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Problems in structural acoustics involving finite plates can be formulated using integral equation
methods. The unknown function within the integral equation must satisfy the plate edge conditions,
and hence appropriate expansion functions must be used. The expansion functions developed here
are aimed at treating a wide class of problems. Once such functions are found, the solution process
and numerical implementation are relatively straightforward. The speed of convergence to “exact”
comparison solutions is fast even in the singular limit of high frequencies and wide plates. A set of
expansion functions with the required properties is constructed and some illustrative problems are
treated. ©1999 Acoustical Society of Amerid&80001-4969)03512-2

PACS numbers: 43.20.Tb, 43.40.Dx, 43.40.RBB]

INTRODUCTION tions we develop can be utilized in more complex geom-
etries. From a numerical perspective one has to deal with a
Many papers have been written on integral equatiorrelatively high order boundary condition on the elastic plate,
methods for treating finite length rigid plates in acoustics, orsuch as the classical plate equatfon,
analogous problems in elastodynamics or electro-
magnetisnt? In these cases the integral equations are oy 5
readily and efficiently solved using expansion functions, By—mw 7=—p(x,0), @)
Chebyshev polynomials, for the unknown. The vital ingredi-
ent captured by the expansion functions is that they correctlyor the plate displacement(x), wherep(x,0) is the pressure
incorporate the edge condition at the plate ends. Conveign the plate. This equation is adopted here and involves the
gence is usually rapid even for higher frequency problemstourth derivative ofy. The plate is assumed to separate fluid
Unfortunately, the usual Chebyshev polynomial expansiofrom a vacuum. At any joint or plate edge we must apply two
functions are not well suited to treating, say, elastic plateedge conditions to the displacement. For instance, clamped
boundary conditions; the edge behavior is altered in thesplates havep=7'=0 at the edges. The appropriate condi-
cases. Our aim here is to develop a class of expansion fungons must be built into any numerical scheme either implic-
tions, analogous to the rigid plate ones, that are equally agtly or explicitly. Moreover, the edge conditions are impor-
plicable to elastic plate problems. tant, as analytical studies show a marked dependence upon
There is recurrent interest in sound generation or scatthem.
tering by elastic plates in structural acoustics. Many struc- A variety of numerical methods such as finite element
tures consist of plates welded together or attached in othgichemes, modal methods, and integral equation approaches
ways, and vibrational plate waves are potential major sourcelsave been utilized by other authors. Finite elements are ver-
of acoustic noise. These waves may be coupled into theatile. However, one has to discretize the whole domain,
surrounding fluid via interactions with the plate edges, forwith the result that infinite domains are awkward, and calcu-
example. Thus analytical and numerical techniques haviations become increasingly unwieldy as frequencies in-
often been used to try to describe the general physical effectsease. Modal methods have advantages for the simply sup-
involved, and to solve model problems for specific ported»=7"'=0 edge conditions, as Fourier series solutions
geometries. Problems involving finite length plates with can be developed; however, this approach cannot be used for
various attachment conditions are unfortunately not amemore general edge conditions. For more general edge condi-
nable to exact solution, although asymptotic results for widgions, analytic approximations utilizing tha vacuoeigen-
plates and light or heavy fluid loading can be found. Our aimfunctions can be adoptédiwe briefly discuss eigenfunction
is to develop efficient numerical approaches capable of solvmethods in Sec. IV. There are also numerical approaches
ing these problems in regimes not necessarily amenable tasing the modified Wiener—Hopf technigbi¢hese are per-
asymptotic analysis, and which can also be generalized tbaps less flexible than the numerical methods based directly
more complex geometries. upon solving the integral equations. Nonetheless they are
In this paper we shall concentrate on a pedagogic twoformally exact if one continues the iterations indefinitely,
dimensional example. However, the basis expansion funclthough this is at the cost of considerable effort.
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Integral equation methods have considerable advantages ‘
for relatively simple geometries, and this is the approach we i3
develop here. Previous authors, for instance Métteayve AN
adopted this technique, but have used different methods that X FPlane wave 0
have difficulties explicitly incorporating the edge conditions. P o0
Typically the edge conditions are treated separately, and "-_ : Scattered
since there have been few comparisons with exact or [ field L
asymptotic methods, it is unclear how successful such nu- : '
merical methods have been. o by

Here we treat the integral equations utilizing expansion % Do
functions that automatically take into account the edge con- >
ditions. As a result, the edge conditions are implicitly satis- Reflected wave
fied and no extra equations are required. This approach -a | ‘o |a X
quickly leads to an accurate and efficient numerical scheme: ! !
typically only a few expansion functions are required to en- Elasto plate Baffle
sure accurate solutions. For plates with clamped edge condi-
tions this approach has been detailed else\/\/?lemd has FIG. 1’. Geometry of_the prpblem. Note the&x,, and that the two sets of

. . Green’s function variables in Sec. Il argy(x3) and ({;.3).

been compared to asymptotic solutions near resonant fre-
guencies and to asymptotic solutions for light and heavy
fluid loading. Compliant plate effects are also easily treatedroduce the nondimensional quantifie8! and e. The
and several types of forcings are considered: incident planéMach” number M is defined to be the ratio of the fluid
waves, line forces and moments, and sources in the fluiggound speed to that of th&én vacuo plate waves,M
Our aim previousl§ was to introduce and develop this ap- =Kko/k,. A frequency independent measure of fluid loading
proach and to show that it can be particularly useful in reds provided by the paramete=(Bp%/m3cd)*2 In essence,
gimes not amenable to asymptotic analyses and hence cowhen the system is lossless, there are three parameters that
venient for quite general incident fields. The aim here is tocan be variedM, €, andkoa, the last of these being the ratio
expand upon the method and consider a wider class of edgd a typical length scale associated with the fluid disturbance
condition. to a typical length scale associated with the finite defect.

We consider time harmonic vibrations of frequensy  Typically e is small: for examplee~0.134 for steel plates in
and all physical variables are assumed to havedf' de-  water, whileM, which is frequency dependent, can range
pendence. This is considered understood and is henceforthrough all values. The fluid loading will be terniedight”
suppressed. Two-dimensional problems are considered witthenM~QO(1), but is not in thémmediate neighborhood of
an inviscid, compressible fluid lying iR;>0 and—«<x, = M=1, and “heavy” whenM <e. In both cases is taken to
<o, and a vacuum lying inx3<<0. The fluid pressure be small, i.e.e<1.
p(Xy,X3) satisfies We previously treated the clamped edge conditfobst

5 12 B there_ are other possibilitie_s. Hinged plates satisfy the e_dge

(VE4ko)p(X1,X3) =T(X1,X3), 2 conditions »=17"=0 at their edges. The natural expansion
where f(x,,x3) corresponds to a distribution of fluid functions in that case can be taken as the Fourier modes,
sources, and,, the acoustic wave number, is related to theCosm(n—1/2)x, n=1,2,... and sinmx, n=1,2,.... For
sound speett, via ko= w/Co. In what follows, the source the special case;=7"=0, we have used this approach for

distribution is zero except for Green's functions. The dis-comparative purposesee Sec. I, and to verify that our
placement in thexs-direction within the fluid, 7(x;,xs), is ~ €Xpansion functions are accurate in this case. We should em-

related to the fluid pressure via phasize that the Fourier modes are probably easier to use for
( ) this special case, but they cannot be used for the more gen-
Ip(X1,X3 eral edge condition§4) that we propose to tackle.
potn(xixg)= = 3 g 0 Prop

X3 Leppingtonet al1° pointed out after looking at experi-
The planex;=0 is taken to consist of a thin elastic plate in mental data that a more realistic set of edge conditions might

the finite regiorjx,|<a in which (1) holds, and to consist of be
a rigid plate elsewhere. The geometry is shown in Fig. 1. 7'+8n =0 at x==+1, (4)

The parameter8 and m are the bending stiffness and
mass per unit area of the plate, respectively. These paranwsgether with»=0 atx=*1, whered is a positive number
eters are related to the properties of the elastic plateBvia and the plate edges arexat = 1. The case&=0 corresponds
=Eh%12(1—v?) and m=psh, with E, h, », and ps the  to the hinged case, while the limit of largerecovers the
Young’s modulus, plate thickness, Poisson ratio, and masslamped case previously considered. The more general edge
density of the elastic material, respectively. In order to mini-condition may be interpreted as a hinged edge with a restor-
mize the number of parameters that occur later, we introducing couple and may be incorporated into our approach by
the in vacuoflexural wave numbekpz(wzm/B)”“. Incor-  changing the previous expansion functins.
porating a small loss factor will lead to attenuation of the The physical problem is split into pieces that are even
plate waves; we shall not consider loss factors here. We inand odd inx, and the superscript®),(0) are used to denote

3129 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999 R. V. Craster and S. G. Llewellyn Smith: Finite plates 3129



these subproblems. The even expansion functions are takgn(0)=f,(0)=0. The change of variable cas=(1—x%)(1

to be —ax) is a one-to-one and onto mapping of tkénterval
(/,ge)(x) (0,1 onto the #-interval (0,77/2). On this new interval, the
transformed even expansion functions are agaiméder n
_[cogn cos H{(1-x*)(1—ax*)}] for n odd, odd. However, the expansion functions are not complete on
| (1—x®)cog(n—1)cos Y(1—x?)?] for n even, this interval: a complete set of trigonometric functions for

the expansion of even functions on this interval requires even
5) n as well. One cannot just add the even cosines as extra
in 0=x=1. For negativex these are extended as even func-expansion functions though, since this would remove the
tions of x. The quantitya is given by correct edge condition in the original variabteand hence
1458 introduce Gibbs’ effects that would undermine the whole
=—. (6) aim of the expansion functions. The additional functions
5+4 #l=(1—x?)cogn cos }(1—x%?], which explicitly introduce
The odd functions become terms of the form (+x?)3 nearx=+1, satisfy the appro-
4O(x) priate edge conditions, and project onto all the cosine func-
n tions, in particular onto the even ones. This was shown for
i sif(n+1)cos H(1-x?(1—ax?)}] for n odd, the clamped case previouslyHence the set of expansion
= functions for the even part df is complete. The issue of
whether these expansion functions are orthogonal with re-
(7) spect to a particular weight function is irrelevant since or-

in 0<x=<1. These are extended as odd functions éér x ~ thogonality properties are never used.

negative. This choice of expansion functions is adopted as 1€ argument for the odd part bfs analogous. There-
the expansion functions satisfy the edge conditions exactlyfore the set of expansion functiof§)—(7) is complete, and
it is worth noting that these expansion functions are related? addition satisfies the appropriate edge conditions.

to Chebyshev polynomials with the appropriate edge behav-

ior in their argument. The expansion functions foeven are 1. FORMULATION AND SOLUTION OF INTEGRAL
required, as the terms with odd exclude the terms of the EQUATIONS

_y2\3 : ;
form (1—x%)® near the edge, which also satisfy the edge We consider the plane;=0 with the elastic plate lying

conditions. As we shall see, these expansion functions %n Ix,|]<a and a rigid baffle orjx;|>a. As can be shown
1 1 .

tend thosg usually used for ”g".j plates, allowing one to ®XFrom a Green’s function approach, the scattered pressure
tend previous analyses to elastic plates.

field at a point (1,,93) is given by

a

~ |i(1—x®)sinncos Y(1—x%)?] for n even

a
I. COMPLETENESS OF THE EXPANSION FUNCTIONS p°(q)= —pwzf 7°%(X1,00p®(%1,0;q) dxq, (10
—a

One issue surrounding thgse expansio_n functi_ons _i§vhere p%(x,q) is the Green's function for2) which has
whether they have any underlying mathematical basis. It '?/anishing x-derivative in x;=0. The plate displacement

important to verify that the plate displacement can actually 5¢(x,0) is unknown in(10) and our aim is to identify this
be represented by the expansion functions, and that the latt nctit)'n in the most efficient manner. Once this is identified
are hence complete. The expansion functions typically use e problem is effectively solved, since pressure fields and
in elasticity for crack problemsmay easily be shown to be far-field behavior follow directly fr'onﬂO). Hence we con-
complete. These functions aft® within a normalization fac- centrate upon whether we have identifiedcorrectly, and

ton), our comparisons with other techniques are based upon this
cogn sin"*x) for n odd, quantity.
(8 The Green’s function is the inverse Fourier transform

d)“(x):[sin(n sin"1x) for n even,
on the interval ¢ 1,1). Both the even and odd functions)of pC(x;q) = L i[ei volx3 =3l @i 70(xa+ da) | gik(x1=d1) g,
can be conveniently considered together. The change of vari- 4w Jcyo

ablex=sin # maps thex-interval (—1,1) onto theg-interval (1)

(= m/2,=/2). On this interval, the expansion functions are \hich also has a representation in terms of Hankel functions.
cosné for n odd, The pathC runs along the real axis suitably indented at the
n= [ (99  branch pointst k,. The functiony,= (k3—k?)2 has a posi-
tive imaginary part. An advantage of persisting with a trans-
This set of functions is complete on the interyalm/2,7/2), = form based representation is that for more complex geom-
since it corresponds to the usual Fourier sine expansion oetries the Green'’s functions emerge in a similar manner; the
the interval. approach that is required follows that presented here.
The set given by5)—(7) requires more car@Any func- As it stands10) is not in the form where we can solve

tion f on (—1,1) may be decomposed into its odd and evenfor the unknown displacement, since the left-hand side is
partsf, andf,, respectively, both defined on (0,1) and with also unknown. To remedy this, we manipuldi®) so that

sinnd for n even.
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the left-hand side becomes the plate equation, and we are lefhe procedure for the odd subproblem is identical. The gov-
with an integral equation to solve. The manipulation is mosterning equation(18) may be rewritten as an infinite set of
easily performed by replacing®(x;,0;q) in (10) with its linear equations

transform(11) and applying the operat®, defined by w0
R 2 b®(ka)= >, K&a® (19)
Dq—Bﬁql—mw , (12 m & PmnSn
where the notatioi, =d/dq; has been adopted. Thus we for m=1, ... =, where the left-hand side terms, which de-
obtain pend on the incident wave number, are given by
1
P*%01,0) + D¢7°(d1,0 bfﬁ)(ka):—wAJﬁlcos(kaql)aﬁEﬁ)(ql) da; (20)
B ra
- 7°(%1,0) dxq for incident plane waves; the counterpart for the odd sub-
—a

problem follows in a similar manner. The right-hand side
factors are given by

KE=10M — (ak,)* & —i(ak,) ®el &Pak,. (21)

A mew? iw’p
B ’)/OB

J|
for |q,| <a. Truncating this set of equations, and its counterpart for the
Two types of forcing can be adopted here: either inci-odd subproblem, at some finite ordémwill give an approxi-
dent waves or local plate excitation. We treat the incidentmate, but arbitrarily accurat@lepending on the order of the
wave case in detail, in which case the left-hand side in théruncation solution to the original problem. Noting the sym-

above equation is equal tﬁ(p‘“+an‘”). For plane wave metry with respect tan andn means that even for relatively
incidence, the incident and reflected pressure wave togethé&rgeN, one need not evaluate an undue number okihg.

alk(xa—a1) gk (13

are We consider each term i, in succession, dropping
p"(0y,03) = Al ka1t 7093) 4 gi(kai—r093)], 14 glzls:rzerscnpts. The corresponding pieces of the triple inte-
where |<1>=2WJ1 P (X)) (xq) dX
k=K, sin 6, (15) mn g ML
is the incoming wave number. This corresponds to the field 27 (D (D) + (= Dygn(= D] (22

produced by a pressure wave incident upon a defect-fre{la,he last two terms of this expression are zero in the limiting

rigid plate. The incident displacement field therefore van-.aces of clamped or hinged edge conditions. The second in-
ishes on the elastic plate, leading to

tegral leads to
—[p"+Dq7"1(qy,0)=—2A€"% (16)

1
1G)=2m f Yl X1) (%) dXq, 23
for |g;|<a. -1

Each applied incident field is split into two subproblems
one that is even ix, and one that is odd ir. The unknown
displacement along the plate is expanded in terms of thes, 1rt )
expansion functiong5)—(7). The appropriate expression, in ?mn_ﬂ _1 ,1H0 (koa|X1 = A1) ¢/m( ) ¢n(xq) A4 Al

'and the third integral is

which the factor 4%/B is inserted for convenience, is (24)
4at = These are all relatively simple to evaluate numerically. The
7°(X1,0)= 5~ 21 (@P P (xy/a)+aPyid(x, /a)). above could also be deduced directly from the boundary con-
" 17 dition, but it is perhaps more natural to proceed from the

integral equation. This approach is more readily adjusted to
The integral equatiofiL3) is split into even and odd subprob- deal with other geometries.

lems. The even subproblem is then solved by multiplying  As noted earlier, once we have the displacement we can
(13) by z,lfﬁﬁ)(qlla) and integrating from-a to a, as well as  use(10) to deduce the pressure fields. The far-field behavior
expanding the scattered displacement on the plate, leading td the scattered field is obtained by expanding the double
integral in(10) [note the Green'’s function ifiL0) is itself an

1 . . . .
_ WAf_lcos(ka%)l/fEf)(%) dag, integral for large|q|. Taking the far-field variable as
g=r(—sin ¢,cos¢), (25
_ 2 a(e)jw J'l fl w(e)(ql)(//(e)(xl)en(xrql) and using a steepest-descents approach, gives
(= R B ) SR " o 12 _
|(ak )6 pSC(r,qS)W(W) G(¢)el(k0r7w/4) (26)
€
x| 14— (aky)*— P dx,dg,dl . (18) ° o
ako[ (akg)?—17]2 for kor>1. In the even subproblem this is
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* as is the plate displacement. However, the latter quantity is
EE aﬁe) simpler to compare to asymptotic approximations that we
n=1 will develop and we shall hence concentrate on it.

2i(kya)®

CHD=" k)

1
e .

x f—ldjg )(Xl)cos(akoxl Sin ¢)dx . @7 Il. ASYMPTOTIC RESULTS FOR LIMITING CASES
A similar expression holds for the odd subproblémplac-
ing the cosine with a sineThe total directivityG(¢) is the  scheme we compare it with various light fluid loading re-
sum of the even and odd expressions. The coefficieﬁis sults. In the absence of fluid loading one can solve the plate
depend on the type of forcing adopted, and are the solutionsquation, to get, for instance in the case of an incoming
of (19). The directivity is hence specified entirely by thg, wave, the plate displacement

To demonstrate the accuracy of the above numerical

7°%x1,0)= W ek 1 [ 5(ka coskpa sin ka—kpa sin k,a coska) —coskya coskaf(k,a)?— (ka)?}]
-
Xcoshkpax o(k hk inka—k inhk k hk kaf{(kpa)?+ (ka)?
Wﬂ (ka coshkpa sin ka—kpa sinhkpa coska) —coshkya coskaf(kpa)“+ (ka)“}]
><coskpax stk K i ka—ka sin k K ink i Kal (k.a)?— (ka2 i sinhkpax
Wﬂ (kpa coskpa sin ka—ka sin kpa coska) +sin kya sin ka{(k,a)“—(ka) }]W
+[ 8(ka sinh k ka—k hk in k inhk inka{(k,a)’+ (ka)? | sinkyax 28
[ 6(ka sinhk,a coska—kya coshkpa sin ka) —sinhkya sin ka{(k,a)“+ (ka)“}] koaF(koa)|’ (28
|
where the denominators, which are related to resonances of 92 52 _
the system, are B(—z—kf)<—2—,u2 n(x)=—p"C. (31
IX X

D(kpa) = &(coshkya sin k,a+sinhkpa coskpa)

The complex wave numbells ,u are perturbations away

+2k,a coshk,a cosk,a, (299  fromk, andik,, respectively. Foe<1, thek, are the leaky
zeros corresponding to the leaky waves in the physical do-
F(kya)= &(sinhkya cosk,a—coshk,a sinkya) main; they are in close proximity to the vacuowave num-
) ) bers*k,. The other wave numbers areafu; these are in
—2kpa sinhkpa sinkpa. B0 the proximity of+ ik, and lead to rapidly decaying modes. If

This, and the corresponding far-field directivity, are re-'vI >1 these are given by the approximatibhs

produced by the numerics. As noted earlier, the c&s®,
corresponding to edge conditions= »"=0, is amenable to 0
Fourier analysigalthoughs# 0 is noy. Hence we are inde- ©  x e
pendently comparing the performance of the expansion func- "¢
tions. Figure 2 shows the absolute error in the real part of the
plate displacement fd¢ya= 25 ands= 0, which corresponds
to a wide plate, as well as the error for the solution calculated x
by a sum in Fourier modes. The present procedure converges_ 07 Xx
quickly to the exact answer more quickly than the Fourier °
expansion. This is a consequence of the well-known proper-
ties of the Chebyshev polynomial approximation. For this
specific edge conditiony= »"=0, we are not necessarily
suggesting that Fourier modes are of little value—they are
very simple to deal with numerically—but merely aim to
demonstrate that the expansion functions we propose are ac- . o
curate in this special case. e o o
The formula(28) fails near zeros ob(kpa) or F(kya).
In this limit one can proceed to get asymptotic results usind:_'G- 2. Absolute error in the infinity norm of the real part of the plate

: - - - - . . displacement v, the order of truncation, fokqa=25, M=1.5, 6,=0,
elgenfunctlon methods, or via a wide strip approxmatlone:a and 6=0. The circles show the error for the present scheme. The

and the Wiener—Hopf technique. A simpler approximation,crosses show the error for the expansion in Fourier modes. Both circles and
at least forM>1, is to replace the plate equati¢h by crosses are plotted for each valuenadt which more resolution is achieved.

10° b x

10° b

107

107
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€ parison with more rigorous methods, this is not quite true
m~Kpl i— m ) (32 (particularly for M<1), but for practical purposes it does
( ) provide accurate solutions.

i For brevity we will look at a wide strip approximation.
k~kp| 1+ —————; (33 For a wide strip we can deal with each plate edge indepen-
| p AM M2_1 1/2 .
( ) dently and then look at the effect of the diffracted by one

otherwise they may be found numerically as the appropriat€dge upon the other and vice-versa. This allows the natural
zeros ofk4—kg+ 5kg/ik0'y0(k)zo_ This equation also has separation of the problem into a sequence of semi-infinite
two real zeros, but these do not significantly affect the resultproblems which can be solved exactly using the Wiener—
in this light fluid loading limit. Thus this approximation as- Hopf technique. However, it is much easier to (3&), and
sumes that the acoustic coupling is completely capturethis has been justified previoudlyFor normally incident
within the modified wave numbers. As shdiwia a com-  plane waves one finds that

2 (u?+ipd)coskx,—2(k? cogkja+ 8k, sinkja) cos(ux,)e#?
(X0~ ——F———5—| 1+ 5 : - . (34)
B(kp(1+ieky/k) (ki coskja+ ok, sinkja) —(u-+idu)coska
|
More explicit results showing the dependence ugorfor The plate displacements found fér=0, €=0.134,kya
M>1, are obtained by substituting the ze(88) into (34). =11.781, andM=1.5 are shown, normalized by a factor
At resonance, the displaceme(aind far-field directivity is ~ B/a* in Fig. 4. The approximatioKi35) is also shown.
O(1/e) rather thanO(1). Forinstance, in the simplest case, Once the plate displacements are found, the directivities
6=0, the resulting displacement is follow from
2i 1 2M(M2—1)12 po’ (@ ikox sin ¢
i X - G(p)=—— x,0)e'o dx, 36
ﬂ(X,O)N_(_l)n+lCO n+ —|om— , (d’) 2i fﬁaﬂ( ) ( )
Bk;‘ 2/ a ekpa

(35) and there is close agreement between the numerical and
asymptotic results. All numerical work is also checked uti-

for kpa=(n+1/2)m. The plate displacements found near alizing power balance and reciprocity relatidhs.

resonance fore=0.134, kpa=7.209,M=1.5,and =1 are

shown, normalized by a factd@/a* in Fig. 3. IV. EIGENFUNCTION EXPANSIONS

Strictly, the approximation holds foe<1 (and for M _ _ . _
The set of expansion functions we have utilized is not

>1). However it still appears to give good results for rela-
the only one that could be used. Indeed one could use any

tively large €, such as 0.134 with the accuracy improving as o "
e decreases. In any case, for our purposes, it provides a US%Qmplete set that satisfied the edge conditions. Clearly, an
ful confidence check upon the numerical results alternative candidate set consists of the eigenfunctions asso-

x 107
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0.015

0011

0.005

¢

Bn/a"
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-0.01 -

-0.015

-0.02-

—0.025 L L L L L 1 . ! L 2 L L L L L L L L
= -0.8 -0.6 -0.4 -0.2 Y 0.2 0.4 0.8 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 0.8 0.8 1

FIG. 3. Real and imaginary parts of the plate displacenBent’(x,0)/a*: FIG. 4. Real and imaginary parts of the plate displacenBent®(x,0)/a*

solid lines are the numerical solutigthe imaginary part is the larger one  (solid lines and crosses as in Fig. 3 with the imaginary part again having
crosses are the analytical soluti@8) vs x/a for kga=7.209,M=1.5, 6; larger magnitude vs x for koa=11.781,M=1.5, 6,=0, €=0.134, and
=0, €=0.134, ands=1. 6=0. The dashed line shows the imaginary par{38).
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ciated with thein vacuoplate displacements. For example, sented; this is an extension of a technique often used for rigid
for the special case of clamped edge conditions with eveplates. We focus on determining the plate displacement, as
loadings, we could try all other details can ultimately be determined from this quan-
tity. Clearly it is important to verify that this class of expan-
sion functions produces accurate results, particularly near
resonance. To verify accuracy, the numerical results are
(37 compared with asymptotic results for light fluid loading, both

. 4a* < . .
7(%.0)= 5~ ngl a,(cos\,Xx sinh\,+sin \,, cosh\ ,x),

transcendental equation pared with a Fourier analysis of the special case of simply
) _ supported edges. Further numerical results for the clamped
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