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We examine the dynamics of a semi-infinite vortex sheet attached not to a
semi-infinite plate but instead to a rigid right-angled wedge, with the sheet aligned
along one of its edges. Our approach to this problem, which was suggested by
David Crighton, accords well with the fundamental ethos of Crighton’s work, which
was characterized by ‘the application of rigorous mathematical approximations to
fluid mechanical idealizations of practically relevant problems’ (Ffowcs Williams,
Annu. Rev. Fluid Mech., vol. 34, 2002, pp. 37–49). The resulting linearised unsteady
potential flow is forced by an oscillatory dipole in the uniform stream passing
along the top of the wedge, while there is stagnant fluid in the remaining quadrant.
Spatial instability is considered according to well-established methods: causality is
enforced by allowing the frequency to become temporarily complex. The essentially
quadrant-type geometry replaces the usual Wiener–Hopf technique by the Mellin
transform. The core difficulty is that a first-order difference equation of period 4
requires a solution of period unity. As a result, the complex fourth roots (±1 ± i)
of −4 appear in the complementary function. The Helmholtz instability wave is
excited and requires careful handling to obtain explicit results for the amplitude of
the instability wave.
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1. Introduction
Orszag & Crow (1970) considered the unsteady potential flow past the edge of

a splitter plate with incompressible uniform flow on one side and stagnant fluid on
the other side in the absence of external forcing. This simplest of inhomogeneous
flows exhibits a concentrated vortex sheet in an unbounded inviscid fluid. They
sought spatial growth, in contrast to the temporal growth more commonly sought
in traditional stability theory, and left open the choice of Kutta condition, which
determines how the sheet is attached to the plate. Crighton (1972) studied the
compressible version of Orszag & Crow’s problem and showed that spatial growth
is unavoidable if a causal solution is required. In order to apply causality, Jones &
Morgan (1972) had considered an initial value problem in which linear theory is
applied to acoustic radiation incident on a moving stream. The Helmholtz instability
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of an infinite vortex sheet must be present, along with an edge-scattered instability.
Crighton & Leppington (1974), in the context of scattering of a point source of
sound by a subsonic splitter plate, showed that causality can be enforced by allowing
the frequency to be temporarily complex-valued. Use of the full-Kutta condition,
in which the sheet has zero slope at its attachment, is thereby established. Daniels
(1978) confirmed this choice by including a triple-deck structure to demonstrate
that a full-Kutta condition solution can be matched to a viscous inner solution but
a no-Kutta condition cannot do likewise. Crighton (1985) reviewed the application
of Kutta conditions to a much wider range of flow problems than considered here.
Peake (1994) considered another model problem, namely the flow resulting from the
interaction between the trailing edge of a supersonic splitter plate and sound waves
incident on the trailing edge from upstream. This is essentially the supersonic version
of Jones & Morgan’s subsonic study. More recently, Samanta & Freund (2008)
noted that accepted practice is to use a full-Kutta condition, for which Bechert &
Pfizenmaier (1975) provided experimental support. Rabchuk (2000) identified trailing
edge receptivity as disturbances converted into flow instabilities at the trailing edge,
where the pressure is singular, in a mixing layer or wake. Triple-deck theory achieves
theoretical consistency and gives clear physical justification for the unsteady Kutta
condition, which accounts implicitly for viscosity but is inappropriate for the flow
structure.

The splitter plate geometry permits solution via the Fourier transform. A natural
question to consider is the effect of the local geometry of the trailing edge on the
flow characteristics. The usual Kutta condition suggests that any sharp (non-reentrant)
corner should lead to similar exponential growth but in the absence of other solutions
to the problem, quantitative results are not known. The driving force behind the
original work of Orszag & Crow (1970) and subsequently of Crighton (1972) and
Crighton & Leppington (1974) was fundamentally the instability of the vortex sheet.
The critical contribution of Crighton (1972) was the explanation of the spatial growth.
As a result we focus here on the instability. The full solution is obtained from the
present formulation, but is not pursued computationally, as this would be lengthy
and unmanageable. In addition the solution would be dominated by the instability,
so that the extra work would be irrelevant. The finite-thickness unbounded shear
layer is inviscidly unstable, with a short-wavelength cutoff. Hence the unphysical
short-wavelength instability of the vortex sheet (Kelvin–Helmholtz instability) is not
a problem and the present calculation is useful.

The paper is structured as follows. Section 2 formulates the problem: a uniform
inviscid stream on one side of a rigid right-angled wedge is separated by a vortex
sheet from stagnant inviscid fluid in the fourth quadrant. Unsteady potential flow is
forced by an oscillatory doublet placed in the stream alongside the rigid quadrant. The
resultant pressure forcing at the sheet is translated, by use of Mellin transforms, into
a second-order functional difference equation system of period 2, which is equivalent
to a first-order equation of period 4. The corresponding simpler equations for the
semi-infinite plate have periods 2 and unity respectively and, for illustrative purposes,
are solved in § 3 by each of two distinct methods. The second of these forms the
basis of the 90◦ trailing edge solution given in § 4. Its construction requires both the
solution of the homogeneous difference equation of period 4 and the embedding of an
inhomogeneous solution of period unity. The former uses the Barnes double Gamma
function (Barnes 1899), ably described by Lawrie & King (1994), whose relevant
results are listed in appendix A. The embedding exploits the fourth roots (±1 ± i)
of −4 to derive suitable functions of period unity. The four unknown constants are
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determined by eliminating poles within the strip of regularity. Causality is enforced
by selecting a particular phase of the temporarily complex-valued frequency, whence
the Helmholtz instability is shown to be present. Finally § 5 describes our conclusions.
Some mathematical details are presented in appendix A.

2. Formulation
Consider incompressible, inviscid fluid in the three-quadrant region r> 0, −π/2<

θ < π bounded by rigid walls, and suppose that a vortex sheet at θ = 0 is created
by an imposed streaming flow Uex in the half-space y > 0 (region 1, with region 2
corresponding to y< 0). Assume that the perturbed flow

Uex +∇φ1(x, y)eikUt (−∞< x<∞, y> 0), (2.1a)
∇φ2(x, y)eikUt (0< x<∞, y< 0), (2.1b)

is such that the amplitudes of the oscillatory perturbations are small enough to allow
linearisation of their governing equations. Then the continuity equation yields

∇2φ1 = 0, ∇2φ2 = 0, (2.2a,b)

in regions (1) and (2) respectively, the wall conditions are

∂φ1

∂y
(x, 0)= 0 (x< 0),

∂φ2

∂x
(0, y)= 0 (y< 0), (2.3a,b)

the pressure is continuous when

ikφ1(x, 0)+ ∂φ1

∂x
(x, 0)= ikφ2(x, 0) (x> 0), (2.4)

and the kinematic conditions, involving the interface displacement η(x)eikUt, are

ikUη+U
∂η

∂x
= ∂φ1

∂y
(x, 0), ikUη= ∂φ2

∂y
(x, 0) (x> 0). (2.5a,b)

If the forcing disturbance is described by the potential ψ1 in region (1), then the
potentials

φ1(x, y)+ψ1(x, y)+ψ1(x,−y) (y> 0), (2.6a)
φ2(x, y) (y< 0), (2.6b)

are such that the wall conditions are satisfied and the resulting kinematic condition
reduces to the homogeneous form (2.5). The resulting pressure fields exhibit a
discontinuity proportional to (

ik+ ∂

∂x

)
2ψ1(x, 0), (2.7)

from which we deduce that only pressure jump forcing need be considered here.
The ‘image’ structure is made apparent by the acoustic solution given by Crighton &
Leppington (1974) for the semi-infinite plate.
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For a convenient and fundamental forcing, upstream of the vortex sheet, we set

ψ1(x, y)= Ur0

2πk
(x+ x0) cos χ + (y− y0) sin χ

(x+ x0)2 + (y− y0)2
(x0, y0 > 0), (2.8)

in which the angle χ allows the dipole at (−x0, y0) = r0(−cos ξ0, sin ξ0) to be
arbitrarily oriented. Then the flow is forced by the pressure condition

φ2(x, 0)− φ1(x, 0)− 1
ik
∂φ1

∂x
(x, 0) = Ur0

2πk

(
1+ 1

ik
∂

∂x0

)
×
[

eiχ

x+ x0 − iy0
+ e−iχ

x+ x0 + iy0

]
(x> 0). (2.9)

In view of (2.2) and the given geometry, define the usual Mellin transform

Φ(s, θ)=
∫ ∞

0
φ(r, θ)rs−1 dr, (2.10)

where 0 < Re(s) < 1 is required for the transform to exist. Then the transformed
conditions at θ = 0 are

∂Φ1

∂θ
(s, 0)= ∂Φ2

∂θ
(s, 0)− s

ik
∂Φ2

∂θ
(s− 1, 0), (2.11a)

Φ2(s, 0)−Φ1(s, 0)+ s− 1
ik

Φ1(s− 1, 0)= Ur0

π

Γ (s)
ks

F(s), (2.11b)

where, according to (2.9) and with Re(s) < 1,

F(s) =
(

1+ 1
ik
∂

∂x0

)
Γ (1− s)

2

[
eiχ

(kr0e−iξ0)1−s
+ e−iχ

(kr0eiξ0)1−s

]
= Γ (1− s)

2(kr0)2−s

{
ei[χ+(2−s)ξ0][k(x0 − iy0)− i(s− 1)]

+ e−i[χ+(2−s)ξ0][k(x0 + iy0)− i(s− 1)]} . (2.12)

Dimensional coordinates x, y, r are retained so that the Mellin transforms depend on k.
Laplace’s equation (2.2) requires Φ1, Φ2 to be linear combinations of cos sθ , sin sθ

and then the conditions at the rigid boundaries are satisfied by writing

Φ1 = Ur0
Γ (s)
πks

α(s)
cos s(π− θ)

cos sπ
, (2.13a)

Φ2 = Ur0
Γ (s)
πks

γ (s)
cos s(π+ θ)+ cos sθ

cos sπ
, (2.13b)

with the Mellin transform of the interface displacement given by

N(s)=
∫ ∞

0
η(x)xs−1 dx= ir0

Γ (s)
πks

γ (s− 1) tan sπ. (2.14)

So the interface conditions (2.11a) yield, in matrix form,[
γ (s− 1)
α(s− 1)

]
− i
[

1 1
−(1+ sec sπ) 1

] [
γ (s)
α(s)

]
= iF(s)

[
0
1

]
, (2.15)
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in which the matrix has period 2 as a function of s. Therefore we have to solve a
second-order functional difference equation system of period 2, which is equivalent
to a first-order system of period 4.

To identify the required strip of regularity, first note that the velocity components
have Mellin transforms∫ ∞

0

∂φj

∂r
(r, θ)rs−1 dr=−(s− 1)Φj(s− 1, θ), (2.16a)∫ ∞

0

1
r
∂φj

∂θ
(r, θ)rs−1 dr= ∂Φj

∂θ
(s− 1, θ). (2.16b)

In particular, the interface transform is given by

N(s)= 1
ikU

∂Φ2

∂θ
(s− 1, 0). (2.17)

These functions involve γ (s− 1) and α(s− 1), whose regularity in 0< Re(s) < 1 is
achieved by ensuring the regularity of γ (s) and α(s) in −1<Re(s) < 0.

3. The semi-infinite plate
We use this simpler problem first considered by Orszag & Crow (1970) to

demonstrate features and structure of the solution that we construct below for the rigid
quadrant problem. With region (2) extended to θ =−π, the second wall condition is
replaced by

∂φ2

∂y
(x, 0)= 0 (x< 0). (3.1)

The conditions at the rigid plate θ = ±π are satisfied by modifying the second
condition in (2.13b) and writing

Φ1 =Ur0
Γ (s)
πks

α(s)
cos s(π− θ)

cos sπ
, Φ2 =Ur0

Γ (s)
πks

γ (s)
cos s(π+ θ)

cos sπ
, (3.2a,b)

whence the interface conditions yield (2.14) and, in matrix form,[
γ (s− 1)
α(s− 1)

]
− i
[

1 1
−1 1

] [
γ (s)
α(s)

]
= iF(s)

[
0
1

]
. (3.3)

The eigenvectors of the constant matrix facilitate the rearrangement of (3.3) as a
pair of disjoint first-order equations,

α(s− 1)± iγ (s− 1)− (i∓ 1)[α(s)± iγ (s)] = iF(s). (3.4)

Particular solutions of the form

α(s)± iγ (s)= 1
2π

∫ ν+i∞

ν−i∞
F(u)I±(u− s) du (ν − 1<Re(s) < ν), (3.5)

exist provided that∫ ν−1+i∞

ν−1−i∞
F(u)I±(u− s+ 1) du− (i∓ 1)

∫ ν+i∞

ν−i∞
F(u)I±(u− s) du= 2πiF(s), (3.6)
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which requires that I±(u− s+ 1)= (i∓ 1)I±(u− s) with I±(u− s) regular in the strip
ν− 1<Re(s) < ν except at u= s where its residue is (−i± 1)−1. A suitable choice is
I±(v)=π(−i± 1)v−1/ sin πv, whence (3.4) has solution, in the strip −1<Re(s) < 0,

α(s)± iγ (s)=C±(i∓ 1)−s + 1
2

∫ i∞

−i∞

F(u)
sin π(u− s)

(−i± 1)u−s−1 du. (3.7)

The physically necessary elimination of the poles in Φ1, Φ2 at s=−1/2 is achieved
by setting γ (−1/2)= 0=α(−1/2). The second interface condition then eliminates the
pole in Φ2 at s=−3/2, corresponding to applying the full-Kutta condition (tangential
contact of the interface; see Daniels (1978)). Thus, we choose

C±(i∓ 1)1/2 =−1
2

∫ i∞

−i∞

F(u)
cos πu

(−i± 1)u−1/2 du. (3.8)

For Φ1 and Φ2 to be proper Mellin transforms, they must decay as Im(s)→±∞
within the strip of regularity. This can be achieved, as explained by Crighton &
Leppington (1974) for the conjugate time dependence, by temporarily replacing
k by k − iK in the complementary functions and requiring (k − iK)(1 + i) and
(k− iK)(−1+ i) to have positive real parts. Inversion and the subsequent setting of K
to zero yields the solution. In particular, the term with C+ generates the exponentially
growing Helmholtz potentials φH

2 , φH
1 (Orszag & Crow 1970) given by

φH
1 = iUh exp[(1− i)k(x+ iy)] (y> 0), (3.9a)
φH

2 =Uh exp[(1− i)k(x− iy)] (y< 0). (3.9b)

Equivalently, one can replace k by k0e−iπβk with π/4<β < 3π/4 during the inversion
and set k= k0 (i.e. β = 0) in the final results.

We now rework the problem as an example of the following result. If the matrix
A(s) has period 4 and A(s)A(s + 1)A(s + 2)A(s + 3) = g(s)I , where I denotes the
identity matrix, then g(s) has period 1 and the system

x(s− 1)− A(s)x(s)= f (s)c, (3.10)

with c a constant vector, has solution

x(s) = {A(s+ 1)A(s+ 2)A(s+ 3)D(s)+ A(s+ 1)A(s+ 2)D(s− 1)
+A(s+ 1)D(s− 2)+ ID(s− 3)} c, (3.11)

provided D(s) satisfies the difference equation D(s− 4)− g(s)D(s)= f (s). Thus (3.3)
has a solution of the form[

γ (s)
α(s)

]
=D(s)

[−2i
2i

]
+D(s− 1)

[−2
0

]
+D(s− 2)

[
i
i

]
+D(s− 3)

[
0
1

]
, (3.12)

provided that

D(s− 4)+ 4D(s)= iF(s). (3.13)

The function D(s), of period 4, has the particular solution, constructed as in (3.7),

1
32

∫ i∞

−i∞
2(u−s)/2 F(u)

sin π(u− s)/4
du in − 4<Re(s) < 0. (3.14)
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The difference equation (3.13) of period 4 has a complementary function that displays
the fourth roots of −4. Thus, in the strip −4<Re(s) < 0,

D(s) = 1
16

{
C1(1+ i)1−s +C2(−1+ i)1−s +C3(−1− i)1−s +C4(1− i)1−s

+ 1
2

∫ i∞

−i∞
2(u−s)/2 F(u)

sin π(u− s)/4
du
}
. (3.15)

Use of the identity

2v/2

sin πv/4
= (1+ i)v + (−1+ i)v + (−1− i)v + (1− i)v

sin πv
(3.16)

in (3.15) leads, in the strip −1<Re(s) < 0, to[
γ (s)
α(s)

]
= −1

2

{
C1(1+ i)−s

[
i
1

]
+C2(−1+ i)−s

[−i
1

]}
+ 1

4

∫ i∞

−i∞

F(u)
sin π(u− s)

du
{
(−1− i)u−s−1

[
i
1

]
+ (1− i)u−s−1

[−i
1

]}
, (3.17)

in agreement with (3.7). This result can be obtained by manipulation of the
trigonometric functions in[−2i

2i

]
1

sin π(u− s)/4
+
[−2

0

] √
2

sin π(u− s+ 1)/4

+
[

i
i

]
2

sin π(u− s+ 2)/4
+
[

0
1

]
2
√

2
sin π(u− s+ 3)/4

. (3.18)

To obtain this relation, we use the principal branch of the logarithm for the powers
of (±1± i).

Computing the solution numerically, e.g. for η(x), is a two-step process. First we
obtain C1 and C2 by enforcing the regularity condition γ (−1/2) = α(−1/2) = 0 in
(3.17): this gives two equations. Then η(x) can be found by computing the inverse
Mellin transform of (2.14) using (3.17) to obtain γ (s− 1). We shall not carry out this
programme here. Instead we concentrate on the exponentially growing contribution:
this is the most interesting physically and also requires care in its calculation.

The homogeneous terms in η(x) from (3.17) are related to the following Mellin
transform (which does not seem to appear in standard references):

Γ (s) tan sπ=
∫ ∞

0

2√
π

FD(
√

r)rs−1 dr, (3.19)

in which FD(z)≡ e−z2 ∫ z
0 et2 dt is Dawson’s integral (Olver et al. 2010). The solution

can also be written in terms of error functions of imaginary arguments, as in Orszag
& Crow (1970, (4.4)). The growing homogeneous contribution to η(x) comes from

(1− i)r0

2π
C2[k(−1+ i)]−sΓ (s) tan sπ. (3.20)
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FIGURE 1. Scaled amplitude (kr0)
−3/2|(1+ i)C2|. The range of ξ0 is (0,π/2), with ξ0

increasing in the direction of the arrow.

This does not have an inverse Mellin transform. However, the analytic continuation
procedure of Crighton & Leppington (1974) corresponds to taking the inverse Mellin
transform formally, using the standard scaling transformation for inverse Mellin
transforms of FD(s)a−s, which yields

η(x)∼ (1− i)r0

π3/2
C2FD(

√
(−1+ i)kx), (3.21)

which grows exponentially downstream along the vortex sheet. The dominant
behaviour of η(x) for large x can be obtained as

η(x)∼ (1+ i)r0

2π
C2e(1−i)kx. (3.22)

The amplitude of the Helmholtz mode is a function of k, U, r0, ξ0 and χ . Of
these variables, U can be scaled out since the problem is linear, while kr0 is the
only non-dimensional length. There are hence three parameters: kr0 and ξ0 giving the
polar coordinates of the dipole from the edge of the wedge and χ measuring the
orientation of the dipole with respect to the horizontal. Figure 1 shows plots of the
scaled amplitude of the Helmholtz mode, (kr0)

−3/2|(1+ i)C2|, as a function of χ for
certain values of kr0 and 06 ξ0 6π/2. The scaling (kr0)

−3/2 for both small and large
values of kr0 comes from the dominant singularity of the integrand in (3.17), which
is at 1/2 for kr0 � 1 and at −1/2 for kr0 � 1. One can show that, up to the kr0

factor, the integrals in (3.17) for large kr0 differ by a factor of
√

2 compared to those
for small kr0. This gives a factor of

√
2 difference between figures 1(a) and 1(c). The

amplitude of the mode is a smoothly varying function with a minimum and maximum
for each value of ξ0. For ξ0 = 0, the amplitude actually vanishes at χ =π/2.

4. The right-angled wedge
4.1. Construction of solution

The repeated use of (2.15) yields[
γ (s− 2)
α(s− 2)

]
−
[

sec sπ −2
2 − sec sπ

] [
γ (s)
α(s)

]
=
[ −F(s)

iF(s− 1)− F(s)

]
, (4.1)
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which is a second-order system of period 2. We obtain a first-order equation of period
4 by observing that the matrix in (2.15) allows a solution of the form[

γ (s)
α(s)

]
= D(s)(2− sec sπ)

[−i
i

]
+D(s− 1)

[ −2
− sec sπ

]
+D(s− 2)

[
i
i

]
+D(s− 3)

[
0
1

]
, (4.2)

provided that

D(s− 4)+ (4− sec2 sπ)D(s)= iF(s). (4.3)

We seek to reduce (4.3) to the form of (3.13) and hence introduce a function H(s)
that satisfies the difference equation

H(s− 4)= (1− 1
4 sec2 sπ)H(s). (4.4)

It is shown in apendix A that a solution of (4.4) in integral form is given by

H(s)= exp

2
∫ ∞

0

sinh
t
4

s sinh2 t
48

sinh
t
2

sinh
t
8

dt
t

 , (4.5)

valid and analytic for −7/3 < Re(s) < 7/3, which simply demonstrates that
H(s)H(−s)= 1 and H(s)→ e±iπ/144 as Im(s)→±∞ within this strip. See appendix A
for the evaluation of the integral in (4.5). The pole structure of H(s) is conveniently
identified from its constituent Gamma functions which are shown in appendix A to
yield

H(s)=
∞∏

m=0

Γ
(

5
8
+ s

4
+ m

4

)
Γ

(
5
8
− s

4
+ m

4

)


2

Γ

(
2
3
− s

4
+ m

4

)
Γ

(
7
12
− s

4
+ m

4

)
Γ

(
2
3
+ s

4
+ m

4

)
Γ

(
7
12
+ s

4
+ m

4

) . (4.6)

This defines H(s) in the whole complex s-plane with H(0) = 1. ‘Shifted’ values of
H(s) are obtained by noting, from (4.6) and the relation Γ (z)Γ (1 − z) = π csc πz,
that

H(s+ 1/2)
H(s− 1/2)

=
1+ cos s

π

2
cos

π

12
+ cos s

π

2

,
H(s+ 1)
H(s− 1)

=

(
1√
2
+ cos s

π

2

)2

(√
3

2
+ cos s

π

2

)(
1
2
+ cos s

π

2

) .
(4.7)

Since the solution (4.2) includes values of D(s) in the strip −4< Re(s) < 0 when
−1<Re(s) < 0, we note that H(s+ 2) is regular in −13/3<Re(s) < 1/3 and arrange
(4.3) in the standard form

D(s− 4)
H(s− 2)

+ 4
D(s)

H(s+ 2)
= iF(s)

H(s− 2)
, (4.8)
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because H(s) is a solution of (4.4). We mimic the solution (3.15) of (3.13) in deducing
that, in the strip −4<Re(s) < 0,

D(s)
H(s+ 2)

= 1
16

{
C1(1+ i)1−s +C2(−1+ i)1−s +C3(−1− i)1−s +C4(1− i)1−s

+ 1
2

∫ i∞

−i∞
2(u−s)/2 F(u) du

H(u− 2) sin π(u− s)/4

}
. (4.9)

Then the substitution of (4.9) into (4.2) yields, in the strip −1<Re(s) < 0,[
γ (s)

α(s)+ γ (s)
]
= 1

16

×
{

C1(1+ i)1−s

[ −i(2− sec sπ)H(s+ 2)− 2(1+ i)H(s+ 1)− 2H(s)
−(2+ sec sπ)(1+ i)H(s+ 1)− 4H(s)+ 2(−1+ i)H(s− 1)

]
+C2(−1+ i)1−s

[ −i(2− sec sπ)H(s+ 2)− 2(−1+ i)H(s+ 1)+ 2H(s)
−(2+ sec sπ)(−1+ i)H(s+ 1)+ 4H(s)+ 2(1+ i)H(s− 1)

]
+C3(−1− i)1−s

[ −i(2− sec sπ)H(s+ 2)− 2(−1− i)H(s+ 1)− 2H(s)
−(2+ sec sπ)(−1− i)H(s+ 1)− 4H(s)+ 2(1− i)H(s− 1)

]
+C4(1− i)1−s

[ −i(2− sec sπ)H(s+ 2)− 2(1− i)H(s+ 1)+ 2H(s)
−(2+ sec sπ)(1− i)H(s+ 1)+ 4H(s)+ 2(−1− i)H(s− 1)

]
+ 1

2

∫ i∞

−i∞

F(u) du
H(u− 2) sin π(u− s)

×
(
(1+ i)u−s

[ −i(2− sec sπ)H(s+ 2)+ 2(1+ i)H(s+ 1)− 2H(s)
(2+ sec sπ)(1+ i)H(s+ 1)− 4H(s)− 2(−1+ i)H(s− 1)

]
+ (−1+ i)u−s

[ −i(2− sec sπ)H(s+ 2)+ 2(−1+ i)H(s+ 1)+ 2H(s)
(2+ sec sπ)(−1+ i)H(s+ 1)+ 4H(s)− 2(1+ i)H(s− 1)

]
+ (−1− i)u−s

[ −i(2− sec sπ)H(s+ 2)+ 2(−1− i)H(s+ 1)− 2H(s)
(2+ sec sπ)(−1− i)H(s+ 1)− 4H(s)− 2(1− i)H(s− 1)

]
+ (1− i)u−s

[ −i(2− sec sπ)H(s+ 2)+ 2(1− i)H(s+ 1)+ 2H(s)
(2+ sec sπ)(1− i)H(s+ 1)+ 4H(s)− 2(−1− i)H(s− 1)

])}
.

(4.10)

4.2. Behaviour for large Im(s)

In the limits Im(s)→±∞, sec sπ→ 0 and H(s)∼ e±iπ/144 and only values of u near
s are significant in the integral. Thus (4.10) reduces to (3.17), as expected, because
(4.2) and (4.3) then reduce to (3.3) and (3.13) respectively. The vectors multiplying
C3, C4 in (4.10) are 0 at leading order.

It is readily shown from (4.7) that, with s= ξ + iη,

H(s+ 1)
H(s)

= 1+O(e−|η|π/2) as |η|→∞ (4.11)

in the strip of regularity. Set k= k0e−iβ and note that

Γ (ξ + iη)=O(|η|ξ−1/2e−|η|π/2) as |η|→∞ (4.12)
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(Olver et al. 2010). Then, for exponential decay,

Γ (s)
ks(1+ i)s

=O[|η|ξ−1/2e−(β−π/4)ηe−|η|π/2] requires − π

4
<β <

3π

4
, (4.13a)

Γ (s)
ks(−1+ i)s

=O[|η|ξ−1/2e−(β−3π/4)ηe−|η|π/2] requires
π

4
<β <

5π

4
, (4.13b)

Γ (s)e−|η|π/2

ks(−1− i)s
=O[|η|ξ−1/2e−(β+3π/4)ηe−|η|π] requires −7π

4
<β <

π

4
, (4.13c)

Γ (s)e−|η|π/2

ks(1− i)s
=O[|η|ξ−1/2e−(β+π/4)ηe−|η|π] requires −5π

4
<β <

3π

4
, (4.13d)

and the choice β =π/4 ensures exponential decay in two cases, but in the other two
relies on algebraic decay due to the additional |η|ξ−1/2 factor with −1< ξ < 0 in the
strip of regularity.

4.3. Determination of the coefficients
The result (4.5) confirms that H(s+ 2), H(s+ 1), H(s) and H(s− 1) have the common
strip of analyticity −4/3 < Re(s) < 1/3 and therefore the only pole in (4.10) arises
from sec sπ. Inspection of the Mellin transforms, given by (2.13a), (2.13b), shows
that γ (s) sec sπ and α(s) sec sπ are regular at s=−1/2, as required to eliminate terms
of order r1/2 from the small-r expansions of φ2 and φ1. As in the semi-infinite plate
case, the first equation in (2.15) then implies that γ (−3/2)= 0 and hence, according
to (2.14), satisfies the full-Kutta condition by proscribing an x1/2 term in η(x).

The poles at s=−1/2 are eliminated by choice of the arbitrary constants, Cj(1 6
j 6 4) in (4.9) by demanding, in (4.2),

D(−1/2)= 0=D(−3/2),
1
π

D′(−1/2)+D(−5/2)= 0,
1
π

D′(−3/2)= 2iD(−5/2)+D(−7/2).

 (4.14)

The first two of these conditions facilitate the evaluation of the derivatives without
knowledge of H′(3/2),H′(1/2). It is readily deduced from (4.7) that

H(1/2)= sec
π

24
H(−1/2)= cos

π

24
,

H(3/2)= sec
π

12
sec

π

24
H(−3/2)= cos

π

12
cos

π

24
.

 (4.15)

For algebraic brevity, write (4.9) as

D(s)
H(s+ 2)

= B1(1+ i)−(s+1/2) + B2(−1+ i)−(s+1/2) + B3(−1− i)−(s+1/2)

+B4(1− i)−(s+1/2) + 2−(s+1/2)/2
∫ i∞

−i∞

G(u) du
sin π(u− s)/4

, (4.16)

where

[C1,C2,C3,C4] = 16
[
B1(1+ i)−3/2, B2(−1+ i)−3/2, B3(−1− i)−3/2, B4(1− i)−3/2

]
,

(4.17)

and

F(u)= 32× 2−(u+1/2)/2G(u)H(u− 2). (4.18)
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Then substitution of (4.15), (4.16) into (4.14) gives

B1 + B2 + B3 + B4 +
∫ i∞

−i∞

G(u) du
sin π(u+ 1/2)/4

= 0, (4.19)

B1(1+ i)+ B2(−1+ i)+ B3(−1− i)+ B4(1− i)

+ 21/2
∫ i∞

−i∞

G(u) du
sin π(u+ 3/2)/4

= 0, (4.20)

2 cos
π

12

[
B1 − B2 + B3 − B4 − i

∫ i∞

−i∞

G(u) du
cos π(u+ 1/2)/4

]
= 1

4
sec2 π

24
[B1 + 3B2 − 3B3 − B4

+ i
∫ i∞

−i∞

G(u) du
sin π(u+ 1/2)/4

cot π(u+ 1/2)/4
]
, (4.21)

4
[
−B1 + B2 − B3 + B4 + i

∫ i∞

−i∞

G(u) du
cos π(u+ 1/2)/4

]
+ 2 cos

π

12

[
B1(−1+ i)+ B2(1+ i)+ B3(1− i)+ B4(−1− i)

+ 21/2
∫ i∞

−i∞

G(u) du
cos π(u+ 3/2)/4

]
= 1

4
sec2 π

24

[
B1(1− i)+ 3B2(1+ i)+ 3B3(1− i)+ B4(1+ i)

+ 21/2
∫ i∞

−i∞

G(u) du
sin π(u+ 3/2)/4

cot π(u+ 3/2)/4
]
. (4.22)

4.4. Calculation of the exponentially growing contribution
Once again we focus on the exponentially growing part of the solution, which comes
from the terms containing (−1± i)−s in (4.10). However, the term in C3 is not needed
because it vanishes to leading order as described in § 4.2. The computation of the
displacement is more involved than for the half-plane case because of the presence
of the function H(s). First (4.19)–(4.22) are solved for B1, B2, B3 and B4. Note that
the required integrals exist when k is real. Then C2 is obtained and used in (4.10)
to obtain γ (s). This is then used in the expression for N(s), which is inverse Mellin
transformed. The condition β =π/4 is necessary for the exponentially growing terms
to be Mellin transform. While we could carry out the inverse transform analytically
for the semi-infinite plate, this is no longer possible here. To avoid having to use β
in the evaluation of the inverse Mellin transform, we proceed as follows.

We write for the Mellin transform of the growing homogeneous solution involving
C2

γH(s− 1)=− i
8

C2(−1+ i)−sH(s)[4− 4i+ l(s)], (4.23)

where

l(s)=−2+ 2i− i(2+ sec sπ)
H(s+ 1)

H(s)
+ 2r−(s)

H(s− 1)
H(s)

(4.24)
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FIGURE 2. Scaled amplitude (kr0)
−3/2|(1+ i)C2|. The range of ξ0 is (0,π/2), with ξ0

increasing in the direction of the arrow.

decays as Im(s)→∞. Our aim is to separate the inverse Mellin transform of N(s)
into two parts: one that can be done analytically and the other which has a Mellin
transform for β = 0. Since H(s) ∼ e±iπ/144 as Im(s) → ±∞, we can decompose
H(s) tan sπ as

H(s) tan sπ = [H(s) tan sπ− cos (π/144) tan sπ+ sin (π/144)]
+ cos (π/144) tan sπ− sin (π/144)=H1(s)+H2(s). (4.25)

As Im(s)→±∞, H1(s) decays exponentially. The Mellin transform of the exponentially
growing part of the interface displacement reduces to two parts:

NH(s)=N(s)= 2r0

πks
C2(−1+ i)−sΓ (s)[H1(s)+H2(s)][4− 4i+ l(s)]. (4.26)

The growing part comes from the H2(s)(4− 4i) term and can be carried out by hand,
as in (3.22), giving

η(x)∼ 2r0

π
C2(4− 4i)

[
cos (π/144)

2√
π

FD(
√
(−1+ i)kx)− sin (π/144)e(1−i)kx

]
.

(4.27)

Figure 2 shows plots of the scaled amplitude of the Helmholtz mode, (kr0)
−3/2|(1+

i)C2|, as a function of χ for certain values of kr0 and 0 6 ξ0 6 π/2. The scaling
(kr0)

−3/2 persists for both small and large values of kr0. The amplitude of the mode
is once again smoothly varying, vanishing at χ = π/2 when ξ0 = 1, but varies more
than for the semi-infinite plate. In particular the similarity between small and large kr0
has gone, since H(s) differs between s=−1/2 and s= 1/2. For large kr0, the largest
amplitude is found for values of χ around 3π/4.

5. Conclusion
We have obtained the linearised evolution of the vortex sheet behind a right-angled

wedge using the Mellin transform. This leads to a difference equation that can be



14 A. M. J. Davis and S. G. Llewellyn Smith

solved using an appropriate integral representation. The fourth roots of −4 lead to
complementary functions whose amplitudes are fixed by regularity conditions for
the Mellin transform corresponding to the full-Kutta condition at the corner. For the
semi-infinite plate, the amplitude of the single Helmholtz mode for the vortex sheet
displacement can be obtained in analytic form: applying the necessary Mellin shift
theorem involves an implicit use of the analytic continuation procedure discussed by
Crighton & Leppington (1974). For the right-angled wedge, this procedure requires
breaking up the Mellin transform into different contributions, one of which has a
similar form and can be computed explicitly. In both cases, the amplitude of the
growing mode is a function of the governing parameter of the problem (vanishing
when the dipole has vertical orientation and lies along the x-axis), with the form
exp [(1− i)kx] for x� 1.
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Appendix A. Homogeneous solution
The bracketed function in (4.4) has the factorization

1− 1
4

sec2 sπ=
cos 2sπ+ 1

2
2 cos2 sπ

=
cos
(

s− 1
6

)
π cos

(
s+ 1

6

)
π

cos2 sπ
. (A 1)

Equations of this type are solved by Lawrie & King (1994) in terms of the Barnes
double Gamma function (Barnes 1899) defined by

G(z+ 1, δ)= Γ
( z
δ

)
G(z, δ), G(1, δ)= 1. (A 2)

For earlier examples, see Williams (1959) and Lawrie (1990). Thus

sin
(πz
δ

)
= πG(z, δ)G(δ − z, δ)

G(1+ z, δ)G(1+ δ − z, δ)
, (A 3a)

cos
(πz
δ

)
= πG(δ/2+ z, δ)G(δ/2− z, δ)

G(1+ δ/2+ z, δ)G(1+ δ/2− z, δ)
. (A 3b)

Then, with s= 4S, E(s)= f (S), the difference equation (4.4) may be written as

f (S− 1)
f (S)

=

G
(

9
8
+ S,

1
4

)
G
(

9
8
− S,

1
4

)
G
(

1
8
+ S,

1
4

)
G
(

1
8
− S,

1
4

)


2

×
G
(

1
6
+ S,

1
4

)
G
(

1
6
− S,

1
4

)
G
(

1
12
+ S,

1
4

)
G
(

1
12
− S,

1
4

)
G
(

7
6
+ S,

1
4

)
G
(

7
6
− S,

1
4

)
G
(

13
12
+ S,

1
4

)
G
(

13
12
− S,

1
4

) ,
(A 4)
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from which it is easy to deduce that E(s− 2) is a multiple, of period 4 in s, of

H(s)=

G
(

5
8
− s

4
,

1
4

)
G
(

5
8
+ s

4
,

1
4

)


2

G
(

2
3
+ s

4
,

1
4

)
G
(

7
12
+ s

4
,

1
4

)
G
(

2
3
− s

4
,

1
4

)
G
(

7
12
− s

4
,

1
4

) . (A 5)

Lawrie & King (1994) give an integral representation for ln G(z, δ) which enables
(A 5) to be reduced to (4.5). Of broader help is a Barnes-derived formula for G(z, δ)
which yields

G(β − z, δ)
G(β + z, δ)

= e−2z[A(δ)+βB(δ)]Γ (β + z)
Γ (β − z)

Π∞m=1
Γ (β + z+mδ)
Γ (β − z+mδ)

e−2z[ψ(mδ)+βψ ′(mδ)]. (A 6)

The functions A(δ), B(δ) and the Digamma function ψ cancel in (A 5) and the
resulting ratios of double Gamma functions yield (4.6).

From (4.5), with |Re(s)|< 7/3,

ln H(s)=
∫ ∞

0

sinh
t
4

s
(

cosh
t

24
− 1
)

sinh
t
2

sinh
t
8

dt
t
= PV

∫ ∞
0

exp
( t

4
s
) (

cosh
t

24
− 1
)

2 sinh
t
2

sinh
t
8

dt
t
,

(A 7)

which is an odd function of s. For Im(s)> 0, close the contour in the upper half-plane
with an indentation at t= 0, whence (A 7) gives

ln H(s)= iπ
144
+ iπ

∞∑
n=1

residues at 2niπ(4n− 3, 4n− 2, 4n− 1, 4n). (A 8)

We now evaluate the different residues in turn. First

iπ
∞∑

n=1

R(4n− 3, 4n− 1) = 1
2i

{
S
[

exp
(

iπ
2
(s+ 1/6)

)]
+ S

[
exp

(
iπ
2
(s− 1/6)

)]
−2S

[
exp

(
iπs
2

)]}
, (A 9)

where (for |α|< 1)

S(α) = √2
∞∑

n=1

(−1)n
[
α4n−3

4n− 3
+ α4n−1

4n− 1

]

= i
2

ln

(
1− α2 + iα

√
2

1− α2 − iα
√

2

)
=−arctan

(
α
√

2
1− α2

)
. (A 10)

Then
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iπ
∞∑

n=1

R(4n− 3, 4n− 1)

= 1
4

ln

−sin
π

2

(
s+ 1

6

)
+ sin

π

4

−sin
π

2

(
s+ 1

6

)
− sin

π

4

+ 1
4

ln

−sin
π

2

(
s− 1

6

)
+ sin

π

4

−sin
π

2

(
s− 1

6

)
− sin

π

4


− 1

2
ln

−sin
π

2
s+ sin

π

4
−sin

π

2
s− sin

π

4

 (A 11)

= 1
4

ln

 sin
π

4
− sin

π

2

(
s+ 1

6

)
sin

π

4
+ sin

π

2

(
s+ 1

6

)
+ 1

4
ln

 sin
π

4
− sin

π

2

(
s− 1

6

)
sin

π

4
+ sin

π

2

(
s− 1

6

)


− 1
2

ln

 sin
π

4
− sin

π

2
s

sin
π

4
+ sin

π

2
s

 , (A 12)

in which the first form is used for Im(s)→∞ and the second for s→ 0. Continuing
in the same vein

iπ
∞∑

n=1

R(4n− 2) = 1
2i

∞∑
n=1

(−1)n−1

2n− 1
eiπs(2n−1)

[
cos

π

6
(2n− 1)− 1

]
(A 13)

= −1
8

ln

[
1+ ieiπ(s+(1/6))

1− ieiπ(s+(1/6))

]
− 1

8
ln

[
1+ ieiπ(s−(1/6))

1− ieiπ(s−(1/6))

]
+ 1

4
ln
[

1+ ieiπs

1− ieiπs

]
(A 14)

= −1
8

ln


−sin πs+ sin

π

3
−sin πs− sin

π

3


−sin πs− sin

π

2
−sin πs+ sin

π

2


 (A 15)

= −1
8

ln


 sin

π

3
− sin πs

sin
π

3
+ sin πs


 sin

π

2
+ sin πs

sin
π

2
− sin πs


 , (A 16)

in which the first form is used for Im(s)→∞ and the second for s→ 0. A more
lengthy calculation at the double poles yields

iπ
∞∑

n=1

R(8niπ) = i
4π

∞∑
n=1

(−1)n

n2
e2niπs

(
cos

nπ

3
− 1
)

+ 1
4

∞∑
n=1

(−1)n

n

[(
s+ 1

6

)
e2niπ(s+(1/6)) +

(
s− 1

6

)
e2niπ(s−(1/6)) − 2se2niπs

]
(A 17)
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= i
4π

∞∑
n=1

(−1)n

n2
e2niπs

(
cos

nπ

3
− 1
)
− iπ

72

− s
4

ln

cos 2πs+ cos
π

3
cos 2πs+ 1

− 1
24

ln

cos π

(
s+ 1

6

)
cos π

(
s− 1

6

)
. (A 18)

The first summation in (A 18) has the exact value iπ/144 at s= 0 and the last term
tends to iπ/72 as Im(s)→∞. When (A 12)–(A 18) are substituted into (A 8), it may
be verified that apparent branch points at s=±1/3, ±1/2, ±2/3, ±4/3, ±3/2, ±5/3
are non-existent, as required for H(s) to be analytic for −7/3 < Re(s) < 7/3. The
leading asymptotic correction to H(s) as Im(s)→∞ is the contribution to (A 12) from
the residue at t= 2iπ.
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