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An analytical method for determining the shape of hollow vortices in shear flows is
presented in detail. In a non-dimensional formulation, it is shown that the problem
has one degree of freedom represented by the free choice of the non-dimensionalized
speed κ at the boundary of the vortex. The solutions form two families of shapes
corresponding to vortex circulation and shear-flow vorticity having the opposite or
same sign. When the signs are opposite, the shape family resembles that described by
Llewellyn Smith & Crowdy (J. Fluid Mech., vol. 691, 2012, pp. 178–200) for hollow
vortices in a potential flow with strain. As for that flow, there is a minimum value
of κ below which there is no solution as the boundary of the vortex self-intersects,
while, when the signs are the same, solutions exist for 0< κ .
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1. Introduction
The study of two-dimensional vortices in a non-uniform background flow has

attracted the attention of many researchers in vortex dynamics because of its overall
theoretical importance and its many applications such as, for instance, flow control,
geophysical flows, turbulence. To this purpose, several vortex models have been
adopted, in particular point vortices, vortex patches and hollow vortices.

In the context of the detection of aircraft wakes, Moore & Saffman (1971)
studied the shape of finite-area vortices in a two-dimensional inviscid straining
flow. They considered irrotational strain and simple shear. By modelling vortices as
vortex patches, i.e. as regions with constant vorticity, ω = const, they found steady
configurations with elliptical shapes. Kida (1981) showed analytically that the Moore
& Saffman (1971) solutions are particular steady cases of more general unsteady
time-periodic solutions, in which, depending on the shear intensity, vortices rotate
preserving their elliptical shape and varying their ellipticity. Earlier, Chaplygin and
Kirchhoff had found solutions for (i) the motion of an elliptical patch of uniform
vorticity in an exterior field of pure shear; (ii) the motion of a (symmetric or
non-symmetric) dipolar vortex with a continuous distribution of vorticity translating
steadily along a straight path; and (iii) the motion of a non-symmetric vortex dipole
moving along a circular trajectory (Lamb 1932; Meleshko & van Heijst 1994).
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Schecter & Dubin (2001) examined two-dimensional vortex motion in a shear
flow with non-uniform vorticity. In general, a vortex travels to an extremum in the
background vorticity distribution and the rate of this migration increases with the
magnitude of the background vorticity gradient. They also found that a retrograde
vortex, which rotates against the local shear, moves orders of magnitude faster than
a prograde vortex of equal strength.

Besides the general interest in exact solutions of the Euler equations for non-trivial
flows, analytical models of vortical structures in shear flows are relevant to the Earth’s
atmosphere and oceans. Jupiter’s Great Red Spot is another example connected to
the present study on hollow vortices: the Great Red Spot is a vortical structure that
interacts with a shear flow and exhibits high vorticity in its outer region and low
vorticity in its core (see Shetty, Asay-Davis & Marcus (2010), and references therein).
Vorticity has also been put forward as a mechanism in the formation of the Solar
system (Tanga et al. 1996).

More recently, Llewellyn Smith & Crowdy (2012) solved a problem related to the
Moore & Saffman (1971) problem of vortex equilibrium in a straining flow using
the hollow-vortex model that takes that the inside of the vortex to be vacuum or,
equivalently, a zero-vorticity region bounded by a vortex sheet (in both cases, at
steady state, a constant pressure inside the core requires a constant speed at the
vortex boundary). They limited their study to the irrotational strain case and provided
a closed-form analytical solution for steady configurations.

In the present study, we enrich the scenario by giving analytical solution to the
problem of finding the shape a hollow vortex takes in equilibrium in a shear flow.

Zero vorticity, ω= 0, means that the streamfunction ψ is harmonic in the inside of
the vortex. When the flow is steady, ψ is constant at the boundary and, according to
the maximum principle, ψ is constant throughout the inside of the vortex. It follows
that flow velocity is zero and pressure is constant in the interior. Equilibrium then
requires constant flow speed along the exterior side of the bounding vortex sheet.
The determination of the shape of a hollow vortex is so reduced to a free-streamline
problem, whose study goes back to 19th century and Kirchhoff free-streamline theory.
Birkhoff & Zarantonello (1957) and Gurevich (1966) present a broad survey of this
problem. Hicks (1883) and Pocklington (1895) are examples of historic solutions for
hollow-vortex shapes. More recent studies on hollow vortices, based on the classical
hodograph method or more innovative methods, have been produced. Among many
references on the matter, one can mention, for instance, Baker, Saffman & Sheffield
(1976), Lin & Landweber (1977), Crowdy & Green (2011), Telib & Zannetti (2011),
Crowdy, Llewellyn Smith & Freilich (2012), Elcrat & Zannetti (2012), Llewellyn
Smith & Crowdy (2012), Zannetti & Lasagna (2013), Elcrat, Ferlauto & Zannetti
(2014), Green (2015).

Once the problem is non-dimensionalized, we show that the problem has one
degree of freedom, i.e. the solution depends on a single non-dimensional parameter.
The solutions form two separate families related to opposite or same sign of shear
vorticity and vortex circulation.

When shear vorticity and vortex circulation are opposite, the solutions are analogous
to and have the same flow topology as the hollow vortices in an irrotational straining
flow studied by Llewellyn Smith & Crowdy (2012). We have selected as free
parameter the non-dimensional speed κ of the flow at the boundary of the vortex. As
κ →∞ the solution is a point vortex. For large finite values of κ the point vortex
is desingularized into a finite-area vortex. As κ decreases, the vortex area increases
until a maximum area is reached and then decreases. Unlike the solution of Llewellyn
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Smith & Crowdy (2012), our solution is not expressed in closed form but is obtained
by a root-finding process.

In the family corresponding to the same sign of shear-flow vorticity and vortex
circulation, the point-vortex solution is, as above, obtained for κ →∞. The vortex
area increases monotonically as κ decreases.

The study of stability of the solutions goes beyond the scope of the present study.
However the present analytical method of solution offers a tool for further studies
on this important aspect of the problem, following on from, for example, the linear
stability analysis described by Llewellyn Smith & Crowdy (2012) for hollow vortices
in a potential strained flow or by Crowdy et al. (2012) for Pocklington’s vortex pair.

2. Hollow-vortex structure
We consider a hollow vortex in equilibrium in a two-dimensional (2-D) incompress-

ible flow governed by the Euler equation. Then

∇2ψ =−ω, (2.1)

where ψ denotes the streamfunction and ω, which is constant, the vorticity of the flow
past the vortex. At infinity the flow tends to a pure shear flow, that is,

∇⊥ψ→−ωyi as (x, y)→∞, (2.2)

where (x, y) are Cartesian coordinates and i is the unit vector along the x-axis.
The vorticity inside the vortex is assumed to be zero. As a consequence, the internal

flow is at rest, the pressure is constant at the vortex boundary and, according to
Bernoulli’s equation, the vortex boundary is a vortex sheet with constant speed q= k
on the external side. Steady flow and constant tangential velocity result in

∂ψ

∂s
= 0,

∣∣∣∣∂ψ∂n

∣∣∣∣= k on the boundary, (2.3a,b)

where n and s are normal and tangential directions at the boundary.
This is a free-boundary problem which requires finding the vortex shape that

satisfies the above conditions. For the sake of simplicity, a summary description of
the solution is presented in this section while a detailed description is given in the
appendices.

Briefly, the solution is obtained according to the classical conformal mapping
method. Let z= x + iy be the complex coordinate in the physical z-plane of motion
and ζ = ξ + iη the complex coordinate in a transformed ζ -plane. The solution consists
in finding the function z= z(ζ ) mapping the unit circle in the ζ -plane onto the vortex
contour in the z-plane.

For flow regularity, the mapping z(ζ ) has to be analytic outside the unit circle of
the ζ -plane and such that limζ→∞ z(ζ )=∞ and the mapping derivative dz/dζ has to
be analytic and different from zero. Thus, dz/dζ can be expressed as

dz
dζ
= exp

∞∑
n=1

bnζ
−(n−1). (2.4)

Once the coefficients bn are determined by the solution process, the mapping z(ζ ) is
obtained by analytic integration, as shown in the appendices.
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In general, (2.1) is satisfied by the streamfunction

ψ(z(ζ ))=ψω +ψp =−ω2 Im2[z(ζ )] + Im[wp(ζ )], (2.5)

where the first term ψω is the streamfunction of a pure shear flow whose constant
vorticity is ω and the second term ψp is the streamfunction of an irrotational flow
whose complex potential is wp. Continuing, (2.2) is satisfied by setting

wp = γ

2πi
log ζ −G(ζ ). (2.6)

The complex potential wp(ζ ) is made up of the combination of the complex potential
of a point vortex with circulation γ located on the origin of the ζ -plane and a complex
potential G(ζ ) which is analytic for |ζ |> 1 and is finite at infinity. Hence, in general,
the latter can be written as

G(ζ )=
∞∑

n=1

cnζ
−(n−1). (2.7)

As detailed in the appendices, for given values of vorticity ω, point-vortex
circulation γ and vortex-contour speed k, the coefficients bn, cn of the above series,
truncated at a suitably large value N, are determined by enforcing the constraints (2.3).

According to (2.5) and (2.6), Stokes’ theorem and the residue theorem, the
circulation Γ of the hollow vortex is

Γ =
∮
∂

q · ds= kLc =
∮
∂

(
∂ψω

∂y
dx− ∂ψω

∂x
dy
)
+Re

∮
|ζ |=1

dwp

dζ
dζ =ωAv + γ , (2.8)

where Av is the vortex area and Lc is the vortex perimeter.
Let the problem be non-dimensionalized by taking the absolute value of the vorticity

of the shear flow ω as reference vorticity (ωref = |ω|) and the absolute value of the
vortex circulation γ /(2π) as the reference circulation (γref = |γ /(2π)|). The reference
length and velocity become lref =√|γ /(2πω)| and qref =√|ωγ /(2π)|, respectively.

The streamfunction of the non-dimensionalized problem, written as function of ζ ,
becomes

ψ(ζ )=−δ
2

Im2[z(ζ )] − τ log |ζ | − Im[G(ζ ; δ, τ , κ)], (2.9)

with δ = sgn(ω), τ = sgn(γ ) and where

κ = k√|ωγ /(2π)| , (2.10)

is the non-dimensional velocity at the vortex boundary. For δ = τ and δ = −τ , two
families of shapes are defined by varying the parameter κ . That is, all the solutions
corresponding to given values of vorticity ω and circulation γ can be scaled onto two
family of shapes.

As for Llewellyn Smith & Crowdy (2012), the general topology of the flow can be
deducted by considering the related problem of a point vortex in the same shear flow.
In the physical z-plane, the non-dimensionalized streamfunction for the point-vortex
flow is

ψpv =−δ2y2 − τ
2

log(x2 + y2). (2.11)

Figure 1(a) shows the streamline pattern for δ=−τ , that is for a point vortex whose
circulation is opposite to the shear vorticity. The flow has two stagnation points and a
separatrix that divides a finite body of recirculating fluid entrained by the vortex from
the external non-recirculating flow driven by the shear flow.
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(a) (b)

FIGURE 1. Streamline patterns of the point-vortex solution: (a) δ =−τ ; (b) δ = τ .
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FIGURE 2. Hollow-vortex streamlines for δ =−τ and κ = 2.

Figure 1(b) shows the case of equal sign point-vortex circulation and shear vorticity
(δ = τ ). There are no stagnation points and all the streamlines are closed. Close to
the point vortex the streamline shapes are near circular, while far away the shear flow
makes them increasingly elongated.

2.1. The δ =−τ case
We first consider the solutions for δ=−τ =−1 for different values of κ . It is obvious
that the δ =−τ = 1 choice generates the same flows streaming in reversed direction.

An example solution is provided by figure 2 where the flow field has been drawn
for κ = 2. By varying the parameter κ , a hollow-vortex solution can be continued
onto a family of vortices with different shapes and areas. Hollow-vortex shapes are
displayed in figure 3(a) for given values of the non-dimensionalized speed κ in the
range 1.32 6 κ . As κ →∞ the solution tends to a zero-area vortex, that is, to the
point-vortex solution. As κ decreases the point vortex is desingularized into more
and more elongated vortices with finite area. The non-dimensional area α= Av/l2

ref is
plotted versus κ in figure 3(b). For κ = κ?≈ 1.6, the vortex area reaches a maximum.
As κ decreases, the shapes start to resemble those computed by Llewellyn Smith &
Crowdy (2012) for hollow vortices in a strain flow (n= 2 in their notation; see their
figures 2 and 3), with a limiting value for κ below which there is no solution as the
boundary starts to self-intersect. This outcome is expected for κ <κ?, where a decrease
of speed at the vortex contour is accompanied by a decrease of the vortex area. In
non-dimensional form (2.8) yields κlc = 2πτ + δα, where lc is the non-dimensional
length of the vortex contour. In the present case δ=−κ =−1 and the contour length
becomes lc = (2π − α)/κ . As κ decreases it becomes longer and, since the vortex
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FIGURE 3. Hollow vortices for δ =−τ . (a) Vortex shapes for κ = 1.4, 1.5, 1.6, 1.75, 2,
2.25, 2.5, 3, 3.5, 4; (b) non-dimensionalized vortex area versus κ .
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FIGURE 4. Streamline pattern for δ = τ and κ = 1.5.

area is getting smaller, it will eventually self-intersect. The pinch-off happens between
κ = 1.32 and κ = 1.31 (the numerical procedure will produce self-intersecting shapes
as κ continues to decrease). An explanation of such an agreement might be given by
noticing that a shear flow can be decomposed into a strain flow plus a rigid body
rotation: ψsh =ψst +ψω, with

ψsh =−(ω/2)y2, ψst = (ω/4)(x2 − y2) and ψω =−(ω/4)(x2 + y2), (2.12a−c)

and that the streamline pattern for a hollow vortex in a strain flow has the same
topology as for a δ = −τ hollow vortex in a shear flow (see figure 2). By taking
a normalization analogous to the present one for the problem examined by Llewellyn
Smith & Crowdy (2012), that is by selecting, according to their notation, the strain
factor γ and the vortex circulation Γ as reference values, a non-dimensionalized speed
κ̃ of the vortex contour can be defined which results in a monotonically decreasing
function of the parameter µ used in their study. As a consequence, the behaviour of
area versus µ in their figure 3(b) has the same behaviour of our plot of area versus
κ shown by the present figure 3.

2.2. The δ = τ case
Figure 4 shows the streamline pattern for δ = τ = 1 and for κ = 1.5. As discussed
above, this solution appears as a desingularization of the point-vortex solution shown
in figure 1(b). The entire flow field consists of closed streamlines and there are
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FIGURE 5. Hollow vortices for δ = τ . (a) Vortex shapes for κ = 0.75, 1, 1.25, 1.5, 2, 3;
(b) non-dimensionalized vortex area versus κ .

no stagnation points. By varying the vortex contour speed κ , the solution can be
continued to vortices with different areas. Vortex shapes are drawn for given values
of κ in figure 5(a), the corresponding area values are plotted on figure 5(b). As
κ→∞ the solution tends to a zero-area vortex, that is, to the point-vortex solution.
As κ decreases the vortex shape elongates and the area increases. The limit as κ→ 0
is an infinite stagnant strip above and below bounded by two shear flows with zero
velocity at the strip boundary. This is reminiscent of the limit of the solution of Baker
et al. (1976) when the vortices in the array start to touch and the array reduces to
a strip.

3. Concluding remarks
The paper presents in detail an analytical method for determining the shape of

hollow vortices in shear flows.
In a non-dimensional formulation, it is shown that the problem has one degree of

freedom represented by the free choice of the non-dimensional flow speed κ at the
vortex contour. For κ → ∞ the solution tends to the point-vortex flow. For finite
values of κ , the solution is desingularized into finite-area vortices. The solutions form
two families of shapes which correspond to vortex circulation and shear-flow vorticity
having opposite sign (γω < 0) or equal sign (γω > 0).

For γω < 0 the family of shapes resembles that described by Llewellyn Smith &
Crowdy (2012) for hollow vortices in strained potential flows. As for that family,
there is a value of κ for which the vortex area reaches a maximum, and there is
also a minimum value of κ below which there is no solution as the vortex contour
self-intersects.

For γω > 0, the area of the vortex is a monotonic decreasing function of κ . For
κ→∞ the solution tends to the zero-area point vortex. Solutions exist for arbitrary
small values of κ and that for κ→ 0 the vortex shape tends to an infinite strip.

The method intrinsically looks for steady solutions, thus oscillating solutions à la
Kida (1981) are not considered and cannot be excluded.
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Appendix A. Coefficient series determination

The series coefficients bn and cn in (2.4) and (2.7) are computed by a fixed-point
iteration or zero-finding process.

According to (2.9) and (2.6), the complex velocity u− iv, written as a function of
ζ , is

u− iv =−δIm[z(ζ )] −
(

iτ
ζ
+ dG

dζ

)
1

dz/dζ
. (A 1)

Let ũ and ṽ be the normal and tangential components of the flow velocity at the
vortex boundary, the complex velocity ũ− iṽ becomes

ũ− iṽ =
[
(u− iv)

dz/dζ
|dz/dζ |ζ

]
|ζ |=1

. (A 2)

We assume that τ is positive (τ = 1), as a consequence ṽ is positive and conditions
(2.3) become ũ= 0 and ṽ = κ , that is

Re
(

dG
dζ
ζ

)
|ζ |=1

=Re
[
−δIm(z(ζ )) dz

dζ
ζ

]
|ζ |=1

(A 3)

and ∣∣∣∣ dz
dζ

∣∣∣∣={ Im[δIm(z(ζ ))ζ dz/dζ + ζ dG/dζ ] + τ
κ

}
|ζ |=1

. (A 4)

Let the series (2.4), (2.7) be truncated at a suitably large value n = N (in our
computations we have set N = 128). The process is started by assuming a set of
values for the bn coefficients. A starting guess of bn = 0 for n = 1, . . . , N for the
largest value of κ was used, after which κ was decreased and the previous value of
bn was used as the starting guess. As shown below, (A 3) allows the computation
of a first set of cn coefficients, then (A 4) allows the coefficients bn to be updated.
The process is repeated until the absolute maximum difference between old and new
values of the coefficients bn falls below a given threshold D (we set D= 10−10). For
large enough values of κ (around 1.5 for the case δ=−τ and 1.2 for the case δ= τ ),
a fixed-point iteration was used in which the new values of bn replace the old. For
smaller values of κ , a multidimensional root-finding algorithm (fsolve in Matlab) is
used to find zeros of the difference between old and new coefficients.

For |ζ | = 1, so that ζ = eiϕ , (A 3) can be recast as

Re

[
N∑

n=1

Cne−i(n−1)ϕ

]
=Re

[
−δIm(z(ζ )) dz

dζ
ζ

]
|ζ |=1

, (A 5)

with Cn = −(n − 1)cn. Once old values of the right-hand side are evaluated at 2N
equispaced points of the ζ -plane unit circle, the computation of a new set of cn (n 6=1)
coefficients can be obtained through the discrete Fourier transform. The coefficient c1

is an additive constant to the potential G(ζ ) (2.7) which can be arbitrarily chosen.
Then (2.4) yields

log
∣∣∣∣ dz
dζ

∣∣∣∣=Re

(
N∑

n=1

bnζ
−(n−1)

)
(A 6)
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and (A 4) can be recast as

Re

(
N∑

n=1

bne−i(n−1)ϕ

)
= log

{
Im[δIm(z(ζ ))ζ dz/dζ + ζ dG/dζ ] + τ

κ

}
|ζ |=1

. (A 7)

A new set of values for bn is obtained by the discrete Fourier transform of the
right-hand side evaluated at 2N equispaced points of the ζ -plane unit circle by means
of the old bn values, needed to evaluate the z(ζ ) and dz/dζ terms, and by means of
the updated cn coefficients, needed to evaluate the dG/dζ term.

The mapping z(ζ ) is given by the indefinite integral z(ζ )= ∫ (dz/dζ ) dζ , that is

z(ζ )=
∫

exp
N∑

n=1

bnζ
−(n−1)dζ . (A 8)

The Laurent series expansion of the integrand yields

exp
N∑

n=1

bnζ
−(n−1) ≡

N∑
n=1

anζ
−(n−1). (A 9)

We show below that there is a closed-form analytic relationship between the
coefficients an and bn having the form aj = f (b1, . . . , bj). Since the closure condition
of the vortex implies that

∮
(dz/dζ )|ζ |=1dζ = 2πia2 = 0, the integral (A 8) is

z(ζ )= a1ζ −
N∑

n=3

an

n− 2
ζ−(n−2). (A 10)

All the solutions here found are symmetric with respect to the x, y axes. As a
consequence the computed an, bn are all real and equal to zero for even n indexes.

Appendix B. The aj = f (b1, . . . , bj) relationship
We set

σ = exp s(t), (B 1)

with

s=
N∑

n=1

bntn−1. (B 2)

For t= 1/ζ , the identity (A 9) becomes

σ ≡
N∑

n=1

antn−1. (B 3)

The coefficients an can be found as coefficients of the McLaurin series expansion or,
equivalently, as residues at t= 0 of σ , that is

an =Res
(
σ

1
tn

)
t=0

= 1
(n− 1)!

(
dn−1

dtn−1
σ

)
t=0

. (B 4)
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The first coefficient clearly is a1= eb1 . The subsequent coefficients an are obtained by
evaluating the right-end side of (B 4) with a recursion formula which avoids actual
onerous derivations. In fact, the first derivative of σ is

dσ
dt
= σ ds

dt
(B 5)

and, according to the general Leibniz rule for derivation of products, the higher-order
derivatives result in

dj+1σ

dtj+1
= dj

dtj

(
σ

ds
dt

)
=

j∑
k=0

j!
k!( j− k)!

dkσ

dtk

dj−k+1s
dtj−k+1

. (B 6)

For t= 0, this gives (djs/dtj)t=0= j!bj+1, thus the values of the σ derivatives are given
by the recursion formula(

dj+1σ

dtj+1

)
t=0

=
j∑

k=0

j!
k!
(

dkσ

dtk

)
t=0

( j− k+ 1)bj−k+2, (B 7)

which, according to (B 4), yields

aj+1 = 1
j

j−1∑
k=0

( j− k)ak+1bj−k+1, with j= 1, 2, . . . ,N − 1, (B 8)

where the starting value is a1 = eb1 .
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