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Internal gravity waves are generated in a strati�ed �uid by arbitrary forced oscillations
of a horizontal disc. The wave �elds are calculated in both the time domain and the
frequency domain. In the time domain, an initial-value problem is solved using Laplace
transforms; causality is imposed. In the frequency domain (time-harmonic oscillations),
a radiation condition is imposed: a plane-wave (Fourier) decomposition is used in which
waves with outgoing group velocity are selected. It is shown that both approaches
lead to the same solution, once transient e�ects are ignored. Then, a method is given
for calculating the far �eld, using asymptotic approximations of double integrals. It is
shown that the total energy �ux is outwards, for arbitrary forcings of the disc. Further
investigations of energy transport are made with a view to clarifying the nature of
radiation conditions in the frequency domain.
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1. Introduction

It is well known that internal gravity waves exist in a density strati�ed �uid,
and that they can be generated by oscillating immersed bodies or by scattering
from topography. The motivating problem here is to calculate these wave �elds,
in a three-dimensional unbounded �uid domain. It is also known that the energy
produced by the oscillations is con�ned to characteristic conical wave beams. See,
for example, Lighthill, 1978, chapter 4, or LeBlond & Mysak, 1978, �8.

Under the Boussinesq approximation, with an inviscid �uid, a uniform density
strati�cation and small-amplitude motions, we can write down the governing
equations (see �2 for details). In particular, for time-harmonic motions, the
pressure is Re {pe−iωt}, where p(x, y, z) solves

∂2p

∂x2
+

∂2p

∂y2
− ω2

N2 − ω2

∂2p

∂z2
= 0, (1.1)

z is the vertical coordinate and N is the constant Brunt�Väisälä frequency. We are
interested in the case where 0 < ω < N so that (1.1) is hyperbolic. This equation
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has to be solved subject to a boundary condition (prescribed normal velocity) and
a far-�eld (radiation) condition.

There are several ways to specify the radiation condition in the frequency
domain; for a review, see Voisin (1991, �3.2). One way is to replace ω by ω + iε,
letting ε→ 0 at the end of the calculation (Lighthill, 1978, �4.9). Another way
uses analytic continuation in the complex ω-plane; see below for more details.
When plane-wave decompositions are available, we can examine the corresponding
group velocity; note that, for plane internal waves, group and phase velocities are
orthogonal (Lighthill, 1978, �4.4). Barcilon & Bleistein (1969) used a local plane-
wave approximation at each point in the �uid but their approach was criticised
by Baines (1971).

Underlying radiation conditions in the frequency domain is the requirement
of causality in the time domain. Therefore, because of the variety of frequency-
domain radiation conditions, we start by treating an initial-value problem. The
problem we have chosen concerns an oscillating horizontal disc: there is no motion
for t < 0, and then time-harmonic forcing is switched on at t = 0. We solve the
resulting problem, using Laplace transforms in time and Fourier transforms in
the horizontal coordinates x and y. This leads to solvable dual integral equations.
Inverting the Laplace transform, imposing causality, gives a transient contribution
plus a time-harmonic forced response; we are interested in the latter.

Next, we formulate the analogous time-harmonic problem. A radiation
condition is imposed in the Fourier domain: we ensure that only those plane-wave
contributions with group velocity directed away from the disc are retained. This
approach has been used by others: it is limited to those problems where plane-
wave decompositions are available throughout the �uid domain. We �nd that the
pressure �eld obtained is exactly the same as the forced response obtained in the
initial-value problem. (This is an example of the so-called Limiting Amplitude
Principle.)

Having con�rmed that our time-harmonic solution does respect causality, we
go on to estimate far-�eld quantities (�7). This requires the asymptotic estimation
of certain double integrals; a form of the method of stationary phase is used, in
which the stationary-phase points occur along a line in the domain of integration.
Estimates for both the pressure, p, and the velocity, v, within the wave beams
are obtained. Then, the time-averaged energy transport vector, I, de�ned by

I = (ρ0/2)Re {pv }, (1.2)

can be calculated, where the overbar denotes complex conjugation and ρ0 is
the constant background density. The equations of motion imply that div I = 0.
Consequently, if S is a closed surface enclosing the oscillating plate, then we
should have

∫
S I · n dS > 0, where n is the unit normal on S pointing away from

the plate. We verify this (global) inequality in the far �eld, for arbitrary forcings
of the plate (�7c).

It is clear that I is arbitrary in the sense that it could be replaced by I + I1

provided that div I1 = 0 (Longuet-Higgins 1964). This means that there is no
reliable physical interpretation of I · n, although Lighthill (1978, p. 14) states
that it gives the energy `being transported in the direction of n across a small
plane element at right angles to n'. Nevertheless, we might expect that I · n > 0,
pointwise. However, we show, by example, that this is not the case. This con�rms
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that examining the sign of I · n at each point in the far-�eld cannot be used as a
radiation condition: doing so could exclude physically meaningful solutions.

Let us conclude this introduction by mentioning previous work on the
generation of three-dimensional internal gravity waves by oscillating bodies. Most
of it is concerned with axisymmetric motions of spheres and spheroids; see, for
example, Hendershott (1969), Sarma & Krishna (1972), Lai & Lee (1981), Appleby
& Crighton (1987), Voisin (1991, 2003), Flynn et al. (2003) and Voisin et al.
(2010). The approach of these authors starts by solving (1.1) when ω > N using
a scaling in z. This leads to a boundary value problem for Laplace's equation
exterior to a spheroid, a problem that can be solved by separation of variables.
The solution for ω < N is then obtained by analytic continuation. In particular,
Sarma & Krishna (1972) and Lai & Lee (1981) obtained the solution for vertical
oscillations of a rigid disc; we �nd agreement with their solutions (�6a).

For disc problems, there is a paper by Gabov & Pletner (1988), in which the
pressure (not the normal velocity) is prescribed on the disc. There is the recent
paper by Davis & Llewellyn Smith (2010) where the plate oscillates in its own
plane but the �uid is viscous. There are also several papers by Chashechkin and
his collaborators, in which internal waves are generated in a viscous �uid by a
circular piston in a horizontal rigid plane, z = 0. Mathematically, this problem
is simpler than a disc problem because the velocity is prescribed over the whole
plane, z = 0. See, for example, Chashechkin et al. (2004) and Bardakov et al.
(2007); these papers include both theoretical and experimental results.

2. Mathematical formulation

We consider a variable density �uid without rotation. We use the linearized form
of the Boussinesq equations (Vallis, 2006, �2.4.2),

∂ṽ/∂t =−grad p̃ + b̃ ẑ, div ṽ = 0, ∂b̃/∂t + N2w̃ = 0.

Here, we have Cartesian coordinates Oxyz, with z pointing upwards; ẑ is a unit
vector in the z-direction. The velocity is ṽ = (ũ, ṽ, w̃) and p̃ is a rescaled pressure:
the actual excess pressure is ρ0p̃, where ρ0 is the constant background density. The
buoyancy frequency N is a positive constant and b̃ is the buoyancy. Henceforth,
tildes indicate (real) quantities in the physical domain.

We remove the time dependence by Laplace transformation. Thus, we de�ne,
for example,

p(x, y, z; s) =
∫∞
0

p̃(x, y, z, t) e−st dt.

Assuming zero initial data, and eliminating b, we obtain

sv =−grad p− (N2/s)w ẑ, div v = 0.

The �rst of these gives

u =−1
s

∂p

∂x
, v =−1

s

∂p

∂y
and w =− s

N2 + s2

∂p

∂z
.
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Then, div v = 0 gives

∂2p

∂x2
+

∂2p

∂y2
+ λ2 ∂2p

∂z2
= 0 with λ2(s) =

s2

N2 + s2
. (2.1)

This is a partial di�erential equation for p. For time-harmonic problems (with a
time dependence of e−iωt), the same equations (for p, u, v and w) are obtained
but with s =−iω; see �5.

3. A horizontal plate in a strati�ed �uid

We have a thin �at plate, Ω, in the xy-plane. The rest of the xy-plane is denoted by
Ω′. The motion is forced by oscillating the plate, with prescribed normal velocity
on Ω, w̃f . Thus,

w̃ = w̃f(x, y, t), (x, y)∈Ω, t > 0,

which becomes, after Laplace transformation,

w =− s

N2 + s2

∂p

∂z
= wf(x, y; s), (x, y)∈Ω.

In fact, this holds on both sides of Ω. It follows that p must be an odd function
of z, so the problem can be reduced to one in the half-space z > 0. As we have
split the problem into two half-space problems, we must also impose continuity
of p across Ω′.

Take the Fourier transform of (2.1) with respect to x and y, with

P (ξ, η, z) =
∫∞
−∞

∫∞
−∞

p(x, y, z; s) e−i(ξx+ηy) dxdy; (3.1)

the inverse Fourier transform is

p(x, y, z; s) =
1

(2π)2

∫∞
−∞

∫∞
−∞

P (ξ, η, z) ei(ξx+ηy) dξ dη. (3.2)

(Henceforth, we write
∫∫

when the integration limits are as in (3.1) or (3.2).)
Then, with κ2 = ξ2 + η2, and writing P ′′ = ∂2P/∂z2, we obtain P ′′ = (κ/λ)2P .
Hence,

P (ξ, η, z) = C(ξ, η) e(κ/λ)z + D(ξ, η) e−(κ/λ)z for z > 0. (3.3)

We require p→ 0 as z→∞, so we take C = 0, assuming that Re λ≥ 0.
Let us de�ne the discontinuity in p across z = 0 by

2δ(x, y)≡ p(x, y, 0+; s)− p(x, y, 0−; s) = 2p(x, y, 0+; s). (3.4)

Clearly, we must have δ = 0 on Ω′, so the Fourier transform of δ is∫
Ω

δ(x, y) e−i(ξx+ηy) dxdy = D(ξ, η), (3.5)

using (3.3) and (3.4). Also, the Fourier transform of w is given by

W (ξ, η, z) =−s(N2 + s2)−1P ′ = κ(N2 + s2)−1/2D(ξ, η) e−(κ/λ)z.
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Applying the boundary conditions gives

1
(2π)2

∫∫
W (ξ, η, 0) ei(ξx+ηy) dξ dη = wf(x, y), (x, y)∈Ω, (3.6)

1
(2π)2

∫∫
P (ξ, η, 0) ei(ξx+ηy) dξ dη = 0, (x, y)∈Ω′. (3.7)

Substituting for W (ξ, η, 0) and P (ξ, η, 0) gives

1
4π2

∫∫
κD(ξ, η) ei(ξx+ηy) dξ dη = q(x, y), (x, y)∈Ω, (3.8)∫∫

D(ξ, η) ei(ξx+ηy) dξ dη = 0, (x, y)∈Ω′, (3.9)

where
q(x, y) = (N2 + s2)1/2wf . (3.10)

Equations (3.8) and (3.9) are a pair of dual integral equations for D. They are of
a standard kind, so that various methods are available.

Another option is to substitute for D in (3.8) using (3.5). This would lead to a
hypersingular boundary integral equation over Ω for the discontinuity function, δ.

To make analytical progress, we now suppose that Ω is circular.

4. Circular disc

(a)Dual integral equations

For a disc of radius a, use polar coordinates,

x = r cos φ, y = r sin φ, ξ = κ cos β, η = κ sinβ, (4.1)

and suppose for simplicity that δ has a Fourier expansion in the form

δ = a

∞∑
n=0

εndn(r/a) cos nφ, 0≤ r < a, (4.2)

where ε0 = 1 and εn = 2 for n≥ 1. Using (3.5) and

e−i(ξx+ηy) = e−iκr cos (φ−β) =
∞∑

m=0

εm(−i)mJm(κr) cos m(φ− β),

we �nd that

D =
∞∑

n=0

εnDn(κ) cos nβ with Dn(κ) = 2π(−i)na

∫a

0
dn(r/a)Jn(κr)r dr. (4.3)

Then, ∫∫
Dei(ξx+ηy)dξ dη = 2π

∞∑
n=0

εn in cos nφ

∫∞
0

Dn(κ)Jn(κr)κ dκ, (4.4)
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with a similar expansion for the integral in (3.8). Therefore, if q has an expansion

q =
∞∑

n=0

εnqn(r/a) cos nφ, 0≤ r < a, (4.5)

the dual integral equations, (3.8) and (3.9), become, for n = 0, 1, 2, . . .,

in

2π

∫∞
0

κ2Dn(κ)Jn(κr) dκ = qn(r/a), 0≤ r < a, (4.6)∫∞
0

κDn(κ)Jn(κr) dκ = 0, r > a. (4.7)

(b)Expansion methods

A standard method for solving integral equations (such as (4.6) and (4.7))
begins by expanding the unknown function in a series of basis functions. We should
choose the expansion functions with two criteria in mind. First, dn(r/a) gives a
radial component of δ, and this quantity is known to have a square-root zero at
the edge of the plate, r = a; this behaviour (which can be inferred from a local
expansion near any point on the edge) should be incorporated in the expansion
functions. Second, it would be useful if the integrals relating dn to Dn, (4.3), could
be evaluated analytically for the chosen expansion functions. Of course, we may
choose to expand Dn directly (this is essentially Tranter's method (Tranter 1954,
1966)) but we prefer to begin with a quantity that has known physical properties.

De�ne a function Φ(n)
m by

Φ(n)
m (ρ) = ρnC

n+1/2
2m+1 (

√
1− ρ2 ), (4.8)

where Cλ
n is a Gegenbauer polynomial. As Φ(n)

m (ρ) is of the form
√

1− ρ2

multiplied by a polynomial in ρ, the square-root zero at the plate edge can be

incorporated automatically. It can also be shown that Φ(n)
m (ρ) is proportional to

both
Pn

n+2m+1(
√

1− ρ2 ) and ρn
√

1− ρ2 P (n,1/2)
m (1− 2ρ2),

where Pm
n is an associated Legendre function and P

(α,β)
n is a Jacobi polynomial.

As Gegenbauer polynomials are orthogonal, so are Φ(n)
m . Perhaps more

importantly, we have∫1

0
Φ(n)

m (x)Jn(ξx) xdx =
2Γ(m + n + 3/2)
m! Γ(n + 1/2)

jn+2m+1(ξ)
ξ

, (4.9)

where jn(x) =
√

π/(2x)Jn+1/2(x) is a spherical Bessel function. This formula is
due to Tranter (1954, eqn (5); 1966, eqn (8.6)); see also (Krenk, 1979, eqn (72)).

We note in passing that the polynomials rnP
(n,0)
m (1− 2r2) have been advocated

by Boyd (2001, �18.5.1) for use as radial basis functions in spectral methods for

problems posed on a disc, 0≤ r < 1. For us, the functions Φ(n)
m , de�ned by (4.8),

are preferable because of the availability of Tranter's integral, (4.9), and because
of the known behaviour at r = 1.
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(c) Solution of the dual integral equations

Expand δ(r) as (4.2) with

dn(ρ) =
∞∑

m=0

Dn
mΦ(n)

m (ρ). (4.10)

Then, from (4.3),

Dn(κ) = 2π(−i)na3

∫1

0
dn(µ)Jn(κaµ)µdµ

= 4π(−i)na3
∞∑

m=0

Dn
m

Γ(m + n + 3/2)
Γ(n + 1/2) m!

jn+2m+1(κa)
κa

, (4.11)

using (4.9). Substitution in (4.7) leads to the integral∫∞
0

Jn(κr)jn+2m+1(κa) dκ, r > a;

this Weber�Schafheitlin integral (Watson, 1944, �13.4) vanishes, so that (4.7) is
satis�ed identically.

If we denote the left-hand side of (4.6) by En(r/a), we have

En(ρ) =
in

2π

∫∞
0

κ2Dn(κ)Jn(κaρ) dκ

= 2
∞∑

m=0

Dn
m

Γ(m + n + 3/2)
Γ(n + 1/2) m!

Ln
m(ρ),

where (Martin, 1986, p. 278)

Ln
m(ρ) =

∫∞
0

λJn(λρ)jn+2m+1(λ) dλ =
Γ(n + 1/2)Γ(m + 3/2)

m!
√

1− ρ2
Φ(n)

m (ρ),

which is a polynomial in ρ. Hence, it follows that the right-hand side of (4.6)
should have a similar polynomial expansion,

qn(ρ) =
∞∑

m=0

Qn
m

Φ(n)
m (ρ)√
1− ρ2

, (4.12)

and then
Qn

m = 2Dn
m(m!)−2Γ(m + n + 3/2)Γ(m + 3/2). (4.13)

This determines Dn
m from Qn

m; in general, these coe�cients depend on s.

(d)The pressure �eld

The Laplace-transformed pressure is given by (3.2) and (3.3) (with C = 0). If
we expand D as (4.3), we obtain

p(x, y, z; s) =
1

4π2

∞∑
n=0

εn

∫∫
Dn(κ; s) e−zκ/λ(s)ei(ξx+ηy) cos nβ dξ dη.
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Substituting (4.11) and (4.13) gives

p(x, y, z; s) =
a

2π

∞∑
n=0

εn(−i)n
∞∑

m=0

m!Qn
mInm

Γ(n + 1/2) Γ(m + 3/2)
, (4.14)

where

Inm(s) = a2

∫∫
jn+2m+1(κa)

κa
ei(ξx+ηy)−zκ/λ(s) cos nβ dξ dη, z ≥ 0.

To conclude, we invert, using

p̃(x, y, z, t) =
1

2πi

∫ c+i∞

c−i∞
estp(x, y, z; s) ds. (4.15)

As usual, p is supposed to be analytic to the right of Re s = c > 0, ensuring that
p≡ 0 for t < 0. From (2.1), we have

λ−1(s) = s−1(N2 + s2)1/2, (4.16)

with branch points at s =±iN . We require that Re λ≥ 0 for Re s≥ 0 and we
take the cuts to the left, parallel to the real s-axis. In addition, for time-
harmonic forcing at a frequency ω < N , the quantities Qn

m(s) will have poles at
s =±iω (see (4.22) below). Then, moving the inversion contour to the left gives
residue contributions from the poles and branch line integrals; the latter decay
algebraically, they give the transient behaviour, and they are henceforth ignored
as we are interested in the ultimate time-harmonic behaviour.

For the residue contributions, we note that

λ−1(±iω) =∓i tan θc, 0 < ω = N cos θc < N, (4.17)

and
Inm(±iω) = I±nm, (4.18)

where ω = N cos θc de�nes θc, 0 < θc < π/2, and

I±nm = a2

∫∫
jn+2m+1(κa)

κa
ei(ξx+ηy)±iκz tan θc cos nβ dξ dη, z ≥ 0. (4.19)

The substitutions ξ→−ξ and η→−η imply that β→ β + π whence

I−nm = (−1)nI+
nm, (4.20)

where the overbar denotes complex conjugation. Further discussion of the integrals
I±nm and their far-�eld behaviour can be found in �7.

To be more speci�c, suppose that

w̃f(x, y, t) = wp(x, y) cos ωt giving wf(x, y; s) = s(s2 + ω2)−1wp(x, y),

where wp does not depend on the transform variable, s. Then, from (3.10),

q(x, y; s) = s(s2 + N2)1/2(s2 + ω2)−1wp(x, y).
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So, if we expand the given function wp as (cf. (4.5) and (4.12))

wp(x, y) =
∞∑

n=0

εn cos nφ
∞∑

m=0

Un
m

Φ(n)
m (r/a)√

1− (r/a)2
, 0≤ r < a, (4.21)

with (real) constants Un
m, then

Qn
m(s) = s(s2 + N2)1/2(s2 + ω2)−1Un

m. (4.22)

Hence, (4.14) and (4.16) give

estp(x, y, z; s) =
a

2π

∞∑
n=0

εn

∞∑
m=0

m!Un
mR(s)

Γ(n + 1/2) Γ(m + 3/2)
,

whereR(s) = s2(s2 + ω2)−1λ−1(s)(−i)nInm(s) est. Using (4.17), (4.18) and (4.20),
the sum of the residues of R(s) at s =±iω is found to be

(−i)n{I+
nmeiωt + I−nme−iωt}(N/2) sin θc = Re {(−i)nI−nme−iωt}N sin θc.

Hence, inverting gives

p̃(x, y, z, t) = Re {p(x, y, z)e−iωt}+ transients, (4.23)

where

p(x, y, z) =
aN

2π
sin θc

∞∑
n=0

εn(−i)n
∞∑

m=0

m!Un
m I−nm

Γ(n + 1/2) Γ(m + 3/2)
. (4.24)

Before considering speci�c forcings and their consequences, we examine the
associated time-harmonic problem instead of solving an initial-value problem.

5. The time-harmonic disc problem

The pressure is supposed to have the form Re {p(x, y, z)e−iωt}, where p satis�es

∂2p

∂x2
+

∂2p

∂y2
− γ2 ∂2p

∂z2
= 0 with γ2 =

ω2

N2 − ω2
= cot2 θc. (5.1)

As in �3, we consider z > 0, with the plane z = 0 partitioned into Ω (the plate)
and Ω′, with p = 0 on Ω′ and prescribed normal velocity on Ω,

w =
iγ2

ω

∂p

∂z
= wp(x, y), (x, y)∈Ω.

Introduce Fourier transforms,

P (ξ, η, z) =
∫∫

p(x, y, z) e−i(ξx+ηy) dxdy, (5.2)

p(x, y, z) =
1

(2π)2

∫∫
P (ξ, η, z) ei(ξx+ηy) dξ dη. (5.3)
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Then, with κ2 = ξ2 + η2, the Fourier transform of (5.1) is P ′′ =−(κ/γ)2P . Hence,

P (ξ, η, z) = C(ξ, η) ei(κ/γ)z + D(ξ, η) e−i(κ/γ)z for z > 0. (5.4)

Equations (5.3) and (5.4) can be interpreted as giving a plane-wave
decomposition of p. Thus, (5.1) has solutions in the form

p(x, y, z) = exp {i(k1x + k2y + k3z)} if ω2 = N2(k2
1 + k2

2)/k2,

where k2 = k2
1 + k2

2 + k2
3. The corresponding group velocity, de�ned by cg =

(∂ω/∂k1, ∂ω/∂k2, ∂ω/∂k3), is given by

ωcg = (N/k)2(k1 sin2 θc, k2 sin2 θc, −k3 cos2 θc).

So, in the half-space z > 0, we may argue that the group velocity should be
upwards, away from the disc, implying that we should take k3 < 0, that is, we
should take C = 0 in (5.4). Thus, in e�ect, we have just applied a radiation
condition. This idea has been used by Bell (1975), Nycander (2006) and others.

We now proceed as in �3. We de�ne the discontinuity in p across z = 0, δ, by
(3.4); its Fourier transform, D, is given by (3.5). The Fourier transform of w is
given by

W (ξ, η, z) = i(γ2/ω)P ′ = (γκ/ω)D(ξ, η) e−i(κ/γ)z.

Applying the boundary conditions gives (3.6) and (3.7), involving W (ξ, η, 0) =
(γ/ω)κD and P (ξ, η, 0) = D. Hence, we obtain the dual integral equations, (3.8)
and (3.9), for D, in which q = (ω/γ)wp = Nwp sin θc.

For a circular disc, we expand δ and wp using (4.2), (4.10) and (4.21), with
known coe�cients Un

m and unknown coe�cients Dn
m. We have Qn

m = NUn
m sin θc,

with Qn
m related to Dn

m by (4.13):

NUn
m sin θc = 2Dn

m(m!)−2Γ(m + n + 3/2)Γ(m + 3/2). (5.5)

Then, we compute the pressure, using (5.3), (5.4) with C = 0, (4.3), (4.11) and
(5.5): we obtain precisely the formula (4.24).

Summarising, we solved the time-harmonic problem with the radiation
condition of upward-directed group velocity for each constituent plane wave. This
led to exactly the same pressure �eld that we obtained by solving an initial-value
problem, enforcing causality and ignoring transient e�ects.

Henceforth, we focus on the time-harmonic problem.

6. Some examples

We consider three simple examples. Two are axisymmetric, including a heaving
rigid disc. The third is a rigid disc oscillating about a diameter. For each example,
we solve the problem. Later, we shall calculate the far-�eld radiated �eld within
the conical wave beams.

(a)The heaving disc

This is the simplest problem. It has been solved by Sarma & Krishna (1972)
and by Lai & Lee (1981). We suppose that wp = U0, a given constant, so that we
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are only concerned with n = 0. As Cλ
1 (x) = 2λx, Φ(0)

0 (ρ) =
√

1− ρ2 and so (4.21)
gives U0

0 = U0, all other Un
m being zero.

The pressure is given by (4.24) as

p(x, y, z) = (aU0/π2)N sin θc I−00,

with I−00 de�ned by (4.19). The pressure discontinuity across the disc is 2ρ0δ,
where

δ = ad0(r/a) = D0
0

√
a2 − r2

and (5.5) gives D0
0 = (2/π)U0N sin θc. The force on the disc is in the vertical

direction with magnitude∫
Ω

2ρ0δ dA = 4πρ0

∫a

0
δ r dr =

8
3
ωU0ρ0a

3 tan θc,

which agrees with (Lai & Lee, 1981, eqn (47)).

(b)Another axisymmetric problem

As C
1/2
3 (x) = 1

2x(5x2 − 3), we have Φ(0)
1 (ρ) = 1

2(2− 5ρ2)
√

1− ρ2. Therefore,
from (4.21),

wp =
1
2
U1(2− 5[r/a]2) gives U0

1 = U1,

all other Un
m being zero; here, U1 is a constant. The pressure is

p(x, y, z) = (2/3)(a/π2)U1N sin θc I−01.

The force on the disc is readily calculated.

(c)The rolling disc

We consider a rigid disc oscillating about a diameter, taken as the y-axis. For
this `rolling' motion, we have wp = V0x/a = V0(r/a) cos φ, where V0 is a given

constant. Thus, n = 1 and, as Φ(1)
0 (ρ) = 3ρ

√
1− ρ2, U1

0 = 1
6V0, all other Un

m being
zero. The pressure is

p(x, y, z) =−i(2/3)(a/π2)V0N sin θc I−10

and the pressure discontinuity is

δ = 2ad1(r/a) cos φ = 6D1
0(r/a)

√
a2 − r2 cos φ,

where D1
0 = 2

9(N/π)V0 sin θc. Thus, there is no net force on the disc but there is
a moment about the y-axis with magnitude∫

Ω
2ρ0δr cos φdA =

12πρ0

a
D1

0

∫a

0
r3

√
a2 − r2 dr =

16
45
V0ρ0a

4N sin θc.

We are unaware of previous results on rolling discs.
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7. The far �eld

In the far �eld, R≡
√

r2 + z2 is large. However, we are expecting characteristic
conical wave beams, so it is useful to introduce conical polar coordinates, σ and
ζ, de�ned by

σ = r cos θc − z sin θc and ζ = r sin θc + z cos θc; (7.1)

equivalently, r = σ cos θc + ζ sin θc and z =−σ sin θc + ζ cos θc. There are two
characteristic (double) cones that intersect the edge of the disc at r = a.
Restricting to z ≥ 0, r≥ 0, the lower cone is z = (r − a) cot θc with r≥ a, and the
upper cone is z = (r + a) cot θc. We expect to �nd energy propagation between
these two cones, away from the disc. The lower cone corresponds to σ = a cos θc

and the upper cone corresponds to σ =−a cos θc; the width of the beam is 2b with
b = a cos θc.

(a)The far-�eld pressure

The pressure is given by (4.24) in terms of the integral I−nm, de�ned by (4.19).
As I−nm is an even function of y, we can assume that y≥ 0.

To start, we use (4.1) in (4.19), with 0≤ φ≤ π, giving

I−nm = a

∫∞
0

∫2π

0
jn+2m+1(κa)eiκr cos (β−φ) e−iκz tan θc cos nβ dβ dκ, z ≥ 0. (7.2)

The integration with respect to β can be evaluated but it turns out to be more
convenient to retain the double integral.

In the far �eld, ζ →∞ but σ is �nite; note that ζ ∼R in this limit. Then, (7.2)
becomes

I−nm =
∫∞
0

∫2π

0
g(κ, β) eiζf(κ,β) dβ dκ, (7.3)

where

g(κ, β) = ajn+2m+1(κa) eiκσ{cos (β−φ) cos θc+tan θc sin θc} cos nβ,

f(κ, β) = {cos (β − φ)− 1}κ sin θc.

The form of (7.3) suggests using the two-dimensional method of stationary phase.
We have

∂f

∂κ
= {cos (β − φ)− 1} sin θc and

∂f

∂β
=−κ sin (β − φ) sin θc.

These both vanish when β = φ, giving a line of stationary points. On this line,
f = 0, fκκ = 0, fββ =−κ sin θc and g(κ, φ) = ajn+2m+1(κa) eiκσ sec θc cos nφ. Then,
from (Wong, 2001, p. 454, Theorem 1), we obtain the estimate

I−nm ∼ b0ζ
−1/2 with b0 =

√
2π e−iπ/4

∫∞
0

g(κ, φ) dκ√
|fκκ + fββ|

.

Hence,

I−nm ∼ (a/ζ)1/2 hn+2m(σ) cos nφ (7.4)
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where

hn(σ) =
π e−iπ/4

√
sin θc

∫∞
0

Jn+3/2(κa) eiκσ sec θc
dκ

κ
.

This integral can be evaluated. From (Watson, 1944, p. 405, eqns (2) and (3)),∫∞
0

Jµ(κa) e±iκc dκ

κ
=

{
µ−1 exp (±iµ arcsin [c/a]), 0≤ c≤ a,

µ−1[c +
√

c2 − a2]−µaµ e±iπµ/2, 0 < a≤ c.
(7.5)

Let b = a cos θc and µ = n + 3
2 . For 0≤ σ≤ b, we take the plus in the �rst of (7.5)

with c = σ sec θc. For −b≤ σ≤ 0, we take the minus in the �rst of (7.5) with
c =−σ sec θc. Hence,

hn(σ) =
2π e−iπ/4

(2n + 3)
√

sin θc
ei(2n+3)ϑ, |σ| ≤ b = a cos θc, (7.6)

with

ϑ =
1
2

arcsin (σ/b).

The formula (7.6) shows the phase variation of hn(σ) across the wave beam.
Outside the beam, we use the second of (7.5); for example,

hn(σ) =
2π in+1

(2n + 3)
√

sin θc

{
(σ/b) +

√
(σ/b)2 − 1

}−n−3/2
, σ > b.

Combining (7.4) and (7.6) gives, within the upper beam,

I−nm ∼ 2π e−iπ/4ei(2n+4m+3)ϑ

(2n + 4m + 3)
√

sin θc

√
a

ζ
cos nφ, |σ| ≤ b.

Hence,

p∼
√

a

ζ

∞∑
n=0

εnFn(σ) cos nφ (7.7)

where

Fn(σ) = aN
√

sin θc
in e−iπ/4

Γ(n + 1/2)

∞∑
m=0

m!Un
m ei(2n+4m+3)ϑ

Γ(m + 3/2) (2n + 4m + 3)
. (7.8)

Notice that p decays as ζ−1/2 for all forcings of the disc, whereas the behaviour
across the beam (via ϑ) depends on those values of n and m present in the forcing
(see (4.21)).

We remark that integrals of the form (7.2) have been considered by Voisin
(2003, eqn (4.21)). He obtained far-�eld estimates (see his (4.16)) but our method
is much more direct.
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(b)The far-�eld velocity

In Cartesian coordinates, the (time-harmonic) velocity �eld is v = (ux, uy, w),
where

ux =
1
iω

∂p

∂x
, uy =

1
iω

∂p

∂y
, w =

iγ2

ω

∂p

∂z
,

γ = C/S, C = cos θc, S = sin θc and ω = NC. We use cylindrical polar coordinates
(r, φ and z) and conical polar coordinates (ζ, σ and φ), de�ned as follows (see
(7.1)):

x = r cos φ, y = r sinφ, ζ = rS + zC, σ = rC − zS.

Corresponding orthogonal unit vectors are

ζ̂ = (S cos φ, S sinφ, C), σ̂ = (C cos φ, C sin φ, −S), φ̂ = (− sinφ, cos φ, 0).

Applications of the chain rule give

v · ζ̂ =
1

iNS

∂p

∂σ
− cos 2θc

iωS2

∂p

∂ζ
,

v · σ̂ =
1

iNS

∂p

∂ζ
, v · φ̂ =

1
iω(ζS + σC)

∂p

∂φ
.

Within the conical wave beams, ζ is large and p decays as ζ−1/2 (see (7.7)), so
that

v∼ v ζ̂ with v = (iNS)−1∂p/∂σ.

Thus, using (7.7),

v∼
√

a

ζ

∞∑
n=0

εnGn(σ) cos nφ (7.9)

where Gn(σ) = (iNS)−1F ′
n(σ). As ϑ = 1

2 arcsin (σ/b), dϑ/dσ = 1
2(b2 − σ2)−1/2 and

Gn(σ) =
a in e−iπ/4

2
√

b2 − σ2
√

sin θc Γ(n + 1/2)

∞∑
m=0

m!Un
m ei(2n+4m+3)ϑ

Γ(m + 3/2)
. (7.10)

(c)The far-�eld energy transport

The time-averaged energy transport vector is (see, for example, (Voisin, 2003,
eqn (4.39)))

I = (ρ0/2)Re {pv } ∼ (ρ0/2)Re {pv }ζ̂ as ζ →∞.

Let us calculate the total energy �ux along the upper conical wave beam,

E ≡
∫∫

I · ζ̂ dS =
ρ0

2
ζ sin θc

∫ b

−b

∫π

−π
Re {pv }dφdσ,

using dS ∼ ζ sin θc dφdσ (Voisin, 2003, eqn (4.40)). Substituting (7.7) and (7.9),
and integrating over φ gives

E = πaρ0 sin θc

∞∑
n=0

εn

∫ b

−b
Re

{
Fn(σ)Gn(σ)

}
dσ.
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Use of (7.8) and (7.10) gives

FnGn =
a2N

2[Γ(n + 1/2)]2
√

b2 − σ2

∞∑
m=0

∞∑
`=0

`!m!Un
m Un

` e4i(m−`)ϑ

Γ(` + 3/2)Γ(m + 3/2) (2n + 4m + 3)
.

The remaining integral has the form∫ b

−b

e4imϑ dσ√
b2 − σ2

=
∫π/2

−π/2
e2imξ dξ = πδm0,

where δij is the Kronecker delta. Hence,

E =
1
2
π2a3ρ0N sin θc

∞∑
n=0

εn

[Γ(n + 1/2)]2

∞∑
m=0

(m!)2

[Γ(m + 3/2)]2
|Un

m|2

(2n + 4m + 3)
.

Evidently, this is positive: the total energy �ux is always outwards. However, the
energy transport vector, I, need not point outwards for all σ and for all φ, as we
show next by example.

(d) Some examples

De�ne I(σ, φ) by
I · ζ̂ ∼ aρ0

2ζ
I(σ, φ) as ζ →∞.

We calculate I for several examples.

Axisymmetric forcings

Start with axisymmetric forcing (n = 0). Then, we have

I(σ) = Re
{
F0G0

}
,

where

F0G0 =
a2N

2π
√

b2 − σ2

∞∑
m=0

∞∑
`=0

`!m!U0
m U0

` e4i(m−`)ϑ

Γ(` + 3/2)Γ(m + 3/2) (4m + 3)
.

For a heaving rigid disc (�6a), U0
m = U0δm0 and

I(σ) =
2a2N |U0|2

3π2
√

b2 − σ2
.

Similarly, for the forcing described in �6b, U0
m = U1δm1 and

I(σ) =
8a2N |U1|2

63π2
√

b2 − σ2
.

For these two examples, I(σ) > 0 for |σ|< b. However, suppose we combine the
two forcings, retaining both U0

0 and U0
1 . Then,

F0G0 =
2a2N

63π2
√

b2 − σ2

(
21|U0

0 |2 + 4|U0
1 |2 + 14U0

0 U0
1 e−4iϑ + 6U0

1 U0
0 e4iϑ

)
.
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Suppose, further, that U0
1 = 5

2αU0
0 , where α is a real parameter. Then

I(σ) =
2a2N |U0

0 |2

63π2
√

b2 − σ2

(
21 + 25α2 + 50α cos 4ϑ

)
,

where 4ϑ = 2 arcsin (σ/b) varies from −π to π as σ varies from −b to b, across
the beam. We can easily choose α so that I(σ) is negative in part of the beam; a
simple choice is α = 1.

Non-axisymmetric forcings

For a plate rolling about a diameter (�6c), we have n = 1, U1
m = 1

6V0δm0 and

I(σ, φ) = 4Re
{
F1G1

}
cos2 φ =

8a2N |V0|2

45π2
√

b2 − σ2
cos2 φ,

which is positive in all directions (φ) and across the beam (|σ|< b).
Suppose, now, that we combine heaving and rolling; the non-zero coe�cients

are U0
0 = U0 and U1

0 = 1
6V0. We have

I(σ, φ) = Re
{
(F0 + 2F1 cos φ)(G0 + 2G1 cos φ)

}
=

2a2N

45π2
√

b2 − σ2

(
15|U0|2 + 4|V0|2 cos2 φ

+ 2Re
{

3iV0U0e2iϑ − 5iU0V0e−2iϑ
}

cos φ
)
.

If we suppose, further, that V0 = βU0, where β is a real constant, then

I(σ, φ) =
2a2N |U0|2

45π2
√

b2 − σ2

(
15 + 4β2 cos2 φ− 16β sin 2ϑ cos φ

)
.

The sign of this quantity varies with β and with position within the beam (via φ
and ϑ).

8. Discussion

We have solved a class of problems for oscillating horizontal discs. As there is
uncertainty about the radiation condition in the frequency domain, we began
by solving an initial-value problem in the time domain, where causality can be
imposed. We also solved a boundary-value problem in the frequency domain, using
plane-wave (Fourier) decompositions with waves selected so as to have outgoing
group velocity. Both methods led to the same solution (once transient e�ects are
discarded in the time domain).

We used our time-harmonic solution to solve speci�c problems, such as those
for heaving and rolling rigid discs. It is expected that similar problems for elliptical
discs may also be solved (Martin 1986).

We showed how to calculate the far �eld, using asymptotic methods. In
particular, we estimated the pressure and velocity within the conical wave beams,
and we showed that the total energy �ux is outwards.
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