to the body for a sufficiently long
time to interact with the boundary layers. The use of point
vortices also restricts this method to two-dimensional prob-
lems and therefore does not allow the study of such effects as
wing-tip vortices that are expected to influence significantly
the flight performance. The present study however does not
aim at reproducing the exact flow around an insect wing but
to present a test case where the effect of flexibility can be

isolated from other factors such as leading-edge and wing-tip
vortices.

Despite these limitations, the present method offers the
advantage of a considerable reduction in computational cost
for two-dimensional fluid-solid simulations. This is particu-
larly attractive for situations where the cost of full numerical
simulation is prohibitive and a large number of simulations
are required �typically in the case of optimization problems�.

The present work was purposely limited to a one degree
of freedom flapping pattern �pure heaving� in order to limit
the number of free parameters and focus on the fundamental
effect of solid flexibility on the flapping performance. In fu-
ture work, more realistic flapping schemes should be consid-
ered to follow more closely the flapping pattern of an insect
wing. In particular, a combination of heaving and pitching
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with the leading edge is plotted every �t=0.06.
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should be considered to determine the influence of the rela-
tive phase between heaving and pitching motions on the re-
sults presented in this work. The interaction between two
flapping flexible sheets should also be investigated to under-
stand the lift and thrust generation by insects with multiple
pairs of flexible wings �e.g., dragonfly45� or the efficiency of
fish schooling, and to complement recent experimental stud-
ies on multiple passive flexible filaments.46–49
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APPENDIX: NATURAL FREQUENCIES OF A PASSIVE
FLEXIBLE SHEET IN AXIAL FLOW

We present here a brief summary of the linear stability
analysis of a clamped-free flexible sheet or flag using a vor-
tex sheet representation of the wake as developed by
Kornecki.41 More details on the method and the full calcula-

tion can be found in Refs. 41 and 50. Small vertical displace-
ments of the sheet h�s , t� are considered �0�s�1� with �h�
�1 so that the equation of motion of solid �Eq. �5�� becomes
a linearized form

�ḧ = − �hssss − �p . �A1�

The wake is represented by a continuous distribution of vor-
ticity ��s , t� along the horizontal axis �s�1� advected by the
flow �this continuous shedding thereby differs from the dis-
crete approach presented in the present paper, but is better
suited to linear stability analysis�. The pressure forcing can
be decomposed into two parts:41,50,51 a noncirculatory part
due to the flow created by the solid’s motion with no net
circulation around the solid and a circulatory part due to the
flow created by the vortex wake �the absence of circulation at
infinity requiring the existence of a net circulation around the
solid equal to the opposite of the wake vorticity�. Consider-
ing a decomposition of the solid’s motion onto normal modes
of the form h�s , t�=Re�y�s�ei�t�, y�s , t� satisfies41

− ��2y + �yssss = −
2i�

�
�

0

1

log��
s

1 − s
+� �

1 − �

� s

1 − s
−� �

1 − �
��i�y + y��d� +

2

��s�1 − s�
�

0

1 ���1 − ��
s − �

�i�y + y��d�

−
2

���0

1� �

1 − �
�i�y + y��d�	� 2s − 1

�s�1 − s�
+�1 − s

s
C���	 , �A2�

where C��� is the Theodorssen function,50

C��� =

2H1
�2�
�

2
�

H1
�2�
�

2
� + iH0

�2�
�

2
� , �A3�

and H�
�2��x�=J��x�− iY��x� ��=0,1� are Hankel functions of

the second kind.52

The eigenvalue problem �A2� for � is solved numeri-
cally using a Galerkin method: y�s� is decomposed along the
first N eigenmodes of the clamped-free beam in vacuum
y�s�=��n��n��s� with ��n��s� satisfying

�ssss
�n� = �n

4��n�, ��n��0� = �s
�n��0� = �ss

�n��1� = �sss
�n��1� = 0,

and �n are the successive positive roots of
1+cos �n cosh �n=0. Equation �A2� is replaced by the non-
linear eigenvalue problem

�− �2��I + M�M�� + i�M�G� + ��K + M�K�� + C���MC1

+ i�C���MC2� · � = 0. �A4�

The coefficients of the different N�N matrices are defined
as

Kij = � j
4�ij, Mij

�K� = F1���i�,�s
�j�� + F2���i�,�s

�j�� ,

Mij
�G� = F1���i�,��j�� + F2���i�,��j�� + F3���i�,�s

�j�� ,

Mij
�M� = F3���i�,��j��, Mij

C1 = F4���i�,�s
�j�� ,

Mij
C2 = F4���i�,��j�� ,

with the functionals Fk�1�k�4� defined as

F1�f ,g� = −
2

�
�

0

1 f�x�
�x�1 − x���0

1 ���1 − ��
x − �

g���d�	dx ,

F2�f ,g� =
2

���0

1 �2x − 1�f�x�
�x�1 − x�

dx	��
0

1� x

1 − x
g�x�dx	 ,
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F3�f ,g� =
2

�
�

0

1

f�x�

���0

1

g���log��
x

1 − x
+� �

1 − �

� x

1 − x
−� �

1 − �
�d��dx ,

F4�f ,g� =
2

���0

1

f�x��1 − x

x
dx	��

0

1� x

1 − x
g�x�dx	 .

For a given N, these matrices can be precomputed. Then, for
given � and �, the eigenvalue problem �A4� is solved itera-
tively using a Newton–Kantorovitch algorithm.53 Figure 13
shows the evolution of the growth rate −Im��� and fre-
quency � /2� for �=0.2 and varying rigidity �. In the rigid
case �large ��, all modes are stable. As � is decreased below
�m=2�10−3, one or more modes become unstable �mode 3
then mode 4�. The critical stability curve separates the region
of the �� ,��-plane where the elastic sheet’s state of rest is
stable and the region of the parameter space where at least
one mode is unstable �Fig. 13�.
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