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tial theory (Laplace’s equation) or linear acoustics (Helmholtz’s equation), and is a
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comparing with known solutions for spherical objects.
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1 Introduction

Internal gravity waves are generated by oscillating bodies in density stratified
fluids. For a uniform stratification, giving a constant Brunt–Väisälä frequency,
N , the significant wave motion is confined to beams forming a “Saint Andrew’s
cross” (in two dimensions), as shown in famous images obtained by Mowbray
and Rarity [19]: for reprints, see [13, p. 44], [14, p. 314] or [25, p. 668]; the last
of these also shows waves generated by a large oscillating cylinder. Internal
gravity waves can also be generated by the scattering of the barotropic tide
in the oceans [7], and are then known as the baroclinic tide.

The governing equations are well known. For three-dimensional time-harmonic
motions (frequency ω) of an incompressible inviscid fluid with no rotation, the
pressure p solves

∂2p

∂x2
+

∂2p

∂y2
− ω2

N2 − ω2

∂2p

∂z2
= 0, (1.1)

where z is the vertical coordinate and 0 < ω < N . Equation (1.1) is a hyper-
bolic partial differential equation and it is to be solved subject to boundary
and far-field conditions. The boundary conditions are clear: prescribed normal
velocity on rigid boundaries and zero pressure on free surfaces. The far-field
conditions are less clear, but they have been reviewed thoroughly by Voisin
[28]. He identifies several approaches for imposing “radiation conditions”. One
is to require causality in the time domain, which then implies certain analyt-
icity conditions in the complex ω-plane. This approach was used by Pierce
[22], Hurley [10] and others, and it will be used later in Section 5. Another
approach is to look at the waves themselves, requiring that they be outgoing:
in linear acoustics, this would be recognised as the Sommerfeld radiation con-
dition. However, for internal gravity waves, the phase velocity is perpendicular
to the group velocity: physically, we may expect energy to travel away from
the source at the group velocity, and this could be stated as a radiation condi-
tion. A difficulty with such a condition is that energy is a quadratic quantity:
it does not seem obvious that linear combinations of such outgoing-energy
solutions will also be outgoing.

There are several papers on the generation of internal gravity waves by spheres.
The main approach has been as follows: start with Eq. (1.1) when ω > N (so
that Eq. (1.1) is elliptic), scale the z-coordinate so that a boundary-value prob-
lem for Laplace’s equation exterior to a spheroid is obtained; solve this problem
by separation of variables; finally, effect the Pierce–Hurley analytic continu-
ation to obtain the solution for ω < N . See, for example, [9,12,1,28,5,30].
In Appendix A, we use this approach for three problems (pulsating sphere,
vertical oscillations and a combination of these two modes), reviewing and
extending previous work.
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For more complicated body geometries, it is natural to try developing methods
that use boundary integral equations, methods that have proved to be very
effective for potential flow problems and for acoustic scattering problems [17].
Sturova [26], working in two dimensions, starts by writing

p(x, z) =
�

S

µ(x�, z�)G(x�, z�; x, z) dS(x�, z�) (1.2)

for points (x, z) in the fluid, where S is the surface of the body (a cylinder) and
G is an appropriate Green’s function (fundamental solution). Then, application
of the boundary condition on S yields an integral equation for the function µ.

Equation (1.2) defines a single-layer potential. Similar representations were
first used in the context of internal waves by Robinson [23], who considered a
thin vertical barrier in a finite-depth ocean and constructed G so as to satisfy
boundary conditions at z = 0 and z = H. Similar methods have been used for
barriers [15,20] and for other two-dimensional bottom topographies [21,2,4].
All of these papers use representations of the stream function as a single-layer
potential, leading to a first-kind integral equation. Analogous representations
using double-layer potentials (involving the normal derivative of G) could be
used. Similar approaches could be developed for three-dimensional problems.

For time-dependent problems, with prescribed initial conditions, the situation
is a little simpler: by causality, there can be no motion far away. There is
an extensive Russian literature on such problems, using a variety of layer
potentials. See, for example, [24] and papers by Gabov and his collaborators;
we mention two [6,11] in which three-dimensional problems are analysed.

It is implicit when using representations such as (1.2) that any linear combina-
tion of radiating Green’s functions (constructed by the Pierce–Hurley method)
is itself radiating. In linear acoustics, this is true: in that context, single-layer
and double-layer potentials always generate fields that satisfy the Sommerfeld
radiation condition, for any choice of the function µ. However, in the context
of internal gravity waves, we do not have a precise condition to impose on p.
For this reason, we give a method for estimating the far field: it is not straight-
forward, but we verify that it gives the correct results for two sphere problems
(as presented in Appendix A).

We start the paper by setting up the governing equations in Section 2. We
derive a general reciprocal theorem, connecting two time-harmonic pressure
fields, in Section 3; this permits fluid rotation. The reciprocal theorem is used
in Section 4 to obtain representation formulas (in the absence of rotation):
these give the pressure in the fluid in terms of boundary integrals over S of
p, the normal velocity and a Green’s function, G. The Pierce–Hurley analytic
continuation of G is discussed in Section 5.
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The boundary integrals are singular: their integrands are infinite along a cer-
tain curve (not just at a point) on the boundary S, and this happens even
when the field point is off the boundary (but within one of the conical wave
beams). This is very different to the situation with classical potential the-
ory (Laplace’s equation) or linear acoustics (Helmholtz equation), and is a
consequence of the hyperbolic nature of (1.1) when 0 < ω < N .

The analysis of the far field is given in Section 7. The main idea is to write the
boundary integrals as a double integral over a region E in the ΘΦ-plane, where
Θ and Φ are certain spherical polar coordinates. This unusual choice is made
because the singularities occur along the straight line Θ = θc (which passes
through E) and so they can be handled by one-dimensional calculations. (The
Φ integrations are benign.) The angle θc is defined by ω = N cos θc. In addition,
as the observation point recedes to infinity within the wave beams, the domain
E shrinks so that approximations can be made. Eventually, expressions for
the far fields of single-layer and double-layer potentials are obtained. Some
consequences of these results are given in Section 8, with concluding remarks
in Section 9.

The main contributions of the paper are as follows. First, there is the gen-
eral reciprocal theorem (Section 3), relating pressure and velocity fields. Next,
there are the integral representations in terms of single-layer and double-layer
potentials (Section 4); these will provide a basis for the development of bound-
ary integral methods. Then, a new method is given (Section 7) for calculating
the far-field behaviour of layer potentials. (Most of the details of this math-
ematical technique are relegated to an appendix.) The method is applied to
specific problems for spheres, and some observations on energy transport are
made.

2 Mathematical formulation

We take the ocean to be a variable density fluid rotating with uniform fre-
quency about the vertical axis. We model this situation with the Boussinesq
equations [3, Section 11.2], [27, Section 2.4.2]. In their linearized form, they
are as follows:

∂v/∂t+ f × v = −grad p+ bẑ, (2.1)

div v = 0, ∂b/∂t+N2w = 0. (2.2)

Here, we have Cartesian coordinates Oxyz, with z pointing upwards; ẑ is a
unit vector in the z-direction. The velocity is v = (u, v, w) and f = (0, 0, f)
is a given constant vector; f is the Coriolis frequency. The excess pressure is
ρ0p, where ρ0 is the constant background density. The buoyancy frequency,
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N(z), is positive and b is the buoyancy.

The basic unknowns are u, v, w, p and b. Eliminating u, v and b gives

�
∂2

∂t2
+ f 2

�
∂w

∂z
=

∂

∂t
∇2

H
p, (2.3)

�
∂2

∂t2
+N2

�

w = − ∂2p

∂z ∂t
, (2.4)

where ∇2
H
= ∂2/∂x2+∂2/∂y2 is the horizontal Laplacian. From these, a single

equation for w can be obtained [3, eqn (11.14)], but we shall not need it.

The local energy is defined by E = Eke + Epe with Eke = 1
2ρ0v · v (kinetic

energy) and Epe = 1
2ρ0b

2/N2 (potential energy). We have ∂E/∂t = −div I,
where I = ρ0pv is known as the energy transport vector (recall that ρ0p is the
excess pressure). Integrating over a fixed volume V , we obtain

d

dt

�

V

E dV = −
�

S
I · n dS,

where S is the boundary of V and n is the unit outward normal to S.

2.1 Time-harmonic motions

Suppose that p(x, y, z, t) = Re {p(x, y, z) e−iωt }, with similar expressions for
u, v, w and b. Then, Eqs. (2.1) and (2.4) give

(ω2 − f 2)u = −iω
∂p

∂x
+ f

∂p

∂y
, (2.5)

(ω2 − f 2)v = −iω
∂p

∂y
− f

∂p

∂x
, (2.6)

(ω2 − f 2)w = −iωΥ
∂p

∂z
, (2.7)

where

Υ(z) =
ω2 − f 2

ω2 −N2(z)
. (2.8)

We are interested in frequencies ω satisfying f 2 < ω2 < N2 so that Υ < 0.
(We also obtain Υ < 0 in a homogeneous fluid (N = 0) with low-frequency
motions (ω2 < f 2).) If we substitute for w from Eq. (2.7) in the time-harmonic
version of Eq. (2.3), we obtain a single equation for p,

∇2
H
p+

∂

∂z

�

Υ(z)
∂p

∂z

�

= 0. (2.9)
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When considering energy transport with time-harmonic motions, it is natural
to average the intensity I over a period. Thus, we define

Iav =
ω

2π

� 2π/ω

0
I dt =

1

2
ρ0 Re {pv} , (2.10)

where the overbar denotes complex conjugation. Note that div Iav = 0.

3 A time-harmonic reciprocal theorem

We start with the divergence theorem,
�
V
divu dV =

�
S u · n dS, where u is

a continuously differentiable vector field. Put u = φw:

�

V

(w · gradφ+ φ divw) dV =
�

S
φw · n dS. (3.1)

Suppose that p is a valid pressure field (p solves Eq. (2.9) in V ) and that
vp is the corresponding velocity field (defined by Eqs. (2.5)–(2.7)). Then, as
div vp = 0, putting w = vp in Eq. (3.1) gives

�

S
φvp·n dS = −iT

�

V

�

Υ
∂p

∂z

∂φ

∂z
+

∂p

∂x

∂φ

∂x
+

∂p

∂y

∂φ

∂y
− f

iω

�
∂p

∂y

∂φ

∂x
− ∂p

∂x

∂φ

∂y

��

dV,

(3.2)
where T = ω/(ω2 − f 2). If we suppose that φ is a valid pressure field, and
then interchange p and φ in Eq. (3.2), we obtain

�

S
pvφ·n dS = −iT

�

V

�

Υ
∂p

∂z

∂φ

∂z
+

∂p

∂x

∂φ

∂x
+

∂p

∂y

∂φ

∂y
+

f

iω

�
∂p

∂y

∂φ

∂x
− ∂p

∂x

∂φ

∂y

��

dV.

(3.3)
Subtracting Eq. (3.3) from Eq. (3.2) gives

�

S

�
φvp − pvφ

�
· n dS =

2f

ω2 − f 2

�

V

�
∂p

∂y

∂φ

∂x
− ∂p

∂x

∂φ

∂y

�

dV. (3.4)

Now, suppose that, in Eq. (3.1), we take φ = p and

w =
2f

ω2 − f 2

�

−∂φ

∂y
,
∂φ

∂x
, 0

�

= wφ, (3.5)

say; as divwφ = 0, the result is

�

S
pwφ · n dS =

2f

ω2 − f 2

�

V

�
∂p

∂y

∂φ

∂x
− ∂p

∂x

∂φ

∂y

�

dV.
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Subtracting this result from Eq. (3.4) gives

�

S

�
φvp − puφ

�
· n dS = 0, (3.6)

where uφ = vφ +wφ. Thus,

(ω2 − f 2)uφ =

�

−iω
∂φ

∂x
− f

∂φ

∂y
, −iω

∂φ

∂y
+ f

∂φ

∂x
, −iωΥ

∂φ

∂z

�

,

which should be compared with

(ω2 − f 2)vp =

�

−iω
∂p

∂x
+ f

∂p

∂y
, −iω

∂p

∂y
− f

∂p

∂x
, −iωΥ

∂p

∂z

�

. (3.7)

Equation (3.6) is a reciprocal theorem, connecting two time-harmonic pressure
fields, p and φ. Note that Eq. (3.6) involves vp ·n, a quantity that is typically
prescribed on boundaries. Note also that, in the absence of rotation (f = 0),
Eq. (3.5) shows thatwφ = 0, so that we can then replace uφ by vφ in Eq. (3.6).

If we choose φ = p in Eq. (3.2), we obtain

�

S
pvp ·n dS = −iT

�

V

� �����
∂p

∂x

�����

2

+

�����
∂p

∂y

�����

2

+Υ

�����
∂p

∂z

�����

2

+
2f

ω
Im

�
∂p

∂x

∂p

∂y

��

dV. (3.8)

Taking the real part of this equation, using Eq. (2.10), gives

�

S
Iav · n dS = 0. (3.9)

4 An elliptic problem: ω > N

Suppose henceforth that there is no rotation (f = 0) and that N is a positive
constant. Then, from Eq. (2.8), Υ = ω2/(ω2 −N2) is a constant and the
(reduced, time-harmonic) pressure p solves

∂2p

∂x2
+

∂2p

∂y2
+Υ

∂2p

∂z2
= 0. (4.1)

The velocity v = (u, v, w) is given in terms of p by Eqs. (2.5)–(2.7); these
reduce to

u = − i

ω

∂p

∂x
, v = − i

ω

∂p

∂y
, w = − iΥ

ω

∂p

∂z
. (4.2)

The boundary condition is that v ·n is prescribed, where n is a normal to the
boundary. As this boundary condition and Eq. (4.1) both involve derivatives
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of p, we can assume that p → 0 at infinity. Beyond this, there is also some
kind of radiation condition at infinity. The far-field behaviour of p and v will
be discussed later.

Physically, we are interested in frequencies satisfying 0 < ω < N (Υ < 0).
However, we start by supposing that ω > N (Υ > 1), so that Eq. (4.1) is
elliptic. It is easy to see that

G(x, y, z; x0, y0, z0) = {(x− x0)
2 + (y − y0)

2 +Υ−1(z − z0)
2}−1/2 (4.3)

solves Eq. (4.1), where (x0, y0, z0) is a fixed point.

Let vG denote the velocity field generated by the pressure G, using Eq. (4.2):

vG =
i

ω

(x− x0, y − y0, z − z0)

{(x− x0)2 + (y − y0)2 +Υ−1(z − z0)2}3/2
. (4.4)

Let Sε denote the sphere of radius ε, centred at (x0, y0, z0). On Sε, introduce
spherical polar coordinates, x − x0 = ε sin θ cosϕ, y − y0 = ε sin θ sinϕ and
z − z0 = ε cos θ. Then, with n pointing out of Sε,

�

Sε

vG · n dS =
2π i

ω

�
π

0

sin θ dθ

(sin2 θ +Υ−1 cos2 θ)3/2
=

4π i

ω
C(Υ), (4.5)

say, where

C(Υ) =
�

π/2

0

sin θ dθ

(sin2 θ +Υ−1 cos2 θ)3/2
=

� ∞

1

ξ dξ

(ξ2 − 1 + Υ−1)3/2
= Υ1/2

and we used the substitution ξ = sec θ.

Let p and φ be pressure fields with velocity fields vp and vφ, respectively.
Assume that p and φ are regular (no singularities) everywhere inside a closed
surface, S. Then, from Section 3, we have the reciprocal theorem,

�

S

�
pvφ − φvp

�
· n dS = 0. (4.6)

We shall use this formula with φ = G in order to obtain an integral represen-
tation for p.

Proceeding in a standard way [17], suppose that there is a bounded rigid
object with boundary S. Choose a point P at (x0, y0, z0) in the fluid outside
S. Surround P be a small sphere Sε (as above). Surround S and P by a
large sphere, SR, of radius R. Apply the reciprocal theorem to p(x, y, z) and
G(x, y, z; x0, y0, z0) in the region bounded by S, Sε and SR. The contribution
from SR vanishes as R → ∞; see Section 8. The integration over Sε picks out

8



the value of p at P . Thus, using Eq. (4.5),

4π i

ω
C(Υ)p(x0, y0, z0) +

�

S

�
pvG −Gvp

�
· n dS = 0,

where n points into the fluid. Hence, as C(Υ)/ω = (ω2 −N2)−1/2,

p(P ) =
i

2π
(ω2 −N2)1/2

�

S

�
pvG −Gvp

�
· n dS, P outside S. (4.7)

This gives a formula for the pressure in the fluid in terms of the (unknown)
pressure and the (known) normal velocity on S.

When P ∈ S, the left-hand side of Eq. (4.7) is replaced by A(P )p(P ) where
A(P ) arises from an integration over a small hemisphere at P ; it is calculated
in Appendix B. The result is an integral equation for the boundary values of
p on S.

As in classical potential theory, define single-layer and double-layer potentials
by

(Sµ)(P ) = i(ω2−N2)1/2
�

S

µG
dS

4π
and (Dµ)(P ) = i(ω2−N2)1/2

�

S

µvG·n dS

4π
,

(4.8)
respectively. Thus, Eq. (4.7) becomes

p(P ) = Dp− S(v · n), P in the fluid. (4.9)

This formula shows that p can always be written as a combination of single-
layer and double-layer potentials. However, a double-layer potential suffices
for scattering problems, as we show next.

For scattering problems, we suppose that we have an incident field, pin, satisfy-
ing Eq. (4.1) in a region that includes the interior of S. Then, an application of
the reciprocal theorem inside S (but retaining the outward-pointing normal)
gives

i

2π
(ω2 −N2)1/2

�

S

�
pinv

G −Gvpin
�
· n dS = 0, P outside S. (4.10)

As S is rigid, (vp + vpin) · n = 0 on S. Hence, adding Eqs. (4.7) and (4.10)
gives

p(P ) = (Dptot)(P ), P in the fluid outside S, (4.11)

where ptot = p + pin is the total pressure on S. From here, we can derive a
boundary integral equation for ptot on S.
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5 Analytic continuation and the radiation condition

The calculations in Section 4 assume that ω > N , but we are interested in
solutions with 0 < ω < N . To find these, we effect analytic continuation with
respect to ω: Voisin [28] refers to this as the Pierce–Hurley method. The main
idea is to impose causality in the time domain, which means there should be
no motion before a disturbance is excited. As we have used a time-dependence
of e−iωt, causality implies that there should be no singularities or branch cuts
in the upper half of the complex ω-plane.

Start with (ω2 − N2)1/2. Put cuts emanating from ω = ±N , going vertically
downwards. Then, as (ω2 − N2)1/2 must be real and positive when ω is real
and greater than N , we find that

(ω2 −N2)1/2 =






+
√
ω2 −N2, ω > N,

i
√
N2 − ω2, −N < ω < N,

−
√
ω2 −N2, ω < −N.

(5.1)

In particular, on this branch of the square-root, we do not have an even func-
tion of ω, a fact that is emphasised by Voisin [28]. Then, for single-layer
potentials, we need G, defined by Eq. (4.3). Using spherical polar coordinates,

x0 − x = R sinΘ cosΦ, y0 − y = R sinΘ sinΦ, z0 − z = R cosΘ, (5.2)

we have

G =
1

R(sin2 Θ+Υ−1 cos2 Θ)1/2
=

ω

R(ω2 −N2 cos2 Θ)1/2
, (5.3)

giving branch points at ω = ±N |cosΘ|, with cuts extending downwards.

As we are interested in using G when 0 < ω < N , we define an angle θc by
ω = N cos θc with 0 < θc < π/2. Then, from Eqs. (4.8) and (5.3), we can write
the basic single-layer potential as

(Sµ)(x0, y0, z0) =
�

S

µ(x, y, z)M(Θ)
dS(x, y, z)

4πR
, (5.4)

where

M(Θ) =






−ω
√
N2 − ω2

√
ω2 −N2 cos2 Θ

=
−N cos θc sin θc√
cos2 θc − cos2 Θ

, |cosΘ| < cos θc,

iω
√
N2 − ω2

√
N2 cos2 Θ− ω2

=
iN cos θc sin θc√
cos2 Θ− cos2 θc

, cos θc < |cosΘ|.
(5.5)
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We proceed similarly for double-layer potentials, starting with an appropriate
branch for (ω2 −N2)−3/2 and vG · n, with vG given by Eq. (4.4). Thus,

vG · n =
iN (Θ,Φ)

ωR2(sin2 Θ+Υ−1 cos2 Θ)3/2
=

iω2N (Θ,Φ)

R2(ω2 −N2 cos2 Θ)3/2
,

where

N (Θ,Φ) = N (Θ,Φ;Q) = −(n1 cosΦ + n2 sinΦ) sinΘ− n3 cosΘ (5.6)

and n(Q) = (n1, n2, n3) is the outward normal at Q = (x, y, z) ∈ S. Then,
from Eq. (4.8), we can write the double-layer potential as

(Dµ)(x0, y0, z0) =
�

S

µ(x, y, z)N (Θ,Φ)D(Θ)
dS(x, y, z)

4πR2
, (5.7)

where

D(Θ) =






−iω2
√
N2 − ω2

(ω2 −N2 cos2 Θ)3/2
=

−i cos2 θc sin θc
(cos2 θc − cos2 Θ)3/2

, |cosΘ| < cos θc,

+ω2
√
N2 − ω2

(N2 cos2 Θ− ω2)3/2
=

+cos2 θc sin θc
(cos2 Θ− cos2 θc)3/2

, cos θc < |cosΘ|.

(5.8)

Examining Eqs. (5.5) and (5.8), we see that M(Θ) and D(Θ) are singular at
Θ = θc and at Θ = π − θc, so we must investigate when these singularities
arise and how to handle them.

The singularities in M(Θ) are integrable but D(Θ) has non-integrable sin-
gularities. In detail, for Θ � θc, cos2 θc − cos2 Θ � (Θ − θc) sin 2θc. As we
shall want to integrate with respect to Θ, for fixed θc, we define (Θ − θc)ν

in the complex Θ-plane, with a cut going downwards from Θ = θc, taking
real positive values when Θ is real with Θ > θc; here, ν is a parameter. Then,
(Θ−θc)ν = eiνπ(θc−Θ)ν when Θ is real with Θ < θc. The choice of cut ensures
that we have agreement with Eqs. (5.5) and (5.8) when Θ � θc, and then we
can write

M(Θ) � −(N/2)
�
sin 2θc (Θ− θc)

−1/2, D(Θ) � −(i/4)
�
2 cot θc (Θ− θc)

−3/2

(5.9)
for complex Θ near θc.

6 Geometry and singularities

To proceed, we partition the fluid domain into several regions. First, choose
an origin O inside S. Suppose that S can be enclosed by a sphere, Sa, of

11
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z

I
II
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IV

III

II
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VI

V

Fig. 1. The body (scatterer or vibrator) is located inside the sphere, Sa. Regions III
and V are the conical wave beams bounded by characteristic cones. The pressure
decays rapidly in Regions II, IV and VI. Similar figures can be found in other papers,
such as Fig. 1 of [1] and Fig. 10 of [28].

radius a, centred at O (Fig. 1). Define cylindrical polar coordinates (�, φ, z) at
O. Define spherical polar coordinates (r, θ, φ) at O, with θ = 0 as the positive
z-axis. A source at r = 0 would propagate energy along the upper cone, θ = θc
(z = � cot θc) and along the lower cone, θ = π − θc.

Define a thick conical shell of thickness 2a with surfaces given by z = � cot θc±
a csc θc. This defines the upper wave beam (Region III in Fig. 1). The lower
wave beam is defined by z = −� cot θc± a csc θc (Region V). The object S lies
in the intersection of the two conical wave beams.

The observation point is P at (x0, y0, z0). The integration point isQ at (x, y, z).
Using Eq. (5.2), we have

{(x− x0)
2 + (y − y0)

2} cos2 θc − (z − z0)
2 sin2 θc = R2(cos2 θc − cos2 Θ).

Thus, the singularities in Eqs. (5.5) and (5.8) occur when

(z − z0)
2 = {(x− x0)

2 + (y − y0)
2} cot2 θc. (6.1)

This defines a double cone in xyz-space with apex at P .

If P is not inside one of the conical wave beams (so P is in Regions II, IV
or VI), the double cone does not intersect S: there are no singularities in the
integrations over S in Eqs. (5.4) and (5.7). Specifically, we have θc < Θ < π−θc
when P is in Region II, 0 ≤ Θ < θc when P is in Region IV, and π−θc < Θ ≤ π

12



when P is in Region VI. Thus, |cosΘ| < cos θc in Region II and cos θc < |cosΘ|
in Regions IV and VI.

Suppose now that P is inside the upper wave beam, Region III. Then, the
lower half of the double cone, Eq. (6.1),

z − z0 = −
�
(x− x0)2 + (y − y0)2 cot θc,

will intersect S in a closed curve C. (For simplicity, assume that there is just
one of these curves; this will be the case if the object is convex, for example.)
Thus, as Q is at (x, y, z), we see that the singularities in the integration over S
in Eq. (4.11) occur at all points Q on the curve C. This curve is characterised
as being where Θ = θc.

A similar construction can be made when P is inside the lower wave beam,
Region V, using the upper half of the double cone, Eq. (6.1). The singularity
corresponds to Θ = π − θc.

We emphasise that there are singularities in the boundary integrals over S
even when P is not on S (but is in Region III or V). This is very different
from classical potential theory, for example, where typical boundary integrals
only contain singularities when the field point P is on the boundary, and then
the singularity is at P , not along a curve on S. All this is a consequence of
the hyperbolic nature of the governing partial differential equation.

7 The far field

The observation point P , at (x0, y0, z0), has cylindrical polar coordinates
(�0, φ0, z0) and spherical polar coordinates (r0, θ0, φ0). We estimate the pres-
sure field as r0 → ∞. The results are different depending on whether P is
outside or inside the wave beams.

7.1 The far field outside the wave beams

As already noted, within Regions II, IV and VI, M and D are finite. Thus,
Eqs. (5.4), (5.7) and (4.9) show that Sµ = O(r−1

0 ), Dµ = O(r−2
0 ) and p =

O(r−1
0 ), respectively, as r0 → ∞. For the scattering problem, Eq. (4.11) shows

that p is smaller: p = O(r−2
0 ) as r0 → ∞. In the same limit, Eq. (5.2) shows

that N (Θ,Φ) ∼ N (θ0, φ0).

13



7.2 The far field within the wave beams

To quantify the fields inside the beams, it is convenient to introduce addi-
tional sets of coordinates. Following [29], introduce two sets of conical polar
coordinates, (x0

+, φ0, z0+) and (x0
−, φ0, z0−), with

�0 = r0 sin θ0 = x0
± cos θc ± z0± sin θc, z0 = r0 cos θ0 = ∓x0

± sin θc + z0± cos θc.
(7.1)

Inverting, x0
± = ∓z0 sin θc + �0 cos θc and z0± = z0 cos θc ± �0 sin θc. So, P is on

the upper cone (θ = θc) when x0
+ = 0 and P is on the lower cone (θ = π− θc)

when x0
− = 0. Moreover, P is within the upper conical beam when |x0

+| < a
with P receding to infinity as x0

− → ∞. Similarly, P is within the lower conical
beam when |x0

−| < a with P receding to infinity as x0
+ → ∞.

Consider the far-field behaviour within the upper conical wave beam, Re-
gion III. In that region, |x0

+| < a, |X±| < a and |Y | < a but z0+ → ∞;
here, X± and Y are defined by Eqs. (C.1)–(C.3). In what follows, we focus
on Region III, and so we simplify notation slightly, and write σ0 ≡ x0

+ and
ζ0 ≡ z0+. To calculate the radiated field, we suppose that the waves are gener-
ated by vibrations of the spherical surface, Sa, represented by single-layer and
double-layer potentials over Sa. Using a sphere will permit explicit and de-
tailed calculations, and comparisons with earlier work on oscillating spheres.
Also, integral representations such as Eq. (4.9) (with integrations over Sa)
hold outside Sa, with the actual object, S, inside Sa.

So, we consider a single-layer potential, Sµ, and a double-layer potential, Dµ,
with integrations over Sa. We parametrise Sa using Θ and Φ to locate points
Q = (x, y, z) on Sa, leading to double integrals over a certain domain E in the
ΘΦ-plane. Points around the perimeter of E correspond to points of contact of
tangent lines from P to Sa; see, for example, [28, Fig. 9]. The integrands are
singular along the coordinate line Θ = θc, a straight line that passes through E .
The domain E shrinks to a point as P recedes to infinity. These facts simplify
the computation of the far field. The details of the calculation can be found
in Appendix C.

7.3 Radiation by a single-layer potential

Consider the single-layer potential, defined by Eq. (5.4). Parametrising S using
Θ and Φ gives

(Sµ)± =
a

4π

�

E
µ±(Θ,Φ)M(Θ)

Q2
±√
∆

sinΘ
dΘdΦ

R±

14



where the ± refers to the two sides of S, and the two contributions must be
summed to obtain Sµ. In the far field, R± ∼ r0 and r0 → ∞. In this limit, E
shrinks onto the point (Θ,Φ) = (θc, φ0), so we can approximate.

From Eq. (C.9), as ζ0 ∼ r0, we have Q± ∼ −r0. Then, from Eq. (C.17),

∆(Θ,Φ) � [Φ+(Θ)− Φ][Φ− Φ−(Θ)] r20 sin
2 θc.

Hence,

Sµ = (Sµ)+ + (Sµ)− ∼ a

2

� Θ+

Θ−
µS(Θ)M(Θ) dΘ, (7.2)

where

µS(Θ) =
1

2π

� Φ+

Φ−

{µ+(Θ,Φ) + µ−(Θ,Φ)} dΦ
�
[Φ+(Θ)− Φ][Φ− Φ−(Θ)]

; (7.3)

if µ+ = µ− = constant, µS = µ±, exactly.

Then, we expand µS(Θ) as a Taylor series about Θ = θc; if the Taylor coeffi-
cient of (Θ − θc)n is cn(r0), we suppose that mS

n
= limr0→∞ cn/rn0 exists and

write

µS(Θ) �
∞�

n=0

mS
n
rn0 (Θ− θc)

n. (7.4)

(Note that, in Region III, r0 is large and |Θ − θc| is small but their product
is O(a).) Substituting in Eq. (7.2) followed by use of Eq. (5.9) shows that the
remaining integrals are of the form

� Θ+

Θ−
(Θ− θc)

ν−1 dΘ =
1

ν

�
(Θ+ − θc)

ν − eiνπ(θc −Θ−)
ν
�

∼ ν−1r−ν

0

�
(a+ σ0)

ν − eiνπ(a− σ0)
ν
�
, (7.5)

using Eq. (C.18). (The branch in the complex Θ-plane is described above
Eq. (5.9).)

Thus, formally, we obtain the far-field estimate

Sµ ∼ aN

2
√
r0

�
sin 2θc

∞�

n=0

mS
n

2n+ 1
Fn(σ0), (7.6)

where

Fn(x) = i(−1)n(a− x)n+1/2 − (a+ x)n+1/2. (7.7)

We emphasise, first, that the coefficientsmS
n
in Eqs. (7.4) and (7.6) can depend

on the lateral coordinate σ0 and on the azimuthal angle φ0. Second, Eq. (7.6)
is not a far-field expansion: every term in the series must be retained in order
to obtain the leading-order estimate (the quantity multiplying r−1/2

0 ).
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7.4 Radiation by a double-layer potential

Consider the double-layer potential, defined by Eq. (5.7). Parametrising S
using Θ and Φ, and then proceeding as for Sµ gives

(Dµ)± =
a

4π

�

E
µ±(Θ,Φ)N±(Θ,Φ)D(Θ)

Q2
±√
∆

sinΘ
dΘdΦ

R2
±

. (7.8)

Let us evaluate N±. On Sa, n = (x, y, z)/a. Then, using Eqs. (5.6), (C.1),
(C.2) and (C.3),

aN (Θ,Φ) = (X+S − Z+C) cosΘ− {(X+C + Z+S)c+ Y s} sinΘ.

We have X+ = X̃+σ0 and Z+ = Z̃+ζ0; Z̃ is given by Eq. (C.8), and X̃ and Y
are given by Eq. (C.11). Hence, substitution gives aN = −Q3 −Q± = ∓

√
∆,

using Eqs. (C.9) and (C.10), and then Eq. (7.8) reduces to

(Dµ)± = ∓ 1

4π

�

E
µ±(Θ,Φ)D(Θ)Q2

± sinΘ
dΘdΦ

R2
±

. (7.9)

As in Section 7.3, we approximate. Thus, as (Q±/R±)2 ∼ 1 and sinΘ ∼ S,

Dµ = (Dµ)+ + (Dµ)− ∼ − a

4r0

� Θ+

Θ−
µD(Θ)D(Θ) dΘ,

where

µD(Θ) =
r0S

πa

� Φ+

Φ−
{µ+(Θ,Φ)− µ−(Θ,Φ)} dΦ. (7.10)

Next, expand µD(Θ) about Θ = θc, as we did with µS (see Eq. (7.4)):

µD(Θ) �
∞�

n=0

mD
n
rn0 (Θ− θc)

n. (7.11)

Then, using Eq. (5.9) and Eq. (7.5) with ν = n− 1/2, we obtain the estimate

Dµ ∼ − ia

8
√
r0

�
2 cot θc

∞�

n=0

mD
n

2n− 1
Fn−1(σ0), (7.12)

where Fn is defined by Eq. (7.7). Again, mD
n
can depend on σ0 and φ0. See

also the remarks below Eq. (7.7).
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7.5 Pulsating sphere

On the sphere, v · n = U0, a constant. From the known exact solution, the
pressure on the sphere is also constant, p = p0. Then, from Eq. (4.9),

p(P ) = Dp− S(v · n) = Dp0 − SU0, P in the fluid.

Comparison with the results in Section 7.4 shows that µ± = p0 so that µD = 0:
the double-layer contribution in the far field is negligible. Comparison with
the results in Section 7.3 shows that µ± = U0 = µS = mS

0, and then Eq. (7.6)
gives, to leading order,

p(P ) ∼ −aNU0

2
√
r0

�
sin 2θc F0(σ0), (7.13)

where

F0(x) = i
√
a− x−

√
a+ x = −

√
2a exp {−1

2 i arccos (x/a)}. (7.14)

The far-field estimate, Eq. (7.13), agrees precisely with the known exact solu-
tion: see [29, Eq. (4.47)], [28, Eq. (8.25)] (where a time dependence of e+iωt is
used) and Eq. (A.5).

7.6 Vertically oscillating rigid sphere

On the sphere, v · n = W0z/a for some constant W0. From the known exact
solution, p = Pz/a, where P is a complex constant given by Eq. (A.7). Then,
from Eq. (4.9),

p(P ) = Dp− S(v · n) = PDµ−W0Sµ, µ = z/a, P in the fluid. (7.15)

To estimate the far field, we start by calculating µS and µD. We have

aµ± = z = Z+C −X+S = ζ0C − σ0S + Z̃C − X̃S = ζ0C − σ0S +Q± cosΘ

= ζ0(C sinΘ− cS cosΘ) sinΘ− σ0(S sinΘ + cC cosΘ) sinΘ±
√
∆ cosΘ

∼ r0S(Θ− θc)− σ0S ± r0CS
�
(Φ+ − Φ)(Φ− Φ−).

From Eq. (7.3), we integrate with respect to Φ to obtain

aµS(Θ) = r0S(Θ− θc)− σ0S,
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a linear function of Θ. Hence comparison with Eq. (7.4) shows that mS
0 =

−σ0S/a, mS
1 = S/a and mS

n
= 0 for n ≥ 2. Similarly, Eq. (7.10) gives

(a2/C)µD(Θ) = r20[Φ]
2(S/2)2 = r20(Θ+ −Θ)(Θ−Θ−),

a quadratic in Θ, using Eq. (C.19) for [Φ]. Hence, comparison with Eq. (7.11)
gives

(a2/C)mD
0 = a2 − σ2

0, (a2/C)mD
1 = 2σ0, (a2/C)mD

2 = −1

and mD
n
= 0 for n ≥ 3.

Examination of Eqs. (7.6) and (7.12) shows that we require F±1 and F0. From
Eq. (7.7),

F−1(x) =
i√

a2 − x2
F0(x) and F1(x) =

�
2x+ i

√
a2 − x2

�
F0(x), (7.16)

with F0 given by Eq. (7.14).

From Eq. (7.6),

Sµ ∼ aN

6
√
r0

�
sin 2θc

�
3mS

0F0 +mS
1F1

�
= − NS

12
√
r0

�
sin 2θc F3

0 (σ0). (7.17)

From Eq. (7.12),

Dµ ∼ − ia

24
√
r0

�
2 cot θc

�
−3mD

0 F−1 + 3mD
1 F0 +mD

2 F1

�

= − iC

12a
√
r0

�
2 cot θc F3

0 (σ0). (7.18)

Combining Eqs. (7.15), (7.17) and (7.18) gives

p ∼ p∞(a/r0)
1/2 exp

�
−3

2 i arccos (σ0/a)
�

(7.19)

where

p∞ = (i/3)PC
�
C/S − (a/3)W0NS

√
SC. (7.20)

From Eqs. (A.6) and (A.7), W0 and P are related: aW0NS2 = iCB0(Q1+C−2)
and P = B0Q1. Substitution in Eq. (7.20) gives p∞ = −(i/3)B0/

√
SC, in

precise agreement with the known exact solution, Eq. (A.8).

Inspection of Eqs. (7.17) and (7.18) shows that Sµ and Dµ are both approxi-
mately constant multiples of F3

0 . Thus, for the vertically oscillating sphere, we
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can write p = Sµ1 or p = Dµ2, where µ1 and µ2 are certain constant multiples
of z. For example, a short calculation gives

µ1 = B0z/(ia
2NS2C) = −W0(z/a)[1 + C2Q1(i/c)]

−1,

and this agrees with [30, Eq. (2.10)].

8 Energy and radiation conditions

There are two kinds of far-field behaviour to discuss. First, we must check
that the fields decay fast enough to ensure that the surface integral over the
large sphere, SR, vanishes as its radius R → ∞. Outside the wave beams
(Regions II, IV and VI in Fig. 1), the decay is rapid (Section 7.1), so standard
potential-theory estimates give the result. Within the beams, p decays slowly,
as R−1/2, but the total area of the beam cross-sections also grows slowly (it is
8aπR sin θc) and so simple estimates suffice.

The second concern is physical: energy transport. Thus, from Eq. (2.10), we
consider the vector Iav = 1

2ρ0 Re {pv}. The velocity field v can be calculated
from p using Eq. (4.2). Within the beam, Region III, the velocity in the far
field is parallel to the beam. Explicitly, if ẑ0+ is a unit vector in the direction
of increasing z0+ ≡ ζ0 (away from the object), then Voisin [29, Eq. (4.36)] has
shown that v ∼ vẑ0+, where

v =
1

iN sin θc

∂p

∂σ0
.

Now, from Eqs. (7.6) and (7.12), the far-field behaviour of both single-layer
and double-layer potentials has the form

p ∼ r−1/2
0 F (σ0, φ0), (8.1)

where F is a complex-valued function of σ0 and φ0. Hence,

Iav =
1

2
ρ0 Re {pv} ∼ ρ0

2Nr0 sin θc
Im (FF �) ẑ0+, (8.2)

where F � ≡ ∂F/∂σ0 and we have used Re (iFF �) = Im (FF �).

For a pulsating sphere, (7.13) gives F = F0 (apart from a constant real factor),
F � = F �

0(σ0) = (i/2)(a2−σ2
0)

−1/2F0(σ0) and Im (FF �) = a(a2−σ2
0)

−1/2, which
is positive. Thus, Iav points away from the sphere.
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For a vertically oscillating rigid sphere, (7.19) gives F = F3
0 , F

� = 3F2
0F �

0 and
Im (FF �) = 12a3(a2 − σ2

0)
−1/2, which is positive: again, Iav points away from

the sphere.

These two results suggest that a plausible far-field condition is that Iav should
point away from the radiator, especially given textbook interpretations of the
meaning of Iav. For example, Lighthill [14, p. 14] states that I ·n is the rate at
which energy is transported in the direction of n across a small plane element
that is perpendicular to n, per unit area of that element.

However, there are two objections. First, there is some arbitrariness in the def-
inition of Iav: any divergence-free vector can be added to Iav without violating
div Iav = 0. The significance of this observation was noted by Longuet-Higgins
[16]. Second, although there is a requirement that

�
SR

Iav · n dS > 0 when
SR encloses a radiating object (see (3.9)), it is easy to construct examples
where Iav points towards the object in parts of the wave beams. For example,
consider Sµ with µ = 2a + 3z/S. This is a linear combination of two pieces,
namely 2a and 3z/S, each of which generates outgoing Iav. However, their
sum does not, as we show next. We have mS

0 = 2a− 3σ0, mS
1 = 3 and

F (σ0) = 3mS
0F0(σ0) +mS

1F1(σ0) = {6a− 3σ0 + 3i(a2 − σ2
0)

1/2}F0(σ0),

using (7.16). Differentiating,

F �(σ0) = (3/2)F0(σ0){2ia− 3iσ0 − 3(a2 − σ2
0)

1/2}(a2 − σ2
0)

−1/2.

Let ψ0 = arccos (σ0/a) with 0 < ψ0 < π, so that aeiψ0 = σ0 + i(a2 − σ2
0)

1/2.
Then,

F = 3a(2− e−iψ0)F0, F � = (3/2)i(2− 3e−iψ0)F0 cscψ0

and, as |F0|2 = 2a (see (7.14)),

Im (FF �) = 9a2(7− 8 cosψ0) cscψ0.

Evidently, this is negative in part of the wave beam: in that part, Iav points
towards S.

For another (less artificial) example, consider the problem of a sphere that
is both pulsating and oscillating vertically. Adding the two known solutions
for the constituent problems leads to a solution that may or may not satisfy
Iav · ẑ0+ > 0, depending on the strengths of the modes. See Section A.3 for
details.
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9 Discussion

Pressure fields exterior to radiators in stratified fluids may be sought in the
form of a single-layer potential, p = Sµ, or as a double-layer potential, p = Dµ.
To justify these choices, we have to show that µ can be chosen so as to satisfy
the boundary condition and that the far fields are physically meaningful. In
the absence of a precise radiation condition, it is worthwhile to be able to
calculate the far fields from a knowledge of µ. We have shown how to do this,
using a careful asymptotic analysis.

The specification of a radiation condition in the frequency domain is prob-
lematic. If we had a plane-wave (Fourier transform) representation, we could
select those plane waves with outgoing group velocity. This technique can be
used for special geometries [18,20], but it is not general. Another possibility
would be to use Pierce–Hurley analytic continuation, but it is unclear how
to do that computationally. We have shown that it is not sufficient to check
that the energy transport, Iav, points outwards in all directions: imposing this
condition would eliminate physically meaningful solutions.

Instead of writing p = Sµ, we could use one of the representations derived
in Section 4, involving boundary integrals of p and v · n. These have two
advantages: the representations are known to be valid (in the sense that if the
boundary value problem has a solution, then the solution can be represented
as claimed) and they involve physical quantities (as opposed to µ).

A Exact solutions for a sphere

We consider the axisymmetric oscillations of a sphere (radius a). Use cylin-
drical polar coordinates, r and z. Start with the elliptic problem, ω > N .
Following [28], the governing equations for p are Eq. (1.1) with boundary
condition v · n = f on the sphere; the latter becomes

(ω2 −N2)r
∂p

∂r
+ ω2z

∂p

∂z
= iω(ω2 −N2)af on R2 ≡ r2 + z2 = a2. (A.1)

Introduce “stretched oblate spheroidal coordinates” (see [1, Eq. (2.3)] or [28,
Eq. (8.5)]), ξ and η, defined by

r = a(N/ω)
�
ξ2 + 1

�
1− η2, z = acξη, c = N/

√
ω2 −N2. (A.2)

We have

(r/a)2 + (z/a)2 = (N/ω)2(ξ2 + 1) + {c2ξ2 − (N/ω)2(ξ2 + 1)}η2
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and this equals 1 when ξ = 1/c. From Eq. (A.2),

ω2r2

(aN)2
+

z2

(ac)2
− 1 = ξ2 − η2 = ξ2 − z2

(ac)2ξ2
=

z2

(ac)2η2
− η2.

Differentiating with respect to r gives

ω2r

(aN)2
=

1

ξ

∂ξ

∂r

�

ξ2 +
z2

(ac)2ξ2

�

= −1

η

∂η

∂r

�
z2

(ac)2η2
+ η2

�

.

Hence,
∂ξ

∂r
=

ω2rξ

(aN)2(ξ2 + η2)
,

∂η

∂r
= − ω2rη

(aN)2(ξ2 + η2)
.

Similarly, differentiating with respect to z gives

∂ξ

∂z
=

z(ξ2 + 1)

(ac)2ξ(ξ2 + η2)
,

∂η

∂z
=

z(1− η2)

(ac)2η(ξ2 + η2)
.

Then, using N2 = c2(ω2 −N2),

∂p

∂r
=

ω2r

(aN)2(ξ2 + η2)

�

ξ
∂p

∂ξ
− η

∂p

∂η

�

,

∂p

∂z
=

(ω2 −N2)z

(aN)2(ξ2 + η2)

�
ξ2 + 1

ξ

∂p

∂ξ
+

1− η2

η

∂p

∂η

�

.

These are the same as [28, Eq. (8.8)] except that the quantity (aN)2(ξ2 + η2)

is replaced by R2
�
ω2 − Σ2

+

�
ω2 − Σ2

−, with Σ± defined by [28, Eq. (8.6)].

For the boundary condition, Eq. (A.1), we need the combination

(ω2 −N2)r
∂p

∂r
+ ω2z

∂p

∂z
=

ω2(ω2 −N2)

(aN)2(ξ2 + η2)

�

A
∂p

∂ξ
+B

∂p

∂η

�

,

where

A = r2ξ + (z2/ξ)(ξ2 + 1) = a2ξ(ξ2 + 1){(N/ω)2(1− η2) + c2η2}
B = −r2η + (z2/η)(1− η2) = a2η(1− η2){c2ξ2 − (N/ω)2(ξ2 + 1)}.

Now, on the sphere, ξ = 1/c and (N/ω)2(ξ2 + 1) = 1 so that B = 0. Also,

(N/ω)2(1− η2) + c2η2 = (Nc/ω)2(c−2 + η2).

Thus, on ξ = 1/c,

(ω2 −N2)r
∂p

∂r
+ ω2z

∂p

∂z
=

ω2

c

∂p

∂ξ
and so Eq. (A.1) becomes

∂p

∂ξ
=

iac

ω
(ω2 −N2)f(η) on ξ = 1/c. (A.3)
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A.1 Pulsating sphere

In this case, f = U0, a constant, so the right-hand side of Eq. (A.3) is constant
and the appropriate solution of the partial differential equation for p has the
form

p = A0Q0(iξ) =
1

2
A0 log

�
iξ + 1

iξ − 1

�

,

where Qn is a Legendre function. Application of the boundary condition,
Eq. (A.3), gives A0 = a(ω/N)U0

√
ω2 −N2, in agreement with [28, Eq. (8.12)].

For large ξ, p ∼ −iA0/ξ, in agreement with [28, Eq. (8.17)].

After analytic continuation, we obtain

A0 = ia(ω/N)U0

√
N2 − ω2 = iaU0N cos θc sin θc.

In Region III, z0 ∼ r0 cos θc and, after analytic continuation, [28] gives

ξ2 ∼ cos θc sin θc(r0/a) e
iψ0 with ψ0 = arccos (σ0/a). (A.4)

Hence,

p ∼ aU0N
�
(a/r0) cos θc sin θc e

−iψ0/2 = −aU0N

2
√
r0

�
sin 2θc F0(σ0). (A.5)

A.2 Vertical oscillations of a rigid sphere

For this case, f = W0n3 = W0z/a = W0η on ξ = 1/c. Then, the appropriate
solution for p is

p = B0ηQ1(iξ) = B0η

�
iξ

2
log

�
iξ + 1

iξ − 1

�

− 1

�

(see [1, Section 2.1]), with B0 chosen to satisfy Eq. (A.3):

B0[Q1(i/c) +N2/ω2] = i(a/ω)(ω2 −N2)W0. (A.6)

On the sphere,

p = Pη with P = B0Q1(i/c). (A.7)

In the far field, ξ is large, so that p ∼ −B0z0/(3acξ3). Thus, using Eq. (A.4),

p ∼ p∞(a/r0)
1/2 e−3iψ0/2 with p∞ = −1

3 iB0[cos θc sin θc]
−1/2. (A.8)
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A.3 Combination of pulsations and vertical oscillations

For this case, f = U0 +W0z/a. By linearity, p = A0Q0(iξ) + B0ηQ1(iξ), with
A0 and B0 given above. The combined far-field solution is given by Eq. (8.1)
with

F (σ0) = aAF0(σ0) + BF3
0 (σ0),

whereA = −U0(N/2)
√
sin 2θc is a real constant (see Eq. (A.5)),B = −p∞/(2a

√
2)

is a complex constant and p∞ is given by Eq. (A.8). Differentiating,

F �(σ0) = (aA+ 3BF2
0 )(i/2)(a

2 − σ2
0)

−1/2F0(σ0).

Write B = |B|eiβ. Then, as F2
0 = 2ae−iψ0 , we find that

Im (FF �) =
�
A2 + 12|B|2 + 8A|B| cos (β − ψ0)

�
a2 cscψ0.

As expected, this is positive when B = 0 (pulsations only) and when A = 0
(vertical oscillations only), but Im (FF �) can be negative in part of the wave
beam. This is most easily seen by fixing B (fix W0) and then varying A (vary
U0).

B Contribution from the small hemisphere when P ∈ S

Suppose that P at (x0, y0, z0) is a point on S. Denote the unit normal vector
at P (pointing out of S) by nP . Let Hε denote the hemisphere of radius ε,
centred at P , with nP along its axis of symmetry, and with Hε outside S. We
are interested in integrating (pvG −Gvp) ·n over Hε, in the limit ε → 0. The
result is p(P ) multiplied by the value of the integral on the left-hand side of
Eq. (4.5), with Sε replaced by Hε; denote this integral by I.

It is natural to introduce local spherical polar coordinates at P , with polar
axis aligned with nP ; this will lead to a formula for I as a repeated integral
with constant limits of integration. However, as the integrand involves the
global Cartesian coordinates, we require a coordinate rotation.

Let x� = (x�, y�, z�) give local coordinates at P with z� in the direction of nP .
Let X = (x−x0, y−y0, z−z0). The integration point on Hε is located using x�

or (x, y, z), so that |x�| = |X| = ε. From [8, Section 4-4], we have x�T = AXT ,
where A is a 3× 3 orthogonal matrix (A−1 = AT ) with entries given in terms
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of Euler angles. With nP = (sin θP cosφP , sin θP sinφP , cos θP ),

A =





− sinφP cosφP 0

− cos θP cosφP − cos θP sinφP sin θP

sin θP cosφP sin θP sinφP cos θP




;

as a check, we note that AnT

P
= (0, 0, 1)T . Next, we locate the integration

point using x� = ε(sin θ cosϕ, sin θ sinϕ, cos θ) and calculate XT = ATx�T ;
this gives

ε−1(x− x0) = −(sinφP cosϕ+ cos θP cosφP sinϕ) sin θ + sin θP cosφP cos θ,

ε−1(y − y0) = (cosφP cosϕ− cos θP sinφP sinϕ) sin θ + sin θP sinφP cos θ,

ε−1(z − z0) = sin θP sin θ sinϕ+ cos θP cos θ;

as a check, |X| = ε. Finally, we obtain

I =
i

ω

� 2π

0

�
π/2

0

sin θ dθ dϕ

{Λ(θ, ϕ;nP )}3/2
(B.1)

where

Λ = [(cos2 θP +Υ−1 sin2 θP ) sin
2 ϕ+ cos2 ϕ] sin2 θ

+ (sin2 θP +Υ−1 cos2 θP ) cos
2 θ +

1

2
(Υ−1 − 1) sin 2θP sin 2θ sinϕ;

as expected, Λ = 1 when Υ = 1. Then, the quantity A(P ) defined below
Eq. (4.7) is given by A = (ω2 −N2)1/2I/(4πi).

C Details for the far field within the wave beams

C.1 Coordinate systems

The integration point, Q, is at (x, y, z). Following [29], introduce local Carte-
sian coordinates, (X+, Y, Z+) and (X−, Y, Z−), so that

x = X± cos θc cosφ0 − Y sinφ0 ± Z± sin θc cosφ0, (C.1)

y = X± cos θc sinφ0 + Y cosφ0 ± Z± sin θc sinφ0, (C.2)

z = ∓X± sin θc + Z± cos θc. (C.3)

Note that as x2 + y2 + z2 = X2
± + Y 2 + Z2

±, X±, Y and Z± are all bounded
for Q ∈ S.
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C.2 The integration domain in the ΘΦ-plane

We locate points on Sa using Θ and Φ, assuming that P is in Region III; the
reason for doing this is given at the end of Section 7.2. Our purpose here is to
identify the (integration) region in the ΘΦ-plane.

Rather than relate Θ and Φ to x, y and z, we use X+, Y and Z+. To begin,
Eq. (5.2) gives

x− x0 = (z − z0)T cosΦ and y − y0 = (z − z0)T sinΦ, (C.4)

where T = tanΘ. Also, Eqs. (7.1) and (C.3) give

z − z0 = Z̃ cos θc − X̃ sin θc = Λ, (C.5)

say, where X̃ = X+ − σ0 and Z̃ = Z+ − ζ0. Then, as x0 = �0 cosφ0 and
y0 = �0 sinφ0, Eqs. (C.1), (C.2) and (C.4) give

x− x0 = X̃ cos θc cosφ0 − Y sinφ0 + Z̃ sin θc cosφ0 = ΛT cosΦ,

y − y0 = X̃ cos θc sinφ0 + Y cosφ0 + Z̃ sin θc sinφ0 = ΛT sinΦ.

These two equations give Y = ΛT s and Z̃S + X̃C = ΛT c, where

C = cos θc, S = sin θc, c = cos (Φ− φ0), s = sin (Φ− φ0).

Substituting for Λ from Eq. (C.5) and then solving for Y and X̃ in terms of
Z̃ gives

X̃ =
(T Cc− S)Z̃

T Sc+ C
, Y =

T sZ̃

T Sc+ C
. (C.6)

Thus,

(T Sc+ C)2(X2
+ + Y 2) = [(T Sc+ C)σ0 + (T Cc− S)Z̃]2 + [T sZ̃]2. (C.7)

Now, the equation defining Sa is x2 + y2 + z2 = X2
+ + Y 2 + Z2

+ = a2, so
X2

++Y 2 = a2− (Z̃ + ζ0)2. Hence, eliminating X2
++Y 2, using Eq. (C.7), gives

a quadratic equation for Z̃,

0 = [(T Cc− S)Z̃ + (T Sc+ C)σ0]
2 + [T sZ̃]2 + (T Sc+ C)2[(Z̃ + ζ0)

2 − a2]

= Z̃2{(T Cc− S)2 + T 2s2 + (T Sc+ C)2}+ 2Z̃(T Sc+ C)Q1 + (T Sc+ C)2Q2,

where Q1 = (T Cc − S)σ0 + (T Sc + C)ζ0 and Q2 = σ2
0 + ζ20 − a2. As the

coefficient multiplying Z̃2 simplifies to sec2 Θ, the solution for Z̃(Θ,Φ) is

Z̃ = (T Sc+C) cos2 Θ
�
−Q1 ± (Q2

1 −Q2 sec
2 Θ)1/2

�
= (C cosΘ+cS sinΘ)Q±,

(C.8)
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say, where

Q±(Θ,Φ) = −Q3 ±
√
∆, ∆(Θ,Φ) = Q2

3 −Q2, (C.9)

Q3 = Q1 cosΘ = (cC sinΘ− S cosΘ)σ0 + (cS sinΘ + C cosΘ)ζ0. (C.10)

Then, Eq. (C.6) gives

X̃(Θ,Φ) = (cC sinΘ− S cosΘ)Q± and Y (Θ,Φ) = sQ± sinΘ. (C.11)

Evidently, we require that ∆(Θ,Φ) ≥ 0. When Θ = θc and Φ = φ0, we have
c = 1, Q3 = ζ0 and ∆(θc, φ0) = a2 − σ2

0 ≥ 0, because |σ0| < a when P is in
Region III. Moreover, when P is in the far field, the region of the ΘΦ-plane in
which ∆ ≥ 0 is small, so we can approximate. Thus, for Θ � θc and Φ � φ0,
write ϑ = Θ− θc and ϕ = Φ− φ0. Then

Q3 = ζ0 cosϑ+ σ0 sinϑ+ (c− 1)(Cσ0 + Sζ0) sinΘ

� ζ0 + σ0ϑ− 1
2ζ0ϑ

2 − 1
2(Cσ0 + Sζ0)Sϕ

2,

correct to second order in ϑ and ϕ. Then, from Eq. (C.9),

∆ � a2 − σ2
0 + 2ζ0σ0ϑ+ (σ2

0 − ζ20 )ϑ
2 − (Cσ0 + Sζ0)Sζ0ϕ

2. (C.12)

We are interested in locating the curve defined by ∆(Θ,Φ) = 0, given approx-
imately by

(Cσ0 + Sζ0)Sζ0ϕ
2 + Z0ϑ

2 − 2ζ0σ0ϑ = a2 − σ2
0, (C.13)

where Z0 = ζ20 −σ2
0 is taken to be positive. Completing the square shows that

Eq. (C.13) defines an ellipse, ϕ2/A2 + (ϑ− ϑ0)2/B2 = 1, where ϑ0 = ζ0σ0/Z0,

A2 =
a2 − σ2

0 + Z0ϑ2
0

(Cσ0 + Sζ0)Sζ0
and B2 = ϑ2

0 +
a2 − σ2

0

Z0
. (C.14)

Denote the interior of this ellipse by E . In the ΘΦ-plane, E is aligned with
the coordinate axes, and its centre is as (Θ,Φ) = (θc + ϑ0, φ0). The endpoints
of the major axis are at (Θ,Φ) = (θc + ϑ0, φ0 ± A). The endpoints of the
minor axis are at (Θ,Φ) = (θc + ϑ0 ± B, φ0). The area of E is approximately
πa2/(r20 sin θc) for large r0. As B > ϑ0, (Θ,Φ) = (θc, φ0) is always in E . We
conclude that ∆ ≥ 0 in E . Explicitly, E is defined by

Φ−(Θ) < Φ < Φ+(Θ), Θ− < Θ < Θ+, (C.15)

where

Φ±(Θ) = φ0 ± (A/B)
�
(Θ+ −Θ)(Θ−Θ−), Θ± = θc + ϑ0 ± B. (C.16)

Then, from Eq. (C.12), we obtain

∆(Θ,Φ) = (Cσ0 + Sζ0)Sζ0 [Φ+(Θ)− Φ][Φ− Φ−(Θ)] . (C.17)
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In the far field, where ζ0 is large, we have Z0 � ζ20 , ϑ0 � σ0/ζ0, A � a/(ζ0S)
and B � a/ζ0 � SA. Thus, E shrinks as ζ0 increases, and its centre moves
towards (θc, φ0). Also, ζ0 ∼ r0 and

Θ± � θc ± (a± σ0)/r0, (C.18)

[Φ] = Φ+ − Φ− � (2/S)
�
(Θ+ −Θ)(Θ−Θ−). (C.19)

C.3 The Jacobian

In terms of Θ and Φ, we have dS = |(jx, jy, jz)| dΘdΦ, where

(jx, jy, jz) =

�
∂X+

∂Θ
,
∂Y

∂Θ
,
∂Z+

∂Θ

�

×
�
∂X+

∂Φ
,
∂Y

∂Φ
,
∂Z+

∂Φ

�

. (C.20)

Direct calculation from Eqs. (C.8) and (C.11) gives

∂X+

∂Θ
= (cC sinΘ− S cosΘ)

∂Q±

∂Θ
+ (cC cosΘ + S sinΘ)Q±,

∂Y

∂Θ
= s

∂Q±

∂Θ
sinΘ + sQ± cosΘ,

∂Z+

∂Θ
= (C cosΘ + cS sinΘ)

∂Q±

∂Θ
+ (−C sinΘ + cS cosΘ)Q±,

∂X+

∂Φ
= (cC sinΘ− S cosΘ)

∂Q±

∂Φ
− sCQ± sinΘ,

∂Y

∂Φ
= s

∂Q±

∂Φ
sinΘ + cQ± sinΘ,

∂Z+

∂Φ
= (C cosΘ + cS sinΘ)

∂Q±

∂Φ
− sSQ± sinΘ.

From these and Eq. (C.20), jx, jy and jz can be calculated, whence

j2
x
+ j2

y
+ j2

z

Q2
±

= Q2
± sin2 Θ+

�
∂Q±

∂Θ

�2

sin2 Θ+

�
∂Q±

∂Φ

�2

.

We have Q± = −Q3 ±
√
∆ with ∆ = Q2

3 −Q2, and, from Eq. (C.10),

∂Q3

∂Θ
= (cC cosΘ+S sinΘ)σ0+(cS cosΘ−C sinΘ)ζ0,

∂Q3

∂Φ
= −s(Cσ0+Sζ0) sinΘ.

Hence,
∂Q±

∂Θ
=

�

−1± Q3√
∆

�
∂Q3

∂Θ
= ∓Q±√

∆

∂Q3

∂Θ
,
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with a similar formula for ∂Q±/∂Φ. Thus,

j2
x
+ j2

y
+ j2

z
=

Q4
±

∆




∆sin2 Θ+

�
∂Q3

∂Θ

�2

sin2 Θ+

�
∂Q3

∂Φ

�2





=
Q4

±
∆




a2 +Q2
3 +

�
∂Q3

∂Θ

�2

− σ2
0 − ζ20 + s2(Cσ0 + Sζ0)

2




 sin2 Θ.

The expression inside the braces simplifies to a2, whence

|(jx, jy, jz)| =
Q2

±a√
∆

sinΘ. (C.21)
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