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Problems in structural acoustics involving finite plates can be formulated using integral equation
methods. The unknown function within the integral equation must satisfy the plate edge conditions,
and hence appropriate expansion functions must be used. The expansion functions developed here
are aimed at treating a wide class of problems. Once such functions are found, the solution process
and numerical implementation are relatively straightforward. The speed of convergence to ‘‘exact’’
comparison solutions is fast even in the singular limit of high frequencies and wide plates. A set of
expansion functions with the required properties is constructed and some illustrative problems are
treated. ©1999 Acoustical Society of America.@S0001-4966~99!03512-2#
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INTRODUCTION

Many papers have been written on integral equat
methods for treating finite length rigid plates in acoustics,
analogous problems in elastodynamics or elec
magnetism.1,2 In these cases the integral equations
readily and efficiently solved using expansion function
Chebyshev polynomials, for the unknown. The vital ingre
ent captured by the expansion functions is that they corre
incorporate the edge condition at the plate ends. Con
gence is usually rapid even for higher frequency proble
Unfortunately, the usual Chebyshev polynomial expans
functions are not well suited to treating, say, elastic pl
boundary conditions; the edge behavior is altered in th
cases. Our aim here is to develop a class of expansion f
tions, analogous to the rigid plate ones, that are equally
plicable to elastic plate problems.

There is recurrent interest in sound generation or s
tering by elastic plates in structural acoustics. Many str
tures consist of plates welded together or attached in o
ways, and vibrational plate waves are potential major sou
of acoustic noise. These waves may be coupled into
surrounding fluid via interactions with the plate edges,
example. Thus analytical and numerical techniques h
often been used to try to describe the general physical eff
involved, and to solve model problems for speci
geometries.3 Problems involving finite length plates wit
various attachment conditions are unfortunately not am
nable to exact solution, although asymptotic results for w
plates and light or heavy fluid loading can be found. Our a
is to develop efficient numerical approaches capable of s
ing these problems in regimes not necessarily amenabl
asymptotic analysis, and which can also be generalize
more complex geometries.

In this paper we shall concentrate on a pedagogic t
dimensional example. However, the basis expansion fu
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tions we develop can be utilized in more complex geo
etries. From a numerical perspective one has to deal wi
relatively high order boundary condition on the elastic pla
such as the classical plate equation,4

B
]4h

]x4
2mv2h52p~x,0!, ~1!

for the plate displacementh(x), wherep(x,0) is the pressure
on the plate. This equation is adopted here and involves
fourth derivative ofh. The plate is assumed to separate flu
from a vacuum. At any joint or plate edge we must apply tw
edge conditions to the displacement. For instance, clam
plates haveh5h850 at the edges. The appropriate cond
tions must be built into any numerical scheme either imp
itly or explicitly. Moreover, the edge conditions are impo
tant, as analytical studies show a marked dependence u
them.

A variety of numerical methods such as finite eleme
schemes, modal methods, and integral equation approa
have been utilized by other authors. Finite elements are
satile. However, one has to discretize the whole doma
with the result that infinite domains are awkward, and cal
lations become increasingly unwieldy as frequencies
crease. Modal methods have advantages for the simply
portedh5h950 edge conditions, as Fourier series solutio
can be developed; however, this approach cannot be use
more general edge conditions. For more general edge co
tions, analytic approximations utilizing thein vacuoeigen-
functions can be adopted;5 we briefly discuss eigenfunction
methods in Sec. IV. There are also numerical approac
using the modified Wiener–Hopf technique;6 these are per-
haps less flexible than the numerical methods based dire
upon solving the integral equations. Nonetheless they
formally exact if one continues the iterations indefinite
although this is at the cost of considerable effort.
312806(6)/3128/7/$15.00 © 1999 Acoustical Society of America
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Integral equation methods have considerable advant
for relatively simple geometries, and this is the approach
develop here. Previous authors, for instance Mattei,7 have
adopted this technique, but have used different methods
have difficulties explicitly incorporating the edge condition
Typically the edge conditions are treated separately,
since there have been few comparisons with exact
asymptotic methods, it is unclear how successful such
merical methods have been.

Here we treat the integral equations utilizing expans
functions that automatically take into account the edge c
ditions. As a result, the edge conditions are implicitly sa
fied and no extra equations are required. This appro
quickly leads to an accurate and efficient numerical sche
typically only a few expansion functions are required to e
sure accurate solutions. For plates with clamped edge co
tions this approach has been detailed elsewhere,8 and has
been compared to asymptotic solutions near resonant
quencies and to asymptotic solutions for light and hea
fluid loading. Compliant plate effects are also easily trea
and several types of forcings are considered: incident p
waves, line forces and moments, and sources in the fl
Our aim previously8 was to introduce and develop this a
proach and to show that it can be particularly useful in
gimes not amenable to asymptotic analyses and hence
venient for quite general incident fields. The aim here is
expand upon the method and consider a wider class of e
condition.

We consider time harmonic vibrations of frequencyv,
and all physical variables are assumed to have ane2 ivt de-
pendence. This is considered understood and is hence
suppressed. Two-dimensional problems are considered
an inviscid, compressible fluid lying inx3.0 and2`,x1

,`, and a vacuum lying inx3,0. The fluid pressure
p(x1 ,x3) satisfies

~¹21k0
2!p~x1 ,x3!5 f ~x1 ,x3!, ~2!

where f (x1 ,x3) corresponds to a distribution of flui
sources, andk0, the acoustic wave number, is related to t
sound speedc0 via k05v/c0. In what follows, the source
distribution is zero except for Green’s functions. The d
placement in thex3-direction within the fluid,h(x1 ,x3), is
related to the fluid pressure via

rv2h~x1 ,x3!5
]p~x1 ,x3!

]x3
. ~3!

The planex350 is taken to consist of a thin elastic plate
the finite regionux1u,a in which ~1! holds, and to consist o
a rigid plate elsewhere. The geometry is shown in Fig. 1

The parametersB and m are the bending stiffness an
mass per unit area of the plate, respectively. These pa
eters are related to the properties of the elastic plate viB
5Eh3/12(12n2) and m5rsh, with E, h, n, and rs the
Young’s modulus, plate thickness, Poisson ratio, and m
density of the elastic material, respectively. In order to mi
mize the number of parameters that occur later, we introd
the in vacuoflexural wave numberkp[(v2m/B)1/4. Incor-
porating a small loss factor will lead to attenuation of t
plate waves; we shall not consider loss factors here. We
3129 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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troduce the nondimensional quantities9 M and e. The
‘‘Mach’’ number M is defined to be the ratio of the fluid
sound speed to that of thein vacuo plate waves,M
[k0 /kp . A frequency independent measure of fluid loadi
is provided by the parametere[(Br2/m3c0

2)1/2. In essence,
when the system is lossless, there are three parameters
can be varied:M, e, andk0a, the last of these being the rati
of a typical length scale associated with the fluid disturba
to a typical length scale associated with the finite defe
Typically e is small: for example,e'0.134 for steel plates in
water, while M, which is frequency dependent, can ran
through all values. The fluid loading will be termed9 ‘‘light’’
whenM;O(1), but is not in theimmediate neighborhood o
M51, and ‘‘heavy’’ whenM!e. In both casese is taken to
be small, i.e.,e!1.

We previously treated the clamped edge conditions,8 but
there are other possibilities. Hinged plates satisfy the e
conditionsh5h950 at their edges. The natural expansi
functions in that case can be taken as the Fourier mo
cosp(n21/2)x, n51,2, . . . and sinpnx, n51,2, . . . . For
the special caseh5h950, we have used this approach fo
comparative purposes~see Sec. III!, and to verify that our
expansion functions are accurate in this case. We should
phasize that the Fourier modes are probably easier to us
this special case, but they cannot be used for the more
eral edge conditions~4! that we propose to tackle.

Leppingtonet al.10 pointed out after looking at experi
mental data that a more realistic set of edge conditions m
be

h96dh850 at x561, ~4!

together withh50 at x561, whered is a positive number
and the plate edges are atx561. The cased50 corresponds
to the hinged case, while the limit of larged recovers the
clamped case previously considered. The more general e
condition may be interpreted as a hinged edge with a res
ing couple and may be incorporated into our approach
changing the previous expansion functions.8

The physical problem is split into pieces that are ev
and odd inx, and the superscripts (e),(o) are used to denote

FIG. 1. Geometry of the problem. Note thatx[x1, and that the two sets o
Green’s function variables in Sec. II are (x1 ,x3) and (q1 ,q3).
3129R. V. Craster and S. G. Llewellyn Smith: Finite plates
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these subproblems. The even expansion functions are t
to be

cn
(e)~x!

5H cos@n cos21$~12x2!~12ax2!%# for n odd,

~12x2!cos@~n21!cos21~12x2!2# for n even,

~5!

in 0<x<1. For negativex these are extended as even fun
tions of x. The quantitya is given by

a5
11d

51d
. ~6!

The odd functions become

cn
(o)~x!

5H i sin@~n11!cos21$~12x2!~12ax2!%# for n odd,

i ~12x2!sin@ncos21~12x2!2# for n even

~7!

in 0<x<1. These are extended as odd functions ofx for x
negative. This choice of expansion functions is adopted
the expansion functions satisfy the edge conditions exac
it is worth noting that these expansion functions are rela
to Chebyshev polynomials with the appropriate edge beh
ior in their argument. The expansion functions forn even are
required, as the terms withn odd exclude the terms of th
form (12x2)3 near the edge, which also satisfy the ed
conditions. As we shall see, these expansion functions
tend those usually used for rigid plates, allowing one to
tend previous analyses to elastic plates.

I. COMPLETENESS OF THE EXPANSION FUNCTIONS

One issue surrounding these expansion functions
whether they have any underlying mathematical basis. I
important to verify that the plate displacement can actua
be represented by the expansion functions, and that the l
are hence complete. The expansion functions typically u
in elasticity for crack problems2 may easily be shown to b
complete. These functions are~to within a normalization fac-
tor!,

fn~x!5H cos~n sin21x! for n odd,

sin~n sin21x! for n even,
~8!

on the interval (21,1). Both the even and odd functions ofx
can be conveniently considered together. The change of v
ablex5sinu maps thex-interval (21,1) onto theu-interval
(2 p/2 , p/2). On this interval, the expansion functions a

fn5H cosnu for n odd,

sin nu for n even.
~9!

This set of functions is complete on the interval~2p/2,p/2!,
since it corresponds to the usual Fourier sine expansion
the interval.

The set given by~5!–~7! requires more care.8 Any func-
tion f on ~21,1! may be decomposed into its odd and ev
partsf o and f e , respectively, both defined on (0,1) and wi
3130 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
en

-

s
y;
d
v-

e
x-
-

is
is
y
ter
d

ri-

on

f e8(0)5 f o(0)50. The change of variable cosu5(12x2)(1
2ax2) is a one-to-one and onto mapping of thex-interval
~0,1! onto theu-interval ~0,p/2!. On this new interval, the
transformed even expansion functions are again cosnu for n
odd. However, the expansion functions are not complete
this interval: a complete set of trigonometric functions f
the expansion of even functions on this interval requires e
n as well. One cannot just add the even cosines as e
expansion functions though, since this would remove
correct edge condition in the original variablex and hence
introduce Gibbs’ effects that would undermine the who
aim of the expansion functions. The additional functio
ce85(12x2)cos@n cos21(12x2)2#, which explicitly introduce
terms of the form (12x2)3 nearx561, satisfy the appro-
priate edge conditions, and project onto all the cosine fu
tions, in particular onto the even ones. This was shown
the clamped case previously.8 Hence the set of expansio
functions for the even part off is complete. The issue o
whether these expansion functions are orthogonal with
spect to a particular weight function is irrelevant since
thogonality properties are never used.

The argument for the odd part off is analogous. There
fore the set of expansion functions~5!–~7! is complete, and
in addition satisfies the appropriate edge conditions.

II. FORMULATION AND SOLUTION OF INTEGRAL
EQUATIONS

We consider the planex350 with the elastic plate lying
on ux1u,a and a rigid baffle onux1u.a. As can be shown
from a Green’s function approach, the scattered press
field at a point (q1 ,q3) is given by

psc~q!52rv2E
2a

a

hsc~x1,0!pG~x1,0;q! dx1 , ~10!

where pG(x,q) is the Green’s function for~2! which has
vanishing x3-derivative in x350. The plate displacemen
hsc(x1,0) is unknown in~10! and our aim is to identify this
function in the most efficient manner. Once this is identifi
the problem is effectively solved, since pressure fields a
far-field behavior follow directly from~10!. Hence we con-
centrate upon whether we have identifiedh correctly, and
our comparisons with other techniques are based upon
quantity.

The Green’s function is the inverse Fourier transform

pG~x;q!5
i

4pEC

1

g0
@eig0ux32q3u1eig0(x31q3)#eik(x12q1) dk,

~11!

which also has a representation in terms of Hankel functio
The pathC runs along the real axis suitably indented at t
branch points6k0. The functiong05(k0

22k2)1/2 has a posi-
tive imaginary part. An advantage of persisting with a tran
form based representation is that for more complex geo
etries the Green’s functions emerge in a similar manner;
approach that is required follows that presented here.

As it stands,~10! is not in the form where we can solv
for the unknown displacement, since the left-hand side
also unknown. To remedy this, we manipulate~10! so that
3130R. V. Craster and S. G. Llewellyn Smith: Finite plates
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the left-hand side becomes the plate equation, and we are
with an integral equation to solve. The manipulation is m
easily performed by replacingpG(x1,0;q) in ~10! with its
transform~11! and applying the operatorDq defined by

Dq5B]q1

4 2mv2, ~12!

where the notation]qi
5]/]qi has been adopted. Thus w

obtain

psc~q1,0!1Dqhsc~q1,0!

5
B

2pE2a

a

hsc~x1,0! dx1

3E
2`

` Fk42
mv2

B
2

iv2r

g0B Geik(x12q1) dk ~13!

for uq1u,a.
Two types of forcing can be adopted here: either in

dent waves or local plate excitation. We treat the incid
wave case in detail, in which case the left-hand side in
above equation is equal to2(pin1Dqh in). For plane wave
incidence, the incident and reflected pressure wave toge
are

pin~q1 ,q3!5A@ei (kq11g0q3)1ei (kq12g0q3)#, ~14!

where

k5k0 sin u i ~15!

is the incoming wave number. This corresponds to the fi
produced by a pressure wave incident upon a defect-
rigid plate. The incident displacement field therefore va
ishes on the elastic plate, leading to

2@pin1Dqh in#~q1,0!522Aeikq1 ~16!

for uq1u,a.
Each applied incident field is split into two subproblem

one that is even inx, and one that is odd inx. The unknown
displacement along the plate is expanded in terms of
expansion functions~5!–~7!. The appropriate expression,
which the factor 4a4/B is inserted for convenience, is

hsc~x1,0!5
4a4

B (
n51

`

~an
(e)cn

(e)~x1 /a!1an
(o)cn

(o)~x1 /a!!.

~17!

The integral equation~13! is split into even and odd subprob
lems. The even subproblem is then solved by multiply
~13! by cm

(e)(q1 /a) and integrating from2a to a, as well as
expanding the scattered displacement on the plate, leadin

2pAE
21

1

cos~kaq1!cm
(e)~q1! dq1

5 (
n51

`

an
(e)E

2`

` E
21

1 E
21

1

cm
(e)~q1!cn

(e)~x1!eil (x12q1)

3F l 42~akp!42
i ~akp!6e

ak0@~ak0!22 l 2#1/2Gdx1dq1dl . ~18!
3131 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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The procedure for the odd subproblem is identical. The g
erning equation~18! may be rewritten as an infinite set o
linear equations

bm
(e)~ka!5 (

n51

`

Kmn
(e)an

(e) , ~19!

for m51, . . . ,̀ , where the left-hand side terms, which d
pend on the incident wave number, are given by

bm
(e)~ka!52pAE

21

1

cos~kaq1!cm
(e)~q1! dq1 ~20!

for incident plane waves; the counterpart for the odd s
problem follows in a similar manner. The right-hand si
factors are given by

Knm
(e)5I mn

(e)(1)2~akp!4I mn
(e)(2)2 i ~akp!6eI mn

(e)(3)/ak0 . ~21!

Truncating this set of equations, and its counterpart for
odd subproblem, at some finite orderN will give an approxi-
mate, but arbitrarily accurate~depending on the order of th
truncation! solution to the original problem. Noting the sym
metry with respect tom andn means that even for relativel
largeN, one need not evaluate an undue number of theKmn .

We consider each term inKmn in succession, dropping
the superscripts. The corresponding pieces of the triple i
gral are

I mn
(1)52pE

21

1

cm9 ~x1!cn9~x1! dx1

12pd@cm8 ~1!cn8~1!1cm8 ~21!cn8~21!#. ~22!

The last two terms of this expression are zero in the limit
cases of clamped or hinged edge conditions. The second
tegral leads to

I mn
(2)52pE

21

1

cm~x1!cn~x1! dx1 , ~23!

and the third integral is

I mn
(3)5pE

21

1 E
21

1

H0
(1)~k0aux12q1u!cm~q1!cn~x1! dx1 dq1 .

~24!

These are all relatively simple to evaluate numerically. T
above could also be deduced directly from the boundary c
dition, but it is perhaps more natural to proceed from t
integral equation. This approach is more readily adjusted
deal with other geometries.

As noted earlier, once we have the displacement we
use~10! to deduce the pressure fields. The far-field behav
of the scattered field is obtained by expanding the dou
integral in~10! @note the Green’s function in~10! is itself an
integral# for large uqu. Taking the far-field variable as

q5r ~2sin f,cosf!, ~25!

and using a steepest-descents approach, gives

psc~r ,f!;S 2

prk0
D 1/2

G~f!ei (k0r 2 p/4) ~26!

for k0r @1. In the even subproblem this is
3131R. V. Craster and S. G. Llewellyn Smith: Finite plates
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G(e)~f!52
2i ~kpa!6

~k0a!
e (

n51

`

an
(e)

3E
21

1

cn
(e)~x1!cos~ak0x1 sin f!dx1 . ~27!

A similar expression holds for the odd subproblem~replac-
ing the cosine with a sine!. The total directivityG(f) is the
sum of the even and odd expressions. The coefficientsan

(e)

depend on the type of forcing adopted, and are the solut
of ~19!. The directivity is hence specified entirely by thean ,
s

e

-
n
th

te
rg
ie
e

hi
y
ar
to

in
on
n

3132 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
ns

as is the plate displacement. However, the latter quantit
simpler to compare to asymptotic approximations that
will develop and we shall hence concentrate on it.

III. ASYMPTOTIC RESULTS FOR LIMITING CASES

To demonstrate the accuracy of the above numer
scheme we compare it with various light fluid loading r
sults. In the absence of fluid loading one can solve the p
equation, to get, for instance in the case of an incom
wave, the plate displacement
hsc~x1,0!5
2A

B~kp
42k4!

H eikax1@d~ka coskpa sin ka2kpa sin kpa coska!2coskpa coska$~kpa!22~ka!2%#

3
coshkpax

kpaD~kpa!
1@d~ka coshkpa sin ka2kpa sinh kpa coska!2coshkpa coska$~kpa!21~ka!2%#

3
coskpax

kpaD~kpa!
1@d~kpa coskpa sin ka2ka sin kpa coska!1sin kpa sin ka$~kpa!22~ka!2%#

i sinh kpax

kpaF~kpa!

1@d~ka sinh kpa coska2kpa coshkpa sin ka!2sinh kpa sin ka$~kpa!21~ka!2%#
i sin kpax

kpaF~kpa!J , ~28!
do-

If

te

he
and

.

where the denominators, which are related to resonance
the system, are

D~kpa!5d~coshkpa sin kpa1sinh kpa coskpa!

12kpa coshkpa coskpa, ~29!

F~kpa!5d~sinh kpa coskpa2coshkpa sin kpa!

22kpa sinh kpa sin kpa. ~30!

This, and the corresponding far-field directivity, are r
produced by the numerics. As noted earlier, the cased50,
corresponding to edge conditionsh5h950, is amenable to
Fourier analysis~althoughdÞ0 is not!. Hence we are inde
pendently comparing the performance of the expansion fu
tions. Figure 2 shows the absolute error in the real part of
plate displacement fork0a525 andd50, which corresponds
to a wide plate, as well as the error for the solution calcula
by a sum in Fourier modes. The present procedure conve
quickly to the exact answer more quickly than the Four
expansion. This is a consequence of the well-known prop
ties of the Chebyshev polynomial approximation. For t
specific edge condition,h5h950, we are not necessaril
suggesting that Fourier modes are of little value—they
very simple to deal with numerically—but merely aim
demonstrate that the expansion functions we propose are
curate in this special case.

The formula~28! fails near zeros ofD(kpa) or F(kpa).
In this limit one can proceed to get asymptotic results us
eigenfunction methods, or via a wide strip approximati
and the Wiener–Hopf technique. A simpler approximatio
at least forM.1, is to replace the plate equation~1! by
of

-

c-
e

d
es
r
r-

s

e

ac-

g

,

BS ]2

]x2
2kl

2D S ]2

]x2
2m2D h~x!52pinc. ~31!

The complex wave numberskl ,m are perturbations away
from kp andikp , respectively. Fore!1, thekl are the leaky
zeros corresponding to the leaky waves in the physical
main; they are in close proximity to thein vacuowave num-
bers6kp . The other wave numbers are at6m; these are in
the proximity of6 ikp and lead to rapidly decaying modes.
M.1 these are given by the approximations11

FIG. 2. Absolute error in the infinity norm of the real part of the pla
displacement vsn, the order of truncation, fork0a525, M51.5, u i50,
e50, and d50. The circles show the error for the present scheme. T
crosses show the error for the expansion in Fourier modes. Both circles
crosses are plotted for each value ofn at which more resolution is achieved
3132R. V. Craster and S. G. Llewellyn Smith: Finite plates
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4M ~M211!1/2D , ~32!

kl;kpS 11
i e

4M ~M221!1/2D ; ~33!

otherwise they may be found numerically as the appropr
zeros ofk42kp

41ekp
6/ ik0g0(k)50. This equation also ha

two real zeros, but these do not significantly affect the res
in this light fluid loading limit. Thus this approximation as
sumes that the acoustic coupling is completely captu
within the modified wave numbers. As shown8 via a com-
e,

a

la
as
u
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parison with more rigorous methods, this is not quite tr
~particularly for M,1), but for practical purposes it doe
provide accurate solutions.

For brevity we will look at a wide strip approximation
For a wide strip we can deal with each plate edge indep
dently and then look at the effect of the diffracted by o
edge upon the other and vice-versa. This allows the nat
separation of the problem into a sequence of semi-infin
problems which can be solved exactly using the Wiene
Hopf technique. However, it is much easier to use~31!, and
this has been justified previously.8 For normally incident
plane waves one finds that
h~x,0!;
2

B~kp
4~11 i ekp

2/k0
2!

S 11
~m21 imd!cosklx122~kl

2 cos2kla1dkl sin kla! cos~mx1!eima

~kl
2 coskla1dkl sin kla!2~m21 idm!coskla

D . ~34!
r

ties

and
ti-

ot
any

, an
sso-

ving
More explicit results showing the dependence upone, for
M.1, are obtained by substituting the zeros~33! into ~34!.
At resonance, the displacement~and far-field directivity! is
O(1/e) rather thanO(1). For instance, in the simplest cas
d50, the resulting displacement is

h~x,0!;
2i

Bkp
4 ~21!n11cosS S n1

1

2Dp
x

aD 2M ~M221!1/2

ekpa
,

~35!

for kpa5(n11/2)p. The plate displacements found near
resonance fore50.134, k0a57.209,M51.5,andd51 are
shown, normalized by a factorB/a4 in Fig. 3.

Strictly, the approximation holds fore!1 ~and for M
.1). However it still appears to give good results for re
tively largee, such as 0.134 with the accuracy improving
e decreases. In any case, for our purposes, it provides a
ful confidence check upon the numerical results.

FIG. 3. Real and imaginary parts of the plate displacementBhsc(x,0)/a4:
solid lines are the numerical solution~the imaginary part is the larger one!,
crosses are the analytical solution~28! vs x/a for k0a57.209, M51.5, u i

50, e50.134, andd51.
-

se-

The plate displacements found ford50, e50.134,k0a
511.781, andM51.5 are shown, normalized by a facto
B/a4 in Fig. 4. The approximation~35! is also shown.

Once the plate displacements are found, the directivi
follow from

G~f!5
rv2

2i E2a

a

h~x,0!eik0x sin f dx, ~36!

and there is close agreement between the numerical
asymptotic results. All numerical work is also checked u
lizing power balance and reciprocity relations.8

IV. EIGENFUNCTION EXPANSIONS

The set of expansion functions we have utilized is n
the only one that could be used. Indeed one could use
complete set that satisfied the edge conditions. Clearly
alternative candidate set consists of the eigenfunctions a

FIG. 4. Real and imaginary parts of the plate displacementBhsc(x,0)/a4

~solid lines and crosses as in Fig. 3 with the imaginary part again ha
larger magnitude! vs x for k0a511.781,M51.5, u i50, e50.134, and
d50. The dashed line shows the imaginary part of~35!.
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on-
ciated with thein vacuoplate displacements. For exampl
for the special case of clamped edge conditions with e
loadings, we could try

hsc~x,0!5
4a4

B (
n51

`

an~coslnx sinh ln1sin ln coshlnx!,

~37!

where the eigenvaluesln are the consecutive zeros of th
transcendental equation

sinh ln cosln1sin ln coshln50. ~38!

These are easily found using the approximate ze
ln5p(n21/4), n51,2, . . . as the initial values in a
Newton–Raphson scheme. These expansion functions sa
the edge conditions exactly, and moreover they are ortho
nal. There is no reason why these cannot be used as ex
sion functions in an identical manner to that which we ha
adopted in earlier sections, and indeed for comparative
poses we have done that. We have found these less fle
than the set of expansion functions we have developed,
marily because the expressions become more unwieldy,
ticularly for generald and general loadings@~37! is just for
the clamped case with even loading#. They are not easily
carried across to three-dimensional problems, whereas
simpler sine and cosine functions are easy to program in
addition, the eigenfunctions will not have the desirable f
tures of Chebyshev approximation of the expansion fu
tions we have developed. As our aim is to provide sim
and flexible expansion functions we prefer not to use thein
vacuo eigenfunctions. In addition, for heavy fluid loadin
these are not convenient expansion functions, as in that c
in rescaled coordinates, the structural inertia@thekp

4 terms in
the plate equation~1!# vanishes to leading order. Thus it
felt that a set of expansion functions satisfying the edge c
ditions exactly, but not tied in too closely with one piece
the boundary condition, is more flexible.

V. CONCLUSION

A fast, efficient, and flexible numerical scheme capa
of dealing with a variety of plate edge conditions is pr
3134 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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sented; this is an extension of a technique often used for r
plates. We focus on determining the plate displacement
all other details can ultimately be determined from this qu
tity. Clearly it is important to verify that this class of expan
sion functions produces accurate results, particularly n
resonance. To verify accuracy, the numerical results
compared with asymptotic results for light fluid loading, bo
near to, and far from, resonance. The results are also c
pared with a Fourier analysis of the special case of sim
supported edges. Further numerical results for the clam
edge condition can be found in Ref. 8. The scheme for
more general edge conditions we have discussed here
similar accuracy and versatility.

A useful approximation~34! for light fluid loading,
based upon varying thein vacuowave number is also high
lighted. Good agreement was found in all cases.
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