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We extend the vorticity-based modelling approach of Borden & Meiburg (Phys.
Fluids, vol. 25 (10), 2013, 101301) to non-Boussinesq gravity currents and derive
an analytical expression for the Froude number without the need for an energy
closure or any assumptions about the pressure. The Froude-number expression we
obtain reduces to the correct form in the Boussinesq limit and agrees closely with
simulation data. Via detailed comparisons with simulation results, we furthermore
assess the validity of three key assumptions underlying both our as well as earlier
models: (i) steady-state flow in the moving reference frame; (ii) inviscid flow; and
(iii) horizontal flow sufficiently far in front of and behind the current. The current
approach does not require an assumption of zero velocity in the current.
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1. Introduction

Three-quarters of a century ago, von Kármán (1940) introduced the idealized gravity
current model shown in figure 1(a). He considered the flow in the reference frame
moving with the current front, and invoked three main simplifying assumptions: (i) the
flow is steady in this reference frame; (ii) the flow is inviscid; and (iii) the fluid inside
the current is at rest. By neglecting the flow in the ambient and applying Bernoulli’s
law along the streamlines C–O and O–A, i.e. by assuming that the mechanical energy
is conserved along these streamlines, he obtained for the Froude number,

Fh = U√
g′h
=
√

2
σ
. (1.1)

Here, U denotes the front velocity of the gravity current, h represents its height, g′=
g(ρ1 − ρ2)/ρ1 indicates the reduced gravity, and σ = ρ2/ρ1 refers to the density ratio.
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(a) (b)

FIGURE 1. Idealized gravity current in a deep ambient (a) and a channel (b).

Benjamin (1968) objected to von Kármán’s analysis on the grounds that Bernoulli’s
equation should not be assumed to hold along streamline O–A, owing to the
dissipation that occurs in this interfacial region as a result of the velocity shear
between the current and the ambient, which causes the development of Kelvin–
Helmholtz billows and turbulence. Benjamin instead considered a corresponding
gravity current in a channel of finite depth H, as shown in figure 1(b). By applying
the same three simplifying assumptions as von Kármán, and also considering the
pressure distributions far up- and downstream of the current front to be hydrostatic,
Benjamin was able to write the conservation laws for mass and horizontal momentum
flux as

UH =U2(H − h), (1.2)
pCH + ρ2U2H = pBH + 1

2 g(ρ1 − ρ2)h2 − g(ρ1 − ρ2)Hh+ ρ2U2
2(H − h). (1.3)

For a given set of values for current thickness, channel height and density ratio, the
above relationships represent two equations for the three unknowns U, U2 and pB−pC,
so that one additional equation is required. To close the problem, Benjamin followed
von Kármán’s approach and applied Bernoulli’s law; however, he did so along the
bottom wall C–B of the channel, rather than along the interface, as von Kármán had
done. For a current of fractional height α = h/H, Benjamin thus obtained for the
Froude number,

FH,b = U√
g′H
=
[
α(1− α)(2− α)

σ(1+ α)
]1/2

. (1.4)

Note that the Froude number Fh based on the current height is related to the Froude
number FH based on the channel height by Fh = FHα

−1/2.
For Boussinesq gravity currents, Borden & Meiburg (2013) showed that invoking

an energy closure assumption such as Bernoulli’s equation in Benjamin’s model
becomes unnecessary if the conservation of vertical momentum is enforced, along
with the conservation of mass and horizontal momentum. This approach bypasses
the controversy between Benjamin and von Kármán entirely, as the conservation of
energy or head-loss arguments are not required. While there is no flow of vertical
momentum into or out of the control volume BCDE, the importance of vertical
momentum conservation inside the control volume is clear. The ambient fluid is
first accelerated and then decelerated in the vertical direction, which affects the
pressure profiles along the top and bottom walls. In turn, these profiles determine the
pressure jump pB − pC across the current front, for which the need of an additional
equation originally arose. Borden & Meiburg (2013) showed that the conservation of
vertical momentum can be accounted for by considering the linear combination of the
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differential versions of the steady-state, inviscid, horizontal and vertical momentum
equations, in the form of the Boussinesq vorticity equation,

u · ∇ω=−g′
∂ρ

∂x
, (1.5)

where ω= ∂v/∂x− ∂u/∂y denotes the vorticity, and x and y represent the horizontal
and vertical directions, respectively. By integrating (1.5) over the control volume, we
obtain a relation governing the total circulation around the control volume,∮

ω u · n dS=
∫∫
−g′

∂ρ

∂x
dA. (1.6)

Equation (1.6) states that, for incompressible flows in the Boussinesq limit, the
flow of vorticity into and out of the control volume is balanced by the baroclinic
generation of vorticity inside the control volume. For a sharp interface, the area
integral of the baroclinic term becomes g′h. Furthermore, no vorticity enters the
control volume, and the flow of vorticity out of the control volume is confined to
the vortex sheet between the current and the ambient. The vorticity flux carried by
this sheet equals the vortex sheet strength, γ =U2, multiplied by the sheet’s principal
velocity, uPV =U2/2 (Saffman 1992; Pozrikidis 1997). Equation (1.6) thus reduces to

1
2 U2

2 = g′h. (1.7)

Combining the vorticity conservation relationship (1.7) with the continuity equation
(1.2) produces

FH,c =
√

2α(1− α), (1.8)

where the subscript ‘c’ refers to ‘circulation model’. Borden & Meiburg (2013)
showed that, with regard to the vorticity flux of Boussinesq currents, this relationship
between the Froude number and the current height results in better agreement with
direct numerical simulation (DNS) results than Benjamin’s relationship (1.4). However,
even Benjamin’s model prediction is found to be quite close to the DNS data, which
indicates that his zero-head-loss assumption closely approximates the situation in the
simulated flow field.

We note that, in the above analysis, the pressure jump pB − pC across the current
front has become decoupled from the problem of determining U and U2, which were
determined from the conservation of mass and vorticity alone. Up to this point, we
have used the conservation of horizontal momentum only in linear combination with
the conservation of vertical momentum, i.e. as the vorticity equation. Consequently,
if desired, the pressure jump pB− pC across the current front can now be determined
from the horizontal momentum equation, as was shown by Borden & Meiburg (2013).
The decoupling of the pressure in the above analysis is analogous to employing the
streamfunction–vorticity formulation of the Navier–Stokes equations, which allows for
the numerical simulation of incompressible flow fields without having to calculate the
pressure explicitly. As explained earlier, by accounting for the conservation of mass,
horizontal and vertical momentum, the above analysis did not have to invoke any
assumptions about energy conservation. Rather, individual terms in the energy equation
can now be evaluated, so that the overall loss of energy can be calculated a posteriori,
rather than assumed a priori.

We remark that both Benjamin’s model and the vorticity model assume that
the flow is inviscid. However, the role of viscosity in a real flow affects the two
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models differently. Benjamin invokes the assumption of inviscid flow in order to
apply Bernoulli’s equation to a streamline, along which he expects dissipation to be
minimal. We expect that any small amount of viscosity, and hence dissipation, will
cause a loss of mechanical energy, so that Bernoulli’s equation will no longer hold
exactly. The vorticity model, on the other hand, invokes the assumption of inviscid
flow in the context of the vorticity equation, so that it can model the vorticity field
as an infinitely thin sheet. A small amount of viscous diffusion in the flow will
cause the sheet to attain a finite thickness. However, for the parallel flow field far
behind the current front, a small amount of viscosity will not affect the vorticity flux,
which remains the same for a thin but finite vorticity layer as it is for a vortex sheet.
Hence we would expect the vorticity model to be less sensitive to small amounts of
viscosity than Benjamin’s model. The only caveat concerns the stagnation point O,
where even a small amount of viscosity might potentially lead to a diffusive loss of
vorticity out of the control volume.

As mentioned above, the investigation by Borden & Meiburg (2013) was
limited to Boussinesq gravity currents. In the following, we extend their results to
non-Boussinesq liquid gravity currents, such as the ones investigated experimentally by
Lowe, Rottman & Linden (2005) and computationally by Birman, Martin & Meiburg
(2005). We will investigate in detail the significance of the three key assumptions
invoked by all of the above authors, viz. steady-state flow, inviscid flow and gravity
current fluid at rest.

2. Non-Boussinesq gravity currents: theory
In the following, we will present two alternative ways of extending the above

analysis to liquid non-Boussinesq flows. The first approach, which more closely
follows the work of Borden & Meiburg (2013) by focusing on the vorticity variable,
will consider the problem under the standard assumptions of steady-state inviscid
flow, with the gravity current fluid at rest. The second, alternative, approach starts
from the conservative form of the momentum equations for primitive variables. It
will be shown that, with this approach, it is possible to relax some of the standard
assumptions. The relationship between the two approaches will be discussed briefly
towards the end of the section.

2.1. Vorticity approach
In order to extend the modelling approach by Borden & Meiburg (2013) to
non-Boussinesq gravity currents, we begin with the steady-state Euler equation,

u · ∇u=− 1
ρ
∇P+ g. (2.1)

By taking the curl, we obtain the steady-state, inviscid, non-Boussinesq vorticity
transport equation,

u · ∇ω=−∇×
(

1
ρ
∇P
)
. (2.2)

Integrating over the control volume and using the divergence theorem on the left-hand
side yields an expression analogous to the Boussinesq case (1.6),∮

ω u · n dS=−
∫∫
∇×

(
1
ρ
∇P
)

dA =−
∫

1
ρ
∇P · dl. (2.3)
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The final integral is a contour integral along the boundary taken in the positive sense.
Unlike the Boussinesq version of the problem, the pressure no longer decouples from
the vorticity transport equation. However, since the density is taken to be piecewise
constant, in each layer we may take the density out of the integral and reduce the
right-hand side of (2.3) to (ρ−1

2 −ρ−1
1 )(PO−PA), which depends only on the difference

in pressures between O and A. Taking the fluid in the current to be at rest leads to
PO = PB = PA + ρ1gh. We have not assumed anything about the pressure distribution
in fluid 2 upstream or downstream.

From (2.3), we thus obtain for non-Boussinesq currents,∮
ω u · n dS= g′h

σ
. (2.4)

As for the Boussinesq case, there is no vorticity flux entering the control volume and
the vorticity leaving the control volume is confined to a vortex sheet with strength U2
and principal velocity U2/2. The vorticity balance can then be written as

1
2

U2
2 =

g′h
σ
. (2.5)

Combining this with the continuity equation produces an expression for the Froude
number,

FH,c =
√

2α
σ
(1− α). (2.6)

In the limit of small density contrasts, σ ≈ 1, so that the Boussinesq result is
recovered.

2.2. Primitive variables approach
Alternatively, we can begin with the steady-state, two-dimensional Euler equation in
conservative form,

∇ · (ρuu)+∇P= ρg, (2.7)

where y is the vertical direction, so that g = (0, −g) and the velocity vector has
components u = (u, v). We also assume that ∇ · u = 0. Taking the z component of
the curl of this equation gives a scalar equation that can be written as the divergence
of a vector field,

L=∇ · q =∇ ·
(

gρ + ∂x(ρuv)+ 1
2∂y[ρ(v2 − u2)]

−∂y(ρuv)+ 1
2∂x[ρ(v2 − u2)]

)
= 0. (2.8)

After integrating over the control volume BCDE and applying the divergence theorem,
we are left with integrals over qy along the top and bottom walls, and integrals over
qx along the in- and outflow boundaries. Along the top and bottom walls, we have
v = 0, so that

qy =−ρu∂yv − ρu∂xu− 1
2 u2∂xρ =− 1

2 u2∂xρ, (2.9)

where the last equality follows from ∇ · u = 0. Along the top, there are no density
gradients, so that the last term is zero. Along the bottom, if x= 0 denotes the front
location, the velocity in the vicinity of the front will scale as u∝U

√
x/h. This was

shown first by von Kármán (1940) for the flow in the ambient, assuming that the
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current was stationary, and later extended by McElwaine (2005), who demonstrated
that it also holds in the current. We expect the local density profile near the front
to be approximately of error function shape, ρ = (ρ1 + ρ2)/2− (ρ1 − ρ2) erf(x/W)/2,
where W is a (small) width. Multiplying this by the velocity and integrating gives a
contribution proportional to (ρ1 − ρ2)U2W/h2 for the right-hand side of (2.9), which
is small provided that W is much less than the current height h.

Along the in- and outflow boundaries, we have the qx term to consider. When
integrating, we can use v = 0 along the top and bottom walls to obtain∫ H

0
qx dy = g

∫ H

0
ρ dy+

∫ H

0
∂x(ρuv) dy− 1

2
ρu2

∣∣∣∣H
0

. (2.10)

This result is general in the sense that it holds for any density field, as well as any
divergence-free velocity field such that v vanishes on the upper surface.

We now limit ourselves to flows in which W/h is small, so that the
∫

qy dx
contribution discussed above is negligible. Furthermore, we assume that ∂x(ρuv)= 0
sufficiently far in front of and behind the front. The implications of this assumption
will be discussed in more detail below.

The shapes of the inflow and outflow velocity profiles are not important since, when
we integrate, only the top and bottom values contribute. The driving term is then seen
as the difference in the integral of density between the inflow and outflow boundaries:

g
∫ H

0
[ρBE(y)− ρCD(y)] dy= 1

2
[u2

EρE − u2
BρB − u2

DρD + u2
CρC]. (2.11)

In the case considered in detail in this paper, we have uE =U2, uB = 0 and uD = uC,
so that

gh(ρ1 − ρ2)= 1
2 U2

2ρ2. (2.12)

For general velocity profiles but piecewise-constant density, (2.11) yields

ρ2[Hg− 1
2 u2

D + 1
2 u2

C] = ρ2[(H − h)g− 1
2 u2

E] + ρ1hg, (2.13)

u2
E − u2

D + u2
C = 2hg(ρ1/ρ2 − 1)= 2hg′/σ . (2.14)

When uD = uC, this relation gives a Froude-number condition,

FH,c =
√

2α
σ
(1− α), (2.15)

which is identical to the result obtained with the vorticity approach (2.6). However, in
the case when uD 6= uC, there is no natural choice for the front velocity to define the
Froude number.

The result can be extended to integration along a streamline rather than just y= 0
or y=H. Integrating from A to B to C and then back along a streamline just outside
the current to A gives

u2
A = 2hg′. (2.16)

This suggests that perhaps the best measure of velocity to use is actually the velocity
uA taken just outside the current.

The above analysis holds for general input and output velocity profiles. Details
regarding the extension of the primitive variables approach to three-dimensional flows
are presented in appendix A.
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FIGURE 2. Schematic of a non-Boussinesq lock-exchange gravity current. The Navier–
Stokes simulations focus on the buoyant current along the top wall, which more closely
corresponds to a quasi-steady flow in the moving reference frame than a negatively
buoyant bottom current.

In the following, we analyse the implications of assuming∫ H

0

∂

∂x
(ρuv) dy= 0 (2.17)

in the above derivation. Consider the inviscid, steady-state, vertical momentum
equation in conservative form,

∂

∂x
(ρuv)+ ∂

∂y
(ρv2)=−∂P

∂y
− ρg, (2.18)

and integrate from C to D, using vC = vD = 0,∫ D

C

∂

∂x
(ρuv) dy+ (ρDv

2
D − ρCv

2
C)= (PC − PD)− ρ2gH. (2.19)

This demonstrates that the assumption (2.17) corresponds to requiring that PC and
PD are hydrostatic relative to one another. Corresponding considerations apply to the
outflow boundary, provided that vA= 0, i.e. that the interface at the outflow boundary
is flat.

3. Numerical simulations
In order to assess the relative accuracy of Benjamin’s and the vorticity model,

we compare their predictions to two-dimensional Navier–Stokes simulations of
lock-exchange gravity currents. The set-up of the simulations is shown in figure 2,
with the dashed line indicating the initial lock configuration. If the lock depth d is
equal to (less than) the height H of the domain, the resulting flow is referred to as
a full-depth (partial-depth) current.

During each simulation, one positively buoyant current is generated that propagates
to the left along the top wall, and one negatively buoyant current propagates to the
right. For full-depth locks, this negatively buoyant current has the form of a gravity
current along the bottom wall, whereas for partial-depth locks, it is a bore travelling
along the density interface. As will be seen below, the light current along the top wall
generally can be approximated more accurately by a quasi-steady flow in the reference
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frame moving with the current tip, so that it will be more suitable for assessing the
validity of the various models. For light currents, Benjamin’s analysis yields

FH,b = U√
g′H
=
[
α(1− α)(2− α)

1+ α
]1/2

, (3.1)

instead of (1.4) for dense currents, while the vorticity model results in

FH,c =
√

2α(1− α), (3.2)

rather than the corresponding relationship (2.6) for dense currents.

3.1. Governing equations
We follow the simulation approach of Birman et al. (2005) and employ the
incompressible, non-Boussinesq, Navier–Stokes equations in two dimensions. As long
as there is minimal diffusion, the velocity field can be considered divergence-free, as
the flow consists of two separate incompressible fluids. For a discussion of the effects
of diffusion on the continuity equation and their quantitative assessment, we refer the
reader to Chen & Meiburg (2002). The dynamic viscosities of the two fluids are taken
to be equal, and the density field evolves based on a convection–diffusion equation.
To minimize mixing, we employ small diffusivities. Referring to figure 2 and letting
an asterisk denote a dimensionless quantity, we non-dimensionalize the equations
with the lock height d, the buoyancy velocity Ub=√g′d, where g′= g(ρ1− ρ2)/ρ1 is
the reduced gravity, the dynamic pressure ρ1U2

b and the ambient fluid density ρ1 to
obtain

∇ · u∗ = 0, (3.3)
Du∗

Dt∗
=− 1

ρ∗
∇P∗ + 1

ρ∗Re
∇2u∗ + 1

1− σ eg, (3.4)

Dρ∗

Dt∗
= 1

Re Sc
∇2ρ∗. (3.5)

Here D/Dt∗ denotes the material derivative and eg is the unit vector in the direction
of gravity. The non-dimensional parameters are then

Re= ρ1Ubd
µ

, Sc= µ

ρ1κ
, σ = ρ2

ρ1
, (3.6a−c)

where µ represents the dynamic viscosity and κ indicates the molecular diffusivity
of the density field. Alternatively, we can employ the Péclet number Pe= Re Sc. We
recast the momentum equation (3.4) into the vorticity form,

Dω∗

Dt∗
= ρ

∗
y

ρ∗
Du∗

Dt∗
− ρ

∗
x

ρ∗
Dv∗

Dt∗
+ 1
ρ∗Re
∇2ω∗ − ρ∗x

(1− σ)ρ∗ , (3.7)

where the velocity is defined as

u∗ =
(

u∗
v∗

)
. (3.8)
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We employ free-slip and no-flux conditions along all walls, so that the vorticity
vanishes along the boundaries. We emphasize that this does not necessarily translate
into a symmetry boundary condition for the vorticity field. To clarify this issue,
consider the flow along the top wall in the vicinity of the stagnation point. Applying
the boundary conditions ω∗ = 0 and ρ∗y = 0 yields

ω∗yy =
Re

1− σ ρ
∗
x , (3.9)

so that ω∗yy 6= 0 in regions with horizontal density gradients.

3.2. Computational approach
The unsteady simulations are performed in a streamfunction–vorticity formulation,
by integrating (3.7) and (3.5) with an explicit third-order low-storage Runge–Kutta
scheme (Williamson 1980). The time derivatives ∂u∗/∂t∗ and ∂v∗/∂t∗ appearing on
the right-hand side of (3.7) are evaluated iteratively at each Runge–Kutta substep. A
pseudospectral method in the x direction and a sixth-order compact finite difference
scheme in the y direction are employed for the spatial discretization. As mentioned
above, symmetry boundary conditions cannot be applied along the top and bottom
walls, so that we instead employ right at the boundary a one-sided third-order scheme
for the concentration and a fourth-order scheme for the vorticity, along with a centred
fourth-order scheme one point away from the boundary.

An equation for pressure can be found by taking the divergence of (3.4),

∇2P∗ =−2ρ∗
[(

∂u∗

∂x∗

)2

+ ∂u∗

∂y∗
∂v∗

∂x∗

]
− ∂ρ

∗

∂x∗
Du∗

Dt∗
− ∂ρ

∗

∂y∗

(
Dv∗

Dt∗
+ 1

1− σ
)
. (3.10)

Since this pressure relation is decoupled from the vorticity and density equations, the
pressure field can be evaluated during a postprocessing step after the simulation has
finished.

3.3. Diagnostic tools
Figure 3 shows a representative full-depth simulation at various times. The
computational grid employs 16 384 × 512 points, with a time step of O(5 × 10−4),
although its exact size varies according to the Courant–Friedrichs–Lewy (CFL)
condition. Figure 3 confirms that the buoyant current propagating to the left along
the top wall is more amenable to quasi-steady modelling than the bottom current.
Nevertheless, below, we will discuss comparisons between DNS simulation results
and model predictions for both the upper and the lower current.

The simulation is performed in the laboratory frame, and the results are then shifted
to the reference frame moving with the current front during postprocessing. To this
end, we employ linear interpolation to find the tip of the upper current as the location
where ρ∗ = (σ + 1)/2 along the top wall. The front velocity U∗ is then determined
via linear regression on the front location versus time data (cf. figure 4). To shift
the results to the moving reference frame, U∗ is subtracted from the laboratory-frame
velocity field.

The height h∗(x∗, t∗) of the top current is defined as

h∗(x∗, t∗)= H
d
−
∫ H/d

0

ρ∗(x∗, y∗, t∗)− σ
1− σ dy∗. (3.11)
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FIGURE 3. Simulation results for the density field of a full-depth, non-Boussinesq flow
with Re= 5000, Pe= 50 000 and σ = 0.3: (a) t∗ = 14, (b) t∗ = 22 and (c) t∗ = 30.
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FIGURE 4. Calculation of the quasi-steady front velocity U for the full-depth top current
with Re= 5000, Pe= 50 000 and σ = 0.3. The small circles represent the tip location at
every 2000th time step. In order to evaluate the front velocity at a given time, e.g. the
large circle, we employ a local linear best fit of the front locations, as indicated by the
line.

For the flow of figure 3, the current height is shown as a function of the distance
behind the current tip in figure 5, at selected times. This confirms that the steady-state
approximation holds with good accuracy near the front of the buoyant current.

In order to assess the validity of Benjamin’s and the current model, we will
primarily compare their predictions for the vorticity flux as a function of location
with corresponding simulation results. Borden & Meiburg (2013) discuss the reasons
for focusing on the vorticity flux, rather than the front velocity, primarily because of
the difficulty in identifying a single representative value for the current height to use
in (1.4) and (2.6). In the past, different authors have employed such measures as the
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FIGURE 5. Current height as a function of distance behind the front for a full-depth top
current with Re= 5000, Pe= 50 000 and σ = 0.3, at t∗ = 20, 22, 24, 26, 28 and 30. The
steady-state approximation is seen to be valid in the vicinity of the current tip.

first maximum in the current height behind the front, the current height at the gate
location, a spatially averaged value for this purpose or the centre of mass (Anjum,
McElwaine & Caulfield 2013). Depending on which value is selected to represent the
current height, the predicted front velocities can vary appreciably, so that the front
velocity is ill-suited for determining which model is more accurate.

The vorticity flux ΩB predicted by the Benjamin model can be found by using (3.1),
along with the conservation of mass,

ΩB

g′d
=Ω∗B =

h
d

2− α
2− 2α2

. (3.12)

The corresponding vorticity flux predicted by the current model is

ΩC

g′d
=Ω∗C =

h
d

(3.13)

(cf. also equations (16) and (18) in Borden & Meiburg (2013)). Both models predict
identical fluxes for α= 1/2 and in the limit α→ 0, i.e. for currents that either occupy
half the channel height or are much smaller than the channel height. The ratio between
the two predicted vorticity fluxes reaches a maximum of approximately 1.07 at α =
2−√3≈ 0.268.

The origin of vorticity flux discrepancies between simulation results and theoretical
predictions will be discussed here for the vorticity approach, with a corresponding
discussion for the primitive variables approach given in appendix B. If we had kept
the viscous and unsteady terms when deriving (2.3), we would have obtained

Ω∗ =Ω∗C + E∗P − E∗t − E∗µ, (3.14)

where Ω∗ represents the instantaneous dimensionless vorticity flux out of the domain.
Here Ω∗C indicates the dimensionless vorticity flux predicted by the vorticity model for
the steady, inviscid case in which the gravity current fluid is at rest; and E∗P, E∗t and
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E∗µ denote the deviations from this idealized model due to, respectively, fluid motion
within the gravity current, unsteadiness and viscous effects,

E∗P =
∫∫
−∇×

(
1
ρ∗
∇P∗

)
dA∗ −Ω∗C, (3.15)

E∗t =
∫∫
∇×

(
∂u∗

∂t∗

)
dA∗, (3.16)

E∗µ =−
1

Re

∫∫
∇×

(
1
ρ∗
∇2u∗

)
dA∗, (3.17)

where the integration is carried out over the control volume BCDE. The discrepancies
derived in appendix B for the primitive variables approach are closely related to
(3.15)–(3.17). For this reason, we will in the following section limit our discussion
of the discrepancies between theoretical model predictions and simulation results to
terms (3.15)–(3.17).

We furthermore remark that, if we assume a hydrostatic pressure profile along the
downstream boundary B–A–E of the control volume, E∗P can alternatively be evaluated
as

E∗P = (P∗O − P∗B)
σ − 1
σ

. (3.18)

The difference between evaluating E∗P via (3.15) and (3.18) thus provides information
on how close to hydrostatic the pressure profile is along B–A–E. The pressure
difference P∗O − P∗B can be found by integrating the x-momentum equation from O to
B in the simulation. The x-momentum equation yields

P∗O − P∗B =
σU∗2B

2
− σE∗µ,B − σE∗t,B, (3.19)

E∗µ,B =
1
σRe

∫ B

O
∇2u∗ dx∗, (3.20)

E∗t,B =−
∫ B

O

∂u∗

∂t∗
dx∗. (3.21)

Note that E∗µ,B and E∗t,B can be thought of as partial evaluations of E∗µ and E∗t after
using Stokes’ theorem. By substituting (3.19) into (3.18), one obtains

E∗P = (1− σ)
(
−U∗2B

2
+ E∗µ,B + E∗t,B

)
. (3.22)

For E∗µ,B≈E∗µ and E∗t,B≈E∗t , E∗P, E∗µ and E∗t will tend to cancel each other out partially
in (3.14). This effect will be greatest when σ and the fluid motion inside the current
U∗B are both small. As σ → 1, E∗P → 0, which is consistent with the Boussinesq
vorticity model, which did not require any assumptions regarding the pressure profile
inside the current.

4. Simulation results and discussion
4.1. Full-depth lock releases

Figure 6 compares the model predictions to the vorticity flux in the simulation for
the full-depth current with Re= 5000, Pe= 50 000 and σ = 0.3, as a function of the
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FIGURE 6. Vorticity flux normalized by g′d versus distance x∗ behind the current head
for the full-depth current with Re= 5000, Pe= 50 000 and σ = 0.3 at t∗= 22. The values
predicted by Benjamin’s model (3.12) and the circulation model (3.13) are close to each
other, and to the simulation results.
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FIGURE 7. (a) Components of the difference between the vorticity flux predicted by
the circulation model and the flux observed in the simulation, stemming from the three
assumptions of motionless fluid inside the current (E∗P), steady state (E∗t ) and inviscid flow
(E∗µ). (b) Simulation vorticity flux Ω∗ along with Ω∗C and Ω∗C+E∗P−E∗t −E∗µ as functions
of x∗, for the full-depth current with Re = 5000, Pe = 50 000 and σ = 0.3 at t∗ = 22.
All quantities are evaluated directly from the simulation data, and made dimensionless by
g′d. The discrepancy between the vorticity flux Ω∗C predicted by the vorticity model and
the simulation result Ω∗ is due to the quantities E∗P, E∗t and E∗µ. Here E∗P is evaluated
using (3.15).

distance behind the current tip. We note that both model predictions are very close to
the simulation result, and also to each other. This is perhaps not unexpected in light
of the fact that for a full-depth current α ≈ 0.5, and that for α = 0.5 the vorticity
model (3.13) and Benjamin’s model (3.12) predict identical vorticity flux values.

We now analyse the magnitude of the terms that account for the deviation between
the simulation result and the prediction by the vorticity model, i.e. E∗P, E∗t and
E∗µ. Figure 7(a) shows the values of the integrals in (3.15)–(3.17) as functions of
the distance x∗ of the control volume boundary B–A–E behind the current front.
Figure 7(a) indicates that, close to the current tip, the assumption of steady flow
is very accurate. Further downstream, the influence of the unsteadiness increases,
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FIGURE 8. Pressure-related deviation E∗P evaluated using (3.15) and (3.18), for the
full-depth current with Re = 5000, Pe = 50 000 and σ = 0.3 at t∗ = 22. The difference
near the tip reflects the non-hydrostatic nature of the pressure in this region, since (3.18)
implied a hydrostatic pressure distribution. Farther behind the current tip, the assumption
of hydrostatic pressure is very accurate. All quantities are made dimensionless by g′d.

which is consistent with the graphs of the current heights at various times shown in
figure 5. The influence of viscous diffusion is significant near the tip of the current,
but very small further downstream. The fluid motion inside the gravity current plays
a significant role near the current tip, and farther downstream where the current
height varies more strongly with x∗. Figure 7(b) confirms that, if the vorticity model
prediction is augmented by the three terms E∗P, E∗t and E∗µ, the correct simulation
result for the vorticity flux is recovered.

Figure 8 shows the magnitude of the pressure term E∗P as a function of the distance
x∗ of the downstream control volume boundary B–A–E behind the current tip. The
open symbols are obtained by direct integration of the integral in (3.15) from the
simulation pressure field, while the solid line assumes a hydrostatic pressure profile
along B–A–E and evaluates (3.18). The results are shown to be in good agreement
everywhere except near the current tip, which reflects the non-hydrostatic nature of
the pressure field in this region. Recall that the non-Boussinesq vorticity model made
two assumptions about the pressure: (i) it assumed that the pressure distribution at
the downstream boundary of the control volume is hydrostatic; and (ii) it assumed
that, as a result of the current fluid being at rest, PO−PB= 0. Figure 8 indicates that,
far behind the current front, assumption (i) is very accurate, so that assumption (ii)
is largely responsible for the discrepancy between simulation results and model
predictions for the vorticity flux.

Figure 9 analyses the dependence of E∗P, E∗t and E∗µ on the density ratio σ and on
Re. We observe that increases in σ or Re tend to reduce the magnitude of all three
of these terms, which indicates that predictions by the vorticity model become more
accurate as the flow is less viscous and closer to Boussinesq. The decrease in E∗P for
larger σ is consistent with (3.22) and reflects the fact that the pressure profile inside
the current becomes less influential as the flow approaches Boussinesq conditions. In
order to understand the decrease in E∗P for larger Re values, it is important to realize
that for higher Re the shear layer between the current and the ambient becomes
thinner, so that the ambient stream drags less current fluid with it. Consequently,
the counterflow along the top wall inside the current required to replenish the loss
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FIGURE 9. Effect of σ and Re on E∗P, E∗t and E∗µ: (a,c,e) Re= 5000 and σ = 0.3 (solid
line), 0.5 (dashed line) and 0.7 (dotted line); (b,d,f ) σ = 0.3 and Re= 5000 (solid line),
10 000 (dashed line) and 20 000 (dotted line). All three of E∗P, E∗t and E∗µ get smaller for
lower viscosity and reduced density contrast, as explained in the text.

of current fluid in the mixing layer is reduced in strength for larger Re, which is
confirmed by figure 10. Hence, the streamwise pressure gradient inside the current is
weaker for higher Re, so that E∗P is reduced.

The weaker flow inside the current for larger σ and higher Re also lowers any
unsteady effects, thereby reducing E∗t . Finally, (3.20) indicates that E∗µ scales with
1/(σRe), so that it should decrease for larger values of σ and Re, which is confirmed
by figure 9.

4.2. Partial-depth lock releases
Figure 11 shows the evolution of a partial-depth gravity current from a lock with
d/H = 1/2. The front of the buoyant current is not as smooth as that of the
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FIGURE 10. Streamwise velocity along the top wall inside the current, as a function of
the distance x∗ behind the current front, for σ = 0.3. For increasing Re values, the flow
inside the current is reduced.
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FIGURE 11. Density field of a partial-depth, non-Boussinesq gravity current with Re =
5000, Pe= 50 000, σ = 0.3 and d/H = 0.5: (a) t∗ = 6, (b) t∗ = 14 and (c) t∗ = 22.

corresponding full-depth current discussed earlier, as a result of instabilities that
emerge along the interface. Nevertheless, figure 12 indicates that, for both values
of σ tested, the vorticity model predicts the vorticity flux accurately near the front.
Benjamin’s model, while not quite as close to the DNS results as the vorticity model,
nevertheless shows good quantitative agreement with the simulation data, which
indicates that his zero-head-loss assumption closely approximates the situation in
the simulated flow. This is confirmed by figure 13, which demonstrates that (for the
present case of slip walls) the head-loss along the wall is limited to approximately
3–4 % of the free-stream kinetic energy.

The reasons for the good agreement between the vorticity model predictions and
the simulation data become clear from figure 14, which shows the fluid velocity
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FIGURE 12. Vorticity flux versus distance behind the current tip for the partial-depth
current with Re= 5000, Pe= 50 000, d/H= 0.5 and σ = 0.2 (a) and σ = 0.3 (b) at t∗= 6.
For both density ratios, the circulation model (3.13) is seen to agree very closely with
the simulation results. Benjamin’s model (3.12), while not quite as close, nevertheless also
yields good quantitative agreement.
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FIGURE 13. Head-loss inside the current along the top wall, for the partial-depth current
with Re = 5000, Pe = 50 000, d/H = 0.5 and σ = 0.3 at t∗ = 6. The head-loss is
limited to approximately 3–4 % of the free-stream kinetic energy, which explains the good
quantitative agreement between Benjamin’s model predictions and the simulation results.

along the top wall inside the current, for several full- and half-depth currents. The
partial-depth currents generally give rise to smaller velocities inside the current. This
is a consequence of the weaker acceleration of the ambient fluid around the tip of
partial-depth currents, so that partial-depth currents experience less shear and a lower
momentum transfer. Equation (3.22) indicates that the weaker values of U∗B associated
with half-depth currents enhance the partial cancellation of E∗P by E∗µ and E∗t , thereby
resulting in improved model predictions.

Figure 15 shows the deviation E∗P due to the fluid motion inside the gravity current,
evaluated from (3.15) and (3.18), respectively. The two results agree closely with
each other in the vicinity of the current tip, which demonstrates that the pressure is
approximately hydrostatic there, despite the interfacial instabilities. Consistent with
our earlier observations for full-depth currents, the deviation decreases for larger σ .
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FIGURE 14. Fluid velocity inside the current along the top wall. Near the current tip,
partial-depth currents (shown at t∗ = 6) exhibit smaller velocities than full-depth currents
(shown at t∗ = 22).

0 0.5 1.0 1.5 2.0 2.5
–0.01

0

0.01

0.02

0.03

0.04

0.05(a) (b)

0 0.5 1.0 1.5 2.0 2.5
–0.01

0

0.01

0.02

0.03

0.04

0.05

FIGURE 15. Deviation E∗P due to the fluid motion inside the gravity current, evaluated
from (3.15) (circles) and (3.18) (solid line), respectively. The simulations are the same
as in figure 11 at t∗ = 6 with σ = 0.2 (a) and σ = 0.3 (b), and all quantities are made
dimensionless by g′d.

Furthermore, the values of E∗P and E∗µ as a fraction of Ω∗C are only about half as large
as for the full-depth current. This also contributes to the good agreement observed in
figure 12.

4.3. Dense currents

We now focus on the dense current moving towards the right along the bottom wall
in figure 3. Figure 16 indicates that this current also has a steady front velocity.
Figure 17 shows the bottom current heights for several times, corresponding to
figure 5 for the top current. While a steady-state region again develops near the tip,
it is much shorter than that for the top current, as a result of the turbulent billows.
Figure 18 compares DNS results and model predictions for the vorticity flux in this
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FIGURE 16. Calculation of the quasi-steady front velocity U for the full-depth bottom
current with Re = 5000, Pe = 50 000 and σ = 0.3. The small circles represent the tip
location at every 2000th time step. In order to evaluate the front velocity at a given time,
e.g. the large circle, we employ a local linear best fit of the front locations, as indicated
by the line.
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FIGURE 17. Current height as a function of distance behind the front for a full-depth
bottom current with Re= 5000, Pe= 50 000 and σ = 0.3, at t∗ = 20, 22, 24, 26, 28 and
30. The steady-state approximation is seen to be valid in the vicinity of the current tip,
although this steady-state region is significantly shorter than that for the top current.

region. The prediction for the vorticity flux given by the Benjamin model is

ΩB

g′d
=Ω∗B =

h
d

2− α
2σ(1− α2)

; (4.1)

the corresponding vorticity flux predicted by the current model is

ΩC

g′d
=Ω∗C =

h
d

1
σ
. (4.2)
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FIGURE 18. Vorticity flux normalized by g′d versus distance x∗ behind the current head,
for the full-depth bottom current with Re= 5000, Pe= 50 000 and σ = 0.3 at t∗ = 22. In
the steady-state region near the tip, the values predicted by Benjamin’s model (4.1) and
the circulation model (4.2) are close to each other, and to the simulation results.

These predictions differ from (3.12) and (3.13) by a factor of 1/σ . Good agreement
is seen for both models, in spite of the fact that the hydrostatic pressure assumption
may not be very accurate so close to the tip.

5. Summary and conclusions

In the present investigation we have extended the vorticity-based modelling
approach by Borden & Meiburg (2013) to non-Boussinesq gravity currents. This
approach enables us to arrive at a closed-form solution for the Froude number
without having to invoke an energy-based closure assumption, such as had been
required in the analyses by von Kármán (1940) and Benjamin (1968). Hence the
vorticity approach bypasses the discussion among those authors as to which energy
closure provides the optimal fit with experimental and simulation data.

In the Boussinesq limit, it had been possible to decouple the pressure entirely from
the conservation equations for mass and vorticity, so that no assumptions whatsoever
had been required regarding the pressure. For non-Boussinesq currents, on the other
hand, the pressure does not decouple from the vorticity transport equation, so that
a certain amount of information regarding the pressure is needed for the exact
integration of the vorticity equation over a finite control volume. To this end, we
stipulate that the pressure distribution inside the current is hydrostatic. Furthermore,
we assume the pressure inside the current to be constant along the wall, since the
current fluid is considered to be at rest. On this basis we obtain a closed-form
solution for the Froude number of non-Boussinesq gravity currents that reduces to
the correct expression derived for the Boussinesq limit.

In order to assess the accuracy of the predictions by the various models for
non-Boussinesq flows, we analyse the rate at which vorticity is convected out of the
control volume. For full-depth currents, the prediction by the vorticity model is close
to that of Benjamin’s model, and both are very close to corresponding high-resolution
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simulation data. For partial-depth currents, the vorticity model agrees closely with
simulation data. We show that Benjamin’s model predictions also reproduce the
DNS results with good accuracy, which indicates that the simulated flow satisfies
Benjamin’s assumption of vanishing head-loss to a good approximation. Hence, the
key contribution of the vorticity model should be seen in its ability to predict the front
velocity without any energy-based closure assumptions, rather than in its improved
accuracy.

We furthermore discuss the influence of the three main assumptions underlying all
of the above models, including the present vorticity-based model, regarding the nature
of the flow, namely that: (i) the flow is steady in the reference frame moving with the
current front; (ii) the flow is inviscid; and (iii) the fluid inside the current is at rest. We
find the quasi-steady flow assumption to be very accurate in the neighbourhood of the
front of the top current, although unsteady effects increase farther downstream. The
influence of viscosity is significant near the front, but very small further downstream.
The effects of the fluid motion inside the current are small at an intermediate distance
of a few current heights behind the tip, but they increase both farther downstream
and in the immediate neighbourhood of the tip. For a constant density ratio, the
model predictions generally improve with increasing Reynolds number; while for a
constant Reynolds number, they improve for weaker density contrasts. We furthermore
show that the effects of the above three assumptions partially cancel each other out
with regard to the predicted vorticity flux, which explains the good agreement with
simulation data across the entire range of Reynolds numbers and density ratios
investigated.
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Appendix A. Extension to three-dimensional flows

The steady-state Euler equation can be written in conservative form as

∇ · (ρuu)+∇p = ρg. (A 1)

We define L as the z component of the curl of (A 1). We take y as the vertical
direction so that g= (0,−g, 0), and denote the velocity components by u= (u, v,w).
Then we can write L=∇ · q, where

q =
qx

qy
qz

=
gρ + ∂x(uvρ)+ ∂z(vwρ)+ 1

2∂y[ρ(v2 − u2)]
−∂y(uvρ)− ∂z(uwρ)+ 1

2∂x[ρ(v2 − u2)]
0

 . (A 2)

Here q is arbitrary up to a gauge transformation, so that we can add the curl of any
vector field to q and still have L=∇ · q. We have used this choice so that qz = 0.
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If the system is two-dimensional or periodic in the spanwise direction, then on
applying the divergence theorem there is no boundary in the z direction, so that there
will be no contribution from qz. If sidewalls are present, we need to integrate qz on
the walls. However, the integral is zero, so that again there is no contribution.

Now consider qy on the basal and top surfaces where v = 0. Using the continuity
equation,

qy =−uρ∂yv − ∂z(uwρ)− 1
2∂x(ρu2)= uρ∂zw− ∂z(uwρ)− 1

2 u2∂xρ. (A 3)

When we integrate with respect to z, the ∂z(uwρ) term will be zero whether the system
is periodic or has sidewalls. All of these terms are likely to be small in the limit of
time averaging, low diffusion and high Reynolds number. This follows for the uρ∂zw
term in the periodic case through symmetry arguments, although in the presence of
sidewalls there may be some mean contribution.

Finally, we have the qx term to consider. The y integration of ∂y(ρv
2)/2 will be zero,

since v vanishes on the top and basal surfaces. Integration of ∂z(vwρ) in z results in
zero for both periodic boundaries and sidewalls (w= 0). With these simplifications, qx

can be written as
qx = gρ + ∂x(uvρ)− 1

2∂y(ρu2). (A 4)

In the same manner as in § 2.2, we assume that the integration in y and z of ∂x(uvρ)
is zero. Then

qx = gρ − 1
2∂y(ρu2), (A 5)

so that we recover the same result for three dimensions as we had in two dimensions.

Appendix B. Vorticity flux deviations for the primitive variables approach

An equation corresponding to (3.14) for the vorticity approach will now be derived
for the primitive variables approach in two dimensions. We start with the conservative
equations,

∂t(ρu)+ ∂x(ρu2)+ ∂y(ρuv)+ ∂xP−µ∇2u= 0, (B 1)

∂t(ρv)+ ∂x(ρuv)+ ∂y(ρv
2)+ ∂yP−µ∇2v + ρg= 0. (B 2)

Taking the z component of the curl, dividing by ρ1U2
b and integrating over BCDE

gives

E∗t +
1

ρ1U2
b

∮
q · n̂ dl+ E∗µ = 0, (B 3)

where

q =
(

gρ + ∂x(ρuv)+ 1
2∂y(ρ(v

2 − u2))

−∂y(ρuv)+ 1
2∂x(ρ(v

2 − u2))

)
, (B 4)

and Ub =√g(1− σ)H is the buoyancy velocity. The terms E∗t and E∗µ are given by

E∗t =
∫∫
∇
∗ × (∂t(ρ

∗u∗)) dA∗, (B 5)

E∗µ =−
1

Re

∫∫
∇
∗ × (∇∗2u∗) dA∗. (B 6)
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Integrating the second term in (B 3), and using the fact that v = 0 on the top and
bottom walls, as well as uC = uD, gives∮

q · n̂ dl =
∫

DE+BC

1
2

u2∂xρ dx+
∫

EB+CD
gρ dy

+
∫

EB+CD
∂x(ρuv) dy− 1

2
ρBu2

B +
1
2
ρEu2

E. (B 7)

The vorticity flux is defined as

Ω =
∫

EB
u(∂xv − ∂yu) dy=

∫
EB

u∂xv dy−
∫

EB

1
2
∂y(u2) dy=

∫
EB

u∂xv dy− 1
2
(u2

B − u2
E).

(B 8)
Consequently

−1
2
ρBu2

B +
1
2
ρEu2

E =
1
2
ρE(u2

E − u2
B)+

1
2

u2
B(ρE − ρB)

= ρEΩ − ρE

∫
EB

u∂xv dy+ 1
2

u2
B(ρE − ρB). (B 9)

Substituting (B 9) into (B 7) gives∮
q · n̂ dl =

∫
DE+BC

1
2

u2∂xρ dx+
∫

EB+CD
gρ dy+

∫
EB+CD

∂x(ρuv) dy

+ ρEΩ − ρE

∫
EB

u∂xv dy+ 1
2

u2
B(ρE − ρB). (B 10)

We can divide by ρ1U2
b and substitute this back into (B 3). Since ρE = ρ1 for a top

current,

1
ρ1U2

b

∮
q · n̂ dl =

∫
DE+BC

1
2

u∗2∂xρ
∗ dx∗ +

∫
EB+CD

ρ∗

1− σ dy∗ +
∫

EB+CD
∂x(ρ

∗u∗v∗) dy∗

+Ω∗ −
∫

EB
u∗∂xv

∗ dy∗ + 1
2

u∗2B (1− ρ∗B). (B 11)

The second integral on the right-hand side can be evaluated piecewise,∫
EB+CD

ρ∗

1− σ dy∗ = 1
1− σ ((1− h∗)+ σh∗ − 1)= 1

1− σ (h
∗(σ − 1))=−h∗ =−Ω∗C.

(B 12)
We can define the error in this piecewise evaluation such that∫

EB+CD

ρ∗

1− σ dy∗ = E∗C −Ω∗C. (B 13)

Substituting (B 13) into (B 11) and then employing this in (B 3) gives an equation
for Ω∗,

Ω∗ = Ω∗C − E∗C − E∗t − E∗µ − E∗a

− 1
2

u∗2B (1− ρ∗B)−
∫

DE+BC

1
2

u∗2∂xρ
∗ dx∗ +

∫
EB

u∗∂xv
∗ dy∗, (B 14)
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where
E∗a =

∫
EB+CD

∂x(ρ
∗u∗v∗) dy∗. (B 15)

Although (B 14) contains some terms that are very similar to those in (3.14), it is
generally more complicated, so that in the main body of this work we chose to
evaluate the deviations from the model using the vorticity approach.
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