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This paper formulates a model of mixing in a stratified and turbulent fluid. The model
uses the horizontally averaged vertical buoyancy gradient and the density of turbulent
kinetic energy as variables. Heuristic ‘mixing-length’ arguments lead to a coupled set of
parabolic differential equations. A particular form of mechanical forcing is proposed;
for certain parameter values the relationship between the buoyancy flux and the
buoyancy gradient is non-monotonic and this leads to an instability of equilibria with
linear stratification. The instability results in the formation of steps and interfaces in
the buoyancy profile. In contrast to previous ones, the model is mathematically well
posed and the interfaces have an equilibrium thickness that is much larger than that
expected from molecular diffusion.

The turbulent mixing process can take one of three forms depending on the strength
of the initial stratification. When the stratification is weak, instability is not present
and mixing smoothly homogenizes the buoyancy. At intermediate strengths of strati-
fication, layers and interfaces form rapidly over a substantial interior region bounded
by edge layers associated with the fluxless condition of the boundaries. The interior
pattern subsequently develops more slowly as interfaces drift together and merge; si-
multaneously, the edge layers advance inexorably into the interior. Eventually the edge
layers meet in the middle and the interior pattern of layers is erased. Any remaining
structure subsequently decays smoothly to the homogeneous state. Both the weak and
intermediate stratified cases are in agreement with experimental phenomenology. The
model predicts a third case, with strong stratification, not yet found experimentally,
where the central region is linearly stable and no steps form there. However, the edge
layers are unstable; mixing fronts form and then erode into the interior.

1. Introduction
One of the most striking phenomena that occurs in stratified turbulent fluids is

the spontaneous formation of mixed layers separated by interfaces. For example, if
a fluid with an initially uniform and stable salt gradient is set into turbulent motion
by dragging a rod or a grid back and forth, then, as a result of turbulent mixing,
the density field evolves into a staircase profile. The salt concentration is almost
uniform within the mixed layers, and these are separated by interfaces with steep salt
gradients (Linden 1979; Ruddick, McDougall & Turner 1989; Park, Whitehead &
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Figure 1. A schematic illustration of three possible relations between the buoyancy gradient bz
and the buoyancy flux function, F. The labels on the curves are discussed in § 2.

Gnanadeskian 1994; Holford & Linden 1997a, b; Rehmann & Koseff 1997). Layer
formation has also been experimentally observed in situations in which the turbulent
stirring is applied at a boundary; in these cases the layers are extruded into the
surrounding non-turbulent fluid (Ivey & Corcos 1982; Thorpe 1982; Browan, Guy-
omar & Yoon 1987). Other examples of layered stratification involve double-diffusive
convective instability and salt fingering (Turner 1973); such structures are observed
in the ocean (Schmitt 1994) and in solar ponds (Turner 1985). In more exotic settings,
layers are inferred to exist in magma chambers (Chen & Turner 1980) and in stellar
interiors (Spiegel 1969).

A key feature of these systems is that the fluid motion is turbulent, and this
turbulence is both anisotropic and spatially inhomogeneous (Fincham, Maxworthy &
Spedding 1996). The anisotropy is expected because stable stratification suppresses
vertical motion. The spatial inhomogeneity of the turbulence is a product of the
staircase buoyancy profile: the turbulent kinetic energy is lower in the strongly stable
interfaces which separate the mixed layers. In such a situation there is no serious
theory of turbulence that one can rely upon and direct numerical simulations cannot
access the fully turbulent regime. Instead one must use ‘phenomenological’ arguments
to make progress. In fact, early heuristic arguments by Phillips (1972) and Posmentier
(1977) are impressive because they anticipated some aspects of the experiments
mentioned above.

Phillips (1972) and Posmentier (1977) argued that the dynamics could be modelled
by a nonlinear diffusion equation for b(z, t), the average buoyancy† of the fluid:

bt =
∂

∂z
F(bz), (1.1)

where F is the buoyancy flux function. (‘Average’ or ‘mean’ represents a horizontal
average.) The important feature of the flux function, F(bz), introduced by Phillips
(1972) and Posmentier (1977) is that it is non-monotonic. In fact, they argued that the
flux–gradient relation resembles the curve labelled ‘Constant force’ in figure 1. With

† We use the Boussinesq approximation and write density perturbations in the fluid in terms of
b, the buoyancy: ρ− ρ0 ∝ b, where ρ0 is the density of a reference state.
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such a non-monotonic flux–gradient relation, states with spatially uniform buoyancy
gradient g0 = bz (not to be confused with the gravitational acceleration) are linearly
unstable if F′(g0) < 0. Specifically, if a perturbation locally increases the buoyancy
gradient then the buoyancy flux is decreased; thus the buoyancy gradient increases
further and so on.

There are two difficulties with such a model, one physical and the other primarily
mathematical. The physical problem is that the model has no mechanism to arrest
the steepening of the interface. Thus the model predicts an unphysical discontinuous
buoyancy profile. Second, the mathematical expression of the layer-forming instability
is that the linearized version of (1.1) is a diffusion equation with negative diffusivity.
This is a mathematically ill-posed problem, because the growth rate diverges as the
wavenumber of the disturbances increases.

To surmount the problem of mathematical ill-posedness, Barenblatt et al. (1993)
argued that the turbulent flux does not instanteously adjust to the buoyancy gradient.
(This effect is to be expected on the basis of an analogy with molecular diffusivity and
viscosity; in Maxwell’s terminology, the flux has a fading memory of the gradient.) The
inclusion of such a delay results in a well-posed mathematical problem (i.e. the growth
rate of the linear instability is a bounded function of the wavenumber). However,
this extended model still has the property that the model buoyancy field develops
discontinuities in a finite time, and this is in disagreement with the experimental
result that the interfaces are smooth and have finite thickness (a typical experimental
interface thickness is 1 cm, with the steps a factor of five or so larger).

The goal of this paper is to formulate a new model of turbulent mixing in a stably
stratified fluid. The model we propose here is based on an explicit consideration of
both the mean buoyancy field, b(z, t), and the average density of turbulent kinetic
energy, e(z, t). We use dimensional and plausibility arguments to write down two
coupled partial differential equations for the evolution of e and b. In order to provide
a definite image of the system, we focus on the case in which turbulence is forced
by dragging solid objects through a salt-stratified fluid as in the experimental work
by Ruddick et al. (1989), Park et al. (1994), Fincham et al. (1996), Holford & Linden
(1997a, b) and Rehmann & Koseff (1997). We assume that this stirring is applied
throughout the whole volume of the fluid; the additional complications involved in
modelling the horizontal advance of layers into non-turbulent fluid (as seen in the
experiments of Ivey & Corcos 1982; Thorpe 1982; Browand et al. 1987) are daunting
at this stage.

One qualitative difference between our model and earlier proposals is that the
flux–gradient relation resembles the curve labelled ‘Equipartition’ in figure 1. This
‘N-shaped’ curve has the important feature that there is an intermediate range of
buoyancy gradients for which F′ < 0 and consequently there is a layer-forming
instability, as in the models of Phillips (1972) and Posmentier (1977). But because
the flux increases once the gradient becomes sufficiently large, the steepening of
the interfaces is arrested. Thus, the equipartition model predicts interfaces with an
equilibrium thickness.

A second important difference is that by allowing for the turbulent diffusion of
kinetic energy density, the instability is stabilized at high wavenumbers. Thus the
model becomes mathematically well-posed.

The details of the model are described further in § 2. Following that, in § 3, we give
an account of the layer-forming instability. In § 4, we describe numerical solutions
of the model. We discuss the different evolutionary stages of the solution, as well
as the parametrical dependences of the system. Sections 5 and 6 contain analytical
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considerations largely motivated by the numerical results; these sections are of sec-
ondary importance. Finally, § 7 summarizes various predictions of the model and the
prospects for testing it against new experiments.

2. The model
Our phenomenological model describes the evolution of average buoyancy b(z, t)

(dimensions L/T 2) and average turbulent kinetic energy density e(z, t) (dimensions
L2/T 2) of the fluid. The model is a pair of coupled nonlinear diffusion equations:

bt = (le1/2bz)z, et = β(le1/2ez)z − le1/2bz − αl−1e3/2 +P, (2.1a, b)

where l is the mixing length of the turbulence (to be prescribed shortly) and α and β
are dimensionless constants. The various terms are rationalized as follows. Both the
buoyancy field and kinetic energy density are transported by turbulent eddy diffusion
and on dimensional grounds the eddy diffusivities are both proportional to le1/2. By
taking β 6= 1, we allow for the possibility that turbulent kinetic energy and buoyancy
do not diffuse at the same rate (however, in what follows, we will mainly consider
the case β = 1). The term −le1/2bz in the energy equation is needed to account for
the decrease in e which accompanies vertical mixing of the stable stratification by
the turbulence (the conversion of kinetic to potential energy; see (2.2) below). The
term −αl−1e3/2 is the dissipation of turbulent kinetic energy; after Kolmogorov this
term is conventionally denoted by ε. Again, on dimensional grounds, this form for ε
is required if one can use only e and l to construct the relevant quantity. Finally, P,
the energy production term, expresses the manner in which the stirring device excites
the turbulent motion, and will be discussed below.

As boundary conditions, we impose bz = ez = 0 at the bottom and top of the fluid,
z = 0 and z = H , where H is the depth of the fluid. This ensures that energy and
buoyancy are not fluxed into the system and that the evolution of the total energy
is effected only by dissipation and forcing. In fact, the global energy balance of the
system is

d

dt

∫ H

0

(e− zb) dz =

∫ H

0

(P− αl−1e3/2) dz. (2.2)

In forming this global balance equation, the term −le1/2bz in the kinetic energy
equation cancels with a term which comes from the buoyancy equation. This is
the exchange between kinetic and potential energy which accompanies turbulent
buoyancy mixing.

2.1. The mixing length

The model employs a mixing length scale, l. For the stirred unstratified fluid, there is
a natural estimate for the mixing length, namely a length d which is proportional to
some characteristic dimension of the stirring device. This prescription is not correct
when the stratification is strong because there is then a substantial suppression of
vertical motion, in which case l � d. In this limit, the mean kinetic energy and mean
buoyancy suggest an alternative characteristic length scale, l ∝ (e/bz)

1/2 (see also
figure 12 of Park et al. 1994). As a simple model we take

1

l2
=

1

d2
+ γ

bz

e
, (2.3)
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P f0 e0

Constant power W
W

1 + αγ

Wγ1/2

(1 + αγ)g
1/2
0

Constant force Ze1/2 γ1/2Z2

(1 + αγ)2g
1/2
0

γZ2

(1 + αγ)2g0

Equipartition αU2e1/2/l
αU2(γg0)1/2

1 + αγ

αγU2

1 + αγ
.

Table 1. Three models of the energy production term P, along with the values of buoyancy flux,
f0, and equilibrium energy, e0, in the limit of asymptotically large buoyancy gradients, g0. Notice
how the dependence of the flux f0 on the gradient g0 differs in the three cases (cf. the behaviour of
the three curves in figure 1 when the buoyancy gradient is large)

or equivalently,

l =
de1/2

(e+ γd2bz)1/2
, (2.4)

so that l interpolates between the two limits, d and (e/bz)
1/2, described above. The non-

dimensional mixing-length parameter, γ, becomes important in the strongly stratified
limit: l ≈ (e/γbz)

1/2.
The prescription above for l is related to Ozmidov’s length, which is defined by

lO = (ε/N3)1/2, where N2 = bz is the buoyancy frequency. In the strongly stratified
limit, and using ε = −αl−1e3/2, both lO and the our mixing length l are proportional
to (e/bz)

1/2.

2.2. Energy production

The form of the production term, P, is the crux of the present approach. To fully
appreciate the issues here it is instructive to consider the three possible forms for P
shown in table 1. The simplest hypothesis is that the forcing delivers constant power
per unit mass, W (dimensions L2/T 3), to the fluid. Alternatively, one can suppose
that the forcing exerts a constant force per unit mass, Z (dimensions L/T 2). The
third possibility, and the one we which we adopt, is that the eddy speed, e1/2, adjusts
to a velocity scale, U (dimensions L/T ), which is proportional to the speed of the
stirring device, on the eddy turnover timescale, l/e1/2. Hence, we take the energy input
to have the form αe1/2U2/l.

Our physical motivation for this choice is as follows. As the stirring device moves
though the fluid, it excites motion by generating a wake and also, perhaps, by
radiating internal gravity waves. But in the experiments of Ruddick et al. (1989) and
Park et al. (1994) the generation of internal waves is not very efficient because the
rod is perpendicular to the density surfaces and the direction of motion is horizontal.
Consequently, we discard waves as a significant source of the fluid turbulence and
attribute that motion mainly to the breakdown of the wake. Typical fluid velocities
in this wake are comparable to the speed of the stirring device, U, and the timescale
for breakdown is of order the eddy turnover time, l/e1/2.

With this prescription for the third model, the kinetic energy equation (2.1b)
becomes

et = β(le1/2ez)z − le1/2bz + α(e1/2/l)(U2 − e). (2.5)
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Notice that the non-dimensional parameter α determines the rapidity of the relaxation
of e to U2. We refer to this third model in table 1 as ‘equipartition’ because, in the
absence of stratification, the turbulent kinetic energy level adjusts to that of the stirring
device (this appellation is not meant to suggest a connection with thermodynamics,
nor with statistical mechanical theories of turbulence).

Once one has adopted a model for P then it is straightforward to obtain the flux–
gradient relation by looking for a steady solution of (2.1a, b) with (e, b) = (e0, g0z),
where e0 and g0 are constants. The buoyancy equation (2.1a) is automatically satisfied
for such spatially homogeneous states and the energy balance (2.1b) becomes

P = l0e0
1/2g0 + αl−1

0 e
3/2
0 , (2.6)

which determines the equilibrium turbulent kinetic energy density, e0, as a function of
the buoyancy gradient g0. The buoyancy flux associated with this spatially uniform
basic state is then f0 = l0e0

1/2g0. The three different choices for P in table 1 lead to
the three different flux–gradient relations shown in figure 1.

The different cases in figure 1 are distinguished by the behaviour of e0 and f0

when the buoyancy gradient g0 is large. In this strongly stratified limit the mixing
length is given by l0 ≈ (e0/γg0)

1/2 and the energy equation (2.1b) implies that (1 +
γα)e0(g0/γ)

1/2 ≈ P. Thus, the buoyancy flux is

f0 ≈
P

1 + αγ
(if g0 is large). (2.7)

Next, given the different forms for P one can obtain the equilibrium kinetic energy
density and, finally, the flux–gradient relation. The results are summarized in table 1.

The constant-power assumption results in a flux which asymptotes to a maximum
value when the buoyancy gradient g0 is large. In this case, the buoyancy flux increases
monotonically for all values of g0, and so there is no layering instability. With the
constant-force assumption, the thickness of the interfaces becomes zero in a finite
time. Thus the first two models in table 1 are incapable of explaining the experimental
results. The equipartition model has the N-shaped flux–gradient relation in figure 1. A
layering instability is possible because there is a range of buoyancy gradients within
which the flux decreases as the gradient increases. But because the buoyancy flux
increases when bz is large, the thickness of the interfaces cannot decrease indefinitely.
Thus, the equipartition model has an equilibrium step thickness.

Of course, if one includes the effects of molecular diffusivity by adding the term
Dmolbzz to the right-hand side of (2.1a), all three curves in figure 1 will eventually rise
at extremely large values of the buoyancy gradient (although in the constant-power
case the flux–gradient relation remains monotonic). However, the step thickness in
the experiments of Ruddick et al. (1989) and Park et al. (1994) is at least 1 cm
and the molecular diffusion time of salt through this distance is many hours; this
is too long relative to the eddy turnover time to be important. Thus we argue that
there is a turbulent mechanical process which results in a rise of the flux–gradient
curve before molecular processes become important (see also Ruddick et al. 1989).
The equipartition model implicitly assumes a mechanical process of this sort, and

produces the f0 ∝ g
1/2
0 dependence in table 1.

Our model also does not include direct molecular dissipation of turbulent kinetic
energy. Consequently, when we come to non-dimensionalize in the next subsection,
there is no parameter equivalent to the Reynolds number. One way of incorporating
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this additional physics is to add a term, −νe/l2, to the right-hand side of (2.1b). Given
the many rough ingredients in the model, we do not pursue this embellishment.

2.3. Non-dimensional form

Finally, we can non-dimensionalize the equations. It is convenient to use the buoyancy
gradient, g ≡ bz , as a dependent variable and make the following definitions of
dimensionless quantities:

t̂ = Ut/γd, ẑ = z/γ1/2d, ê = e/U2, ĝ = γd2g/U2, l̂ = l/d. (2.8)

The resulting system of non-dimensional equations is then

gt = (le1/2g)zz, (2.9a)

et = β(le1/2ez)z − le1/2g + εl−1(1− e)e1/2, (2.9b)

l =
e1/2

(e+ g)1/2
, (2.9c)

where ε ≡ αγ and we have lightened notation by dropping the hats. The boundary
conditions are g = ez = 0 at z = 0 and z = H . This set of equations resembles a model
of stratified turbulent mixing formulated by Barenblatt (1983). Barenblatt considered
unforced evolution, so that his model has no energy production term analogous to
the penultimate term, εl−1e1/2, in (2.9b), and he employed a very different prescription
for the mixing length l.

3. Equilibria and their stability
We now consider equilibrium solutions of (2.9a–c) and examine their stability.

With no-flux boundary conditions on b and e the system runs down to the triv-
ial solution (g, e) = (0, 1). Hence the ultimate equilibrium is uniform density with
equipartition. To avoid this trivial equilibrium, we relax the boundary conditions and
consider solutions which are independent of z with uniform ‘basic state’ values g0 and
e0. These pseudo-equilibria prove useful later in understanding the layer formation
process.

For such equilibria, equation (2.9b) becomes

e0 = 1
2

{
1− g0(1 + r) +

(
[1− g0(1 + r)]2 + 4g0

)1/2
}
≡ E(g0), (3.1)

where r ≡ 1/ε. If g0 = 0, then (3.1) reduces to equipartition, e0 = 1. Figure 2 shows
e0 as a function of g0 for various values of r. Given e0 and g0, the flux of buoyancy
is then

f0 =
E(g0)g0

(E(g0) + g0)1/2
≡ F(g0). (3.2)

We refer to the the functionF as the ‘equilibrium flux–gradient relation’ (see figure 3).
The stability of these equilibria can be assessed by linearizing (2.9a, b) about the

base state, (g0, e0), and looking for exponentially growing solutions. We rewrite (2.9a, b)
in the form

gt = fzz, et = (κez)z + p, (3.3a, b)
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3 has a higher-order stationary point (F′′ = F′ = 0) at

g0 = 1/
√

3− 1/2.

where

f ≡ eg/(e+ g)1/2, (3.4a)

p ≡ ε(e+ g)1/2(1− e)− eg/(e+ g)1/2, (3.4b)

κ ≡ βe/(e+ g)1/2. (3.4c)

The equilibrium solution satisfies

p(g0, e0) = 0 and f(g0, e0) = f0. (3.5)
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g0 ≈ 0.0142, the buoyancy mode is marginally stable; that is, F′ = 0.

Thus we have a one parameter, g0, family of solutions. From (3.5) it follows that

F′(g0) = (pefg − pgfe)/pe, (3.6)

where the various partial derivatives, pe and so on, are evaluated at (g0, e0), and
e0 = E(g0).

Next, we pose the solutions g = g0 + g1 exp(st+ imz) and e = e0 + e1 exp(st+ imz).
The linear problem for the perturbations, g1 and e1, is

s

(
g1

e1

)
=

(
−m2fg −m2fe
pg −m2κ+ pe

)(
g1

e1

)
, (3.7)

which determines the growth rate s as a function of the wavenumber m. Figure 4
shows some examples of the dispersion relation.

There are two modes which we can classify by examining the behaviour at m = 0.
One mode has eigenvalue s ≈ pe near m = 0. But, provided the buoyancy gradient is
positive (the fluid is stably stratified), it is straightforward to show that pe < 0. As a
result, this mode is always stable. The associated eigenvector of this mode takes the
form (g1, e1) = (0, 1) for m→ 0. Hence we use the designation ‘energy mode’.

The second mode in figure 4 is a ‘buoyancy mode’; depending on the values of g0

and ε, this mode can be unstable. However, as figure 4 shows, the instability has a
high-wavenumber cutoff, and so, in contrast to model (1.1), the mathematical problem
here is well-posed. Near m = 0, the buoyancy mode takes the form

(g1, e1) ≈ (1,−pg/pe), s ≈ −F′m2. (3.8)

Hence the buoyancy mode is unstable if F′(g0) < 0; this is the result of Phillips
(1972) and Posmentier (1977).

The high-wavenumber cutoff, m∗, is given by

m2
∗ = κ−1f−1

g

(
pefg − pgfe

)
= κ−1f−1

g peF′. (3.9)

This result shows that diffusion of turbulent kinetic energy (that is, κ 6= 0) is essential
for the high-wavenumber cutoff.
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Figure 5. The solid curve is the locus on which F′(g0) = 0. Inside the solid curve, F′ < 0, and
the buoyancy mode is unstable (see (3.8)). The dashed curve is the locus on which F′′(g0) = 0. The
small circle corresponds to the intersection of these loci and is the critical point in the amplitude

expansion of the Appendix. The critical point is given by (g, r) = (1/
√

3− 1/2, 7 + 4
√

3).

Finally, we display the unstable region of the (g0, r) parameter plane by plotting the
curve along which F′(g0) = 0: see figure 5. Provided that r is greater than a critical
value, rc, there is a range of unstable buoyancy gradients limited by the two values of
g0 for which F′ = 0. The disappearance of the unstable range of buoyancy gradients
corresponds to the merging of the two extrema of F′(g0) at a higher-order stationary
point with F′ = F′′ = 0. An explicit calculation shows that rc = 7 + 4

√
3 and the

corresponding value of g0 is g0c = (2−
√

3)/2
√

3.

4. Numerical solutions
We now solve equations (2.9a) and (2.9b) numerically, using a finite element

collocation procedure designed to solve coupled nonlinear parabolic partial differential
equations (Keast & Muir 1991). The spatial resolution employed (typically 4 000
polynomial interpolants over the domain) is more than sufficient to resolve the sharp
features that develop in the numerical simulations.

As initial conditions, we take

g = gi

{
1− cosh [20(z/H − 1/2)]

cosh 10

}
, e = ei. (4.1a, b)

These initial conditions provide two more parameters, namely an initial buoyancy
gradient, gi, and a background kinetic energy density, ei. The important feature of
the initial condition is that over an extensive region inside the domain the buoyancy
gradient and kinetic energy are close to an equilibrium of the kind discussed in the
last section. However, such an equilibrium does not satisfy the boundary condition,
g = 0 at z = 0 and H . In (4.1a), this is repaired in edge regions that together occupy
about a fifth of the domain. If ei ≈ 0, then the initial conditions (4.1a, b) are arguably
the closest approximation to the initial state of the experiments of Ruddick et al.
(1989) and Park et al. (1994).
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Figure 6. Profiles of the buoyancy gradient, g, as a function of z for different values of t. The
vertical axis is time, and the profiles are spaced at time intervals of 5 000. The thick bar at the top
left-hand corner gives the amplitude scale for g.

In their experiments, Park et al. (1994) defined a Richardson number

Ri =
N2
i d

2
∗

U2
∗
, (4.2)

where d∗ and U∗ denote the actual diameter and speed of the stirring rod. N2
i is

the dimensional initial buoyancy gradient in the centre of the tank. Then, from (2.8),
gi = γd2N2

i /U
2, and so

Ri =
1

γ

(
U

U∗

)2(
d∗

d

)2

gi (4.3)

(in general, the lengths d and d∗, and speeds U and U∗ will not be the same). Hence,
gi in (4.1a) is proportional to the experimental Richardson number.

4.1. Step formation and evolution

In figures 6 to 8 we show details of a numerical solution using the initial condition
(4.1a, b) with gi = 0.0218 and ei = 0.0994, at the parameter values, r = 1/ε = 50 and
β = 1. The domain is 0 < z < H = 2 000. The value of r is well above the critical
value rc for which instability appears, and the initial buoyancy gradient gi is in the
middle of the unstable range (figure 5). The initial kinetic energy density ei lies close
to E(gi), where E(g) is defined in (3.1).

Figure 6 shows a succession of snapshots of the buoyancy gradient. Figure 7
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Figure 7. Kinetic energy density, e, scaled buoyancy gradient, 10g, and scaled buoyancy flux 100f
at two different values of time: (a) t = 20 000, (b) t = 120 000. At the larger time value, the flux is
constant outside the ‘edge layers’ and roughly linear inside them. The left-hand edge layer in (b) is
the region 0 < z < 400.

shows the buoyancy gradient, g, kinetic energy, e, and buoyancy flux, f, at two
instants. Finally, figure 8 shows the evolving buoyancy flux as a surface plot above
the (z, t)-plane.

The evolution can be roughly divided into three stages. The first features to emerge
are related to the linear instability of the equilibrium state. This instability initially
appears at the borders between the central region (in which g is uniform) and the
boundary regions (in which g decreases to zero at z = 0 and z = H). This is because
the border is where the linearly unstable gi in the central region has the largest initial
perturbation. The instability appears next in the centre of the domain (see figure 7 a).
The progression from the edge to the centre in figure 6 gives the mistaken impression
that the instability moves inwards from the edges. However, the unstable disturbances
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Figure 8. Surface plot of the buoyancy flux f as a function of z and t. The initial evolution of f
is hidden in this plot. The state of constant flux, which is characteristic of the slow evolution of
the central layers, is the triangular plateau. In the text, we refer to the constant value of f on the
plateau as f∗.

are simply growing in place. (This feature of the initial evolution is also apparent in
the experiments of Holford & Linden 1997a.)

Thus, in this first evolutionary stage, the instability creates a sequence of ‘spikes’ in
the buoyancy gradient or, equivalently, steps in the buoyancy profile.

The second evolutionary stage, from t ≈ 30 000 on, consists of a much slower
development of the pattern of gradient spikes. This ‘metastable pattern’ slowly changes
as a result of interfaces gradually being eroded away from the periphery of the pattern,
and by internal layer interactions (figure 6). The internal layer interactions lead to
spikes drifting together and merging. Two merging events are displayed further in
figure 9.

The final evolutionary stage emerges once all the interfaces in the central pattern
have been destroyed by the expansion of the edges: the centre cannot hold. This leaves
a smooth, triangular distribution of the buoyancy flux (see figure 8) that decays slowly
to the ultimate homogenized state.

This three-stage evolution is very similar to that observed experimentally. In fact,
the pattern shown in figure 6 bears many similarities to figure 10 of Park et al. (1994).
Another interesting point of comparison is in the buoyancy flux. A striking feature
of the second evolutionary stage is that the spike pattern evolves at almost constant
buoyancy flux in the interior of the domain (figure 8). In a sense, this is simply a
consequence of the slow evolution of the second phase: in order to achieve a slowly
evolving state, equation (2.9a) requires that the flux be uniform. In fact, the residual
variations in the flux are correlated with the merging or decay of layers (figures 8
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Figure 9. Buoyancy gradient (a, c) and (b, d ) during two merger events. (a, b) t = 40 000, 50 000;
(c, d) t = 90 000, 100 000. Note the different spatial scales.

and 9). These features of the flux closely correspond to the experimental data in
figures 16 and 17 of Park et al. (1994).

We may define a mixing efficiency (or flux Richardson number), Rf , by

Rf(t) ≡

∫ H

0

f dz∫ H

0

P dz

=

∫ H

0

eg(e+ g)−1/2 dz

ε

∫ H

0

(e+ g)1/2 dz

. (4.4)

This non-dimensional parameter relates the integrated buoyancy flux to the integrated
power input to the system, and is hence a natural measure of the efficiency of the
turbulent energy input in redistributing the buoyancy in the system. Figure 10 shows
the evolution of Rf as a function of time. The measured values of Rf of Park et al.
(1994) lie in the range 0.02–0.12. While the present theory predicts values that are a
little high in comparison, no attempt was made to adjust parameters to make the two
coincide. In particular, varying ε would almost certainly lead to a better comparison.
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Figure 10. Mixing efficiency, Rf , as a function of time.

A more precise calibration of ε in this fashion was not attempted given the crudity
of the model.

4.2. Layer dynamics in the central region

The layers shown in figure 6 are created through the instability of the initial condition.
As a result, the initial evolution is typically dominated by the growth of the most
unstable mode. This suggests that the number of spikes correlates roughly with the
number of wavelengths of this mode that fit into the central region (4/5 of the
domain). This expectation is supported by the numerical calculations. For example,
in figure 6, the most unstable mode fits about 36 wavelengths into the central region
of the simulations, and there are 36 identifiable spikes.

To show more details of the subsequent evolution of the gradient spikes we isolate
the peak of each spike and follow it in space and time; that is, we plot the world lines
of the spikes. In figure 11 we show the world lines of the spikes for the solution in
figures 6 to 8. This picture shows both the gradual coarsening of the central pattern
which results from binary mergers, and the simultaneous erosion by the inexorable
expansion of the edge layers.

The coarsening dynamics revealed in figure 11 is remarkably similar to the reduced
descriptions of the dynamics of fronts or kinks in theories of phase separation (Bates
& Xun 1995; Kawasaki & Ohta 1982; Fraerman et al. 1997). In fact, this connection
is more than qualitative: in the vicinity of the critical point of figure 5, we can
use asymptotic methods to reduce the system (3.3) to the Cahn–Hilliard equation
(Cahn & Hilliard 1958), a widely used model of phase separation. The calculation
is summarized in the Appendix. Thus there are also mathematical reasons why we
might expect the similarity.

A key feature of the layer dynamics is that throughout the interactions the buoyancy
flux, f, remains constant in the interior of the domain (see figure 8). This provides
the basis of the analytical approach we follow in the next section to understand
some properties of the spike pattern. In addition, because g is conserved in layer
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Figure 11. Space–time diagram showing the spikes in g over a threshold amplitude of 1.5gi. The
two panels have different time resolution: (a) short time, (b) long time.

interactions, then it must be the case that merging events preserve the integral∫ z2

z1

g(z, t) dz = b(z2, t)− b(z1, t), (4.5)

where z2 and z1 indicate two levels above and below the merging layers. In other
words, the merger preserves constant area under the curve g(z, t), which is just the
total change in buoyancy between z1 and z2. This is evident in figure 6 at early times,
and in 9 (a), where two small spikes tend to merge into one with approximately twice
the height. This builds spikes with peak amplitudes in the vicinity of 0.11. Somewhat
later in figure 6, the gradient spikes no longer build in amplitude when they merge.
In fact, they reach a peak amplitude beyond which they do not go (the maximum
amplitude is about 0.123; see figure 9 c). Instead, in order to preserve the area, the
new gradient spike is thicker than its predecessors.

The maximum spike amplitude (g ≈ 0.123) is related to the special, constant value
of the flux reached in the interior of the domain. This value is f∗ = 0.0075 for
the simulation in figure 8. Figure 12 shows how the value of f∗ can be used to
determine both the maximum and minimum value of the gradient g by exploiting the
equilibrium flux–gradient relation.

4.3. Dependence on initial condition

The solution presented in figures 6 to 8 illustrates the typical features of the creation
and evolution of layers from the initial condition (4.1). However, such behaviour is
also a characteristic of much more general classes of initial conditions. One reason
for this common behaviour is that the evolution is insensitive to the initial value of
the kinetic energy, ei. This arises because of the strongly damped nature of the ‘energy
mode’ in figure 4. At the start of the evolution the energy relaxes rapidly to the local
equilibrium determined by the buoyancy gradient; that is, to E(g) in (3.1). Hence, the
details of the initial value of e are quickly erased and the original buoyancy profile
becomes all important.
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Figure 12. The solid, S-shaped curve shows the equilibrium flux–gradient relation, F(g). In this
figure the gradient g is the vertical axis. From the numerical solution we find that the buoyancy
flux in the central region is very nearly uniform and equal to f∗ = 0.0075. The dotted line, f = f∗,
connects the maximum gradient at the top of the spikes to the minimum gradient at the bottom of
the spikes. That is to say, the peak-to-trough excursion of the spikes in g connects the two stable
equilibrium gradients corresponding to f∗. This connection is illustrated by the curve to the left
which shows the buoyancy gradient over part of the domain at t = 195 000 (with a scaled horizontal
axis).

Given that the initial buoyancy gradient exerts a key influence on the subsequent
evolution, we have systematically explored the dependence on gi (equivalently, the
Richardson number in (4.3)). Broadly speaking, there are three behavioural regimes
that the system can fall into. The distinction between the three regimes is simply
whether gi in (4.1a) is to the left of the unstable region in figure 5, within the unstable
region, or to the right of the unstable region.

First, if gi is small, the system is to the left of the unstable region in figure 5.
In this case there is no layering instability anywhere in the domain and the initial
buoyancy gradient diffuses away while the energy approaches the equipartition value.
This behaviour is in accord with experiment. The dimensional buoyancy gradient is
given by giU

2/γd2. So at fixed values of the dimensional buoyancy gradient, small
values of gi are obtained by making U/d large: that is, by stirring vigorously. This is
in agreement with Ruddick et al. (1989) and Park et al. (1994), who found that for
vigorous stirring (large U) interfaces do not form.

Second, for larger values of gi, the interior of the domain becomes unstable. That
is, gi is within the unstable region in figure 5. This is the behaviour we have already
described and illustrated in figures 6–12. As another example of this regime consider
figure 13. This solution shows the buoyancy gradient evolving from an initial condition
with a less regular spatial structure than that of (4.1a). But, on average, the initial
gradient is within the unstable region. In this case, just as before, gradient spikes
form, then subsequently merge and decay. The main qualitative difference from the
results portrayed earlier is that the spikes emerge quickly all over the interior of the
domain. Moreover, they almost immediately reach the final amplitude of 0.12 without
forming an intermediate set of roughly half the amplitude. The spikes often emerge
from where the initial condition has largest gradient, but this is not always the case.
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Figure 13. Profiles of the buoyancy gradient, g, as a function of z for different values of t in a
situation with a different initial condition (shown as the lowest curve). The vertical axis is time, and
the profiles are spaced at time intervals of 1 000. As in the previous figure, r = 50. The thick bar at
the top left-hand corner gives the amplitude scale for g.

The emergence of interfaces from irregularly spaced positions in the domain leads
to a less uniform pattern of gradient spikes: those shown in figure 13 have varying
thickness.

The third kind of behaviour, in which gi is to the right of the unstable region
in figure 5, is qualitatively different from the layer-forming case. In this regime the
large buoyancy gradient in the central region is stable because F′(gi) > 0, but the
edge regions contain unstable buoyancy gradients. In this case, the dynamics of the
edge layers is dominant. An example for which the initial value of the gradient in
the interior is stable is shown in figure 14: gi = 0.06 and the other parameters are
as before. In this case, the shoulder of the edge layer is unstable and ‘mixing fronts’
rapidly appear there. These features are broader than the gradient spikes in figure 13.
Subsequently, the fronts plough into the featureless interior and eventually meet in
the middle; ultimately there is a decaying state with a single interface in the middle
of the domain (see figure 14).

Further details of the solution are shown in figures 15 and 16. Figure 15 shows a
snapshot of g, e and f; note the low kinetic energy density in the strongly stratified
interior. Figure 16 shows the snapshot in the (f, g)-plane with the equilibrium flux–
gradient relation superposed. The system hugs the equilibrium flux–gradient relation
everywhere except in the mixing front which separates the edge from the centre (the
connection between points a and b in figure 16).

To our knowledge, the third case, which depends crucially on the ultimate rise
of the equilibrium flux–gradient relation (see figure 3), has not been observed in
experiments. Hence, an experimental observation of this hypothetical regime would
provide support for the hypothesis that the equilibrium flux–gradient relation has the
N-shape in figure 3.
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Figure 15. Kinetic energy density, e, scaled buoyancy gradient, 5g, and scaled buoyancy flux 100f
at t = 380 000. This is a situation where the initial condition is to the right of the unstable region
of figure 5.

4.4. The expansion of the edge layers

Figures 11 and 14 both show that the advance of the edge layers into the centre is
not linear in time. We follow the advance of the edge layers by recording the position
z∗(t) for which g is first equal to 2ε/3. (This choice is not as arbitrary as it first might
seem: see § 6.) Figure 17 shows z∗(t) for various values of gi and ε. The data show
that z∗ ∼ t1/2, although the destruction of spikes at the boundary of the edge layer
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Figure 16. The dashed S-shaped curve shows the equilibrium flux-gradient relation in the (f, g)
plane. The solid curve, which partially follows the equilibrium relation, is the flux-gradient relation
for the numerical solution at t = 380 000. The curve on the left is the buoyancy gradient (plotted
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solution is on the equilibrium curve. The ‘mixing front’ is the sharp transition connecting points (a)
and (b).

results in variations about the t1/2 law for the case in which there is a central layering
regime.

The t1/2 behaviour motivates a search for similarity solutions in § 6. In anticipation
of that development, figures 18 and 19 show the edge solution plotted against the
similarity variable η ≡ z/t1/2. Figure 18 shows the edge solutions for various values
of gi at ε = 0.02, and figure 19 shows them for three values of ε at fixed gi. When
plotted against η, the solutions at different times condense onto common curves that
depend upon the initial buoyancy gradient gi. These curves, however, are relatively
insensitive to the value of ε.

4.5. Parameter variations

Finally we briefly mention the effect of varying the other parameters of the problem,
H and ε.

Variations in the size of the domain do not affect the overall features of the solution,
such as spike formation, merger and the advance of the edge layers. However, if the
domain is too small, the quasi-equilibrium central staircase cannot form because it is
eroded away from the sides before a mature pattern of gradient spikes develops. A
more quantitative estimate follows from the facts that the edge layer advances at the
rate z∗ ∼ t1/2, but the instability grows on a characteristic timescale of order ε−2 when
ε is small (this is evident from the results of §3). Hence if ε2H2 < 4, patterns do not
have time to emerge. For ε = 0.02, this implies that spikes appear only if H > 100,
which is in rough accord with what one might anticipate from the numerical solution
in figure 6.

Provided that one stays well above the bottom of the unstable region in figure 5
(i.e. provided that r > 7 + 4

√
3) the qualitative properties of the solution are not
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Figure 18. The solution in the edge layer plotted against η = z/t1/2 for different values of gi with
r = 50. The dashed lines are similarity solutions constructed in §6.

sensitive to variations in ε = 1/r. However, one quantitative consequence of varying
ε is to change the special flux value, f∗, in the interior of the domain. A summary
of numerical calculations showing the variation of f∗ with ε is displayed in figure 20.
Evidently f∗ ∝ ε for small ε.
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5. Constant-flux solutions
The numerical solutions described in the last section show that over extensive

regions, and for significant periods, the system evolves slowly with a nearly uniform
buoyancy flux; see figure 8. Motivated by this numerical result, we now construct
steady, constant-flux solutions that help us understand the gradient spike patterns in
figures 6, 7 and 13.
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If the solutions have constant flux, f, then the buoyancy equation (3.3a) is satisfied
and we can determine g in terms of e and f from the relation

f =
eg

(e+ g)1/2
or g =

2e

ψ − 1
, (5.1)

where

ψ ≡ (1 + 4e3/f2)1/2. (5.2)

For steady solutions, the energy equation (3.3b) can then be written as

βg−1(g−1ez)z +
1− ψ

2e
+ εf−2e(1− e) = 0. (5.3)

If we multiply this equation by ez and integrate, we find

1
2
β(g−1ez)

2 +U = E, (5.4)

where the potential, U(e), is

U ≡ − 1
3
ψ − 1

6
ln

(
ψ − 1

ψ + 1

)
− 1

2
ln e+

ε

f2

(
1
2
e2 − 1

3
e3
)
, (5.5)

and E is a constant of integration.
It is now convenient to use the buoyancy b instead of z as an independent variable.

Because

g−1 d

dz
=

d

db
, (5.6)

the energy equation (5.4) then becomes

1
2
βe2

b +U = E. (5.7)

Equation (5.7) is the equation of motion of a nonlinear oscillator in which the
coordinate b plays the role of time, e is the displacement, U is the potential and β is
mass.

The potential U(e) is shown in figure 21. One’s attention is immediately drawn to
case (b) which shows that if f is selected carefully then the oscillator has a heteroclinic
solution connecting the two maxima of the potential, emin and emax: that is, a solution
which is a single isolated ‘kink’ connecting emin to emax (see figure 22 a). We denote
this special value of the flux by f∗(ε).

Experience with systems like the Cahn–Hilliard equation (Bates & Xun 1995;
Kawasaki & Ohta 1982; Fraerman et al. 1997) informs us that these special hetero-
clinic solutions can be used to construct more complicated solutions in which e alter-
nates between emax and emin: see figure 22 (b). For instance, one can build a gradient
spike solution by superposing a pair of relatively close kinks. These composite solu-
tions are slowly evolving assemblages of kinks: each kink interacts with its immediate
neighbours through overlap of exponentially small tails (Balmforth 1995). It is very
likely that the coarsening phenomenology of figure 11 springs from these dynamics.

From the heteroclinic solution we obtain emin and emax, and then calculate gmax and
gmin from (5.1) and (5.2). Then, as in figure 12, one has f∗ =F(gmin) =F(gmax) where
F(g) is the equilibrium flux–gradient relation in (3.2). (Essential to this argument is
the observation that emax and emin are equilibrium solutions of the oscillator equation
(5.7); these equilibrium solutions are the homogeneous states connected by the kink
solution in figure 22.) In figure 21, with ε = 1/50, it turns out that f∗ = 0.00747.
For other values of ε, the result is shown as the solid curve in figure 20; there is
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agreement with the results obtained by measuring the value of the constant flux in
the central region of solutions such as that in figure 8. Also shown in figure 20 is
the leading-order approximation f∗ = ε/2

√
2 +O(ε2 ln ε) obtained by working on the

oscillator equations (5.5) and (5.7).

6. The edge layer solution
The numerical solutions of § 4 show the existence of an ‘edge layer’. A typical

solution is shown in figure 15; the regions we refer to as ‘edge layers’ are 0 < z < 400
and 1 600 < z < 2 000. Figure 15 is a clean example because the large value of gi in
the central domain (400 < z < 1 600) ensures that layers do not form in this region.
However it is clear from figure 7 that the edge layer is also a distinctive regime even
when the central region exhibits strong layering. Figure 17 suggests that in both cases
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the expansion of the edge layer is self-similar with z∗(t) ∼ t1/2. This motivates us to
search for a similarity solution, g = g(η) and e = e(η), where η = z/t1/2. Substituting
this form into the energy equation (3.3b) gives

1

t

[
(le1/2eη)η + 1

2
ηeη
]

= f − ε(e+ g)1/2(1− e). (6.1)

Evidently, the equations do not completely take similarity form. However, as t→ ∞,
we neglect the left-hand side of (6.1), and so obtain the following set of ordinary
differential equations:

fηη + 1
2
ηgη = 0, f = ε(e+ g)1/2(1− e), f = eg/(e+ g)1/2. (6.2a–c)

The final two equations are algebraic relations and if we eliminate e we obtain
the equilibrium flux–gradient relation, f = F(g) of figure 3. The inverse function,
g = G(f), is an S-shaped curve in the (f, g)-plane, e.g. see figure 16. Using this
multi-valued function we can rewrite (6.2a–c) in the suggestive form

fηη + 1
2
η

dG
df
fη = 0. (6.3)

This form emphasizes the singularities which occur at the point where G′ = ∞, e.g.
near (a) in figure 16.

In the edge layer, g � e, and so (6.2b–c) can be simplified to

e ≈ 1− ε−1g and f ≈ ε(1− G)1/2G. (6.4)

Then (6.2a) can be written as(
(1− G)1/2G

)
ηη

+ 1
2
ηGη = 0, (6.5)

where G ≡ g/ε. Equivalently,

Gηη +
3G− 4

2(2− 3G)(1− G)
G2
η + η

(1− G)1/2

2− 3G
Gη = 0. (6.6)

Equation (6.6) has singular points at G = 2/3 and G = 1. The first of these, G = 2/3,
is the g � 1 approximation to the first turning point of the flux–gradient relation in
figure 16: see equation (6.3). The second, G = 1, is an artifact of the approximation
e � g. (In fact, there is another singularity but, as (6.3) shows, it is at the second
turning point of the flux–gradient relation.)

To solve the similarity equation (6.6) we need to apply boundary conditions.
However, this is not straightforward, and we need to introduce some simplifications.
The intention is to model an expanding edge layer. Provided the domain is sufficiently
large, we may consider just one of the edge layers in isolation: we consider the lower
edge layer for illustration. Then one boundary condition is the no-flux requirement,
G(0) = 0.

The second boundary condition is more delicate. For simplicity we assume that the
domain is sufficiently wide to apply a condition as η → ∞. The form of the initial
condition suggests we take G(∞) = Gi, corresponding to g = gi in the interior.

Solutions to the boundary value problem (6.6) with G(0) = 0 and G(∞) = Gi
are shown in figure 23. These solutions exist provided Gi < 2/3. This condition is
equivalent to the requirement that the point (gi, r) lies to the left of the solid curve in
figure 5: that is, the initial gradient in the central region is stable and layers do not
form.
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Figure 23. Similarity solutions for various values of G(∞), or equivalently, G′(0). As Gi → 2/3,
the family of similarity solutions limits to a function that reaches G = 2/3 at η = ηs ≈ 1.837 (the
dashed curve, for which G′(0) = G′c ≈ 0.354). Thereafter, with η > ηs, G = 2/3. In the limit, the
function has a discontinuous gradient at η = ηs.

The similarity solutions take the form of monotonically increasing functions over
the interval. In fact, when Gi � 1, one can linearize (6.6) and this similarity solution
is the well known ‘erf’ characteristic of linear diffusion.

For Gi = 2/3, there is a limiting solution that reaches G = 2/3 at η = ηs ≈ 1.837,
and then is flat (i.e. G = 2/3 for η > ηs): that is, a function with discontinuous gradient
(this solution is drawn as the dashed line in figure 23). The limiting case corresponds
to the marginal stability of the central region. For Gi > 2/3, there are no regular
solutions of the boundary value problem, and the central region is either unstable, or
there is an instability in the edge layer itself. In other words, the non-existence of the
similarity solution is implicitly connected to instability.

In the stable case, we therefore expect that the edge layers expand self-similarly.
Indeed, the similarity solution shows agreement with the edge layer solutions of the
full equation: the curves labelled gi = 0.01 and gi = 0.014 in figure 18 show numerical
solutions for the stable case; the nearby dashed lines denote the similarity solutions.

When the initial gradients are unstable in either the central region or the edge layer
however, there are no similarity solutions. Nevertheless, figure 18 indicates that the
numerical solution of the full equations still takes something close to similarity form
in the edge layer, even though Gi > 2/3.

In the case in which the central region is unstable, and layers form in the interior,
the similarity scaling z ∼ t1/2 can only be interpreted as an average of the saltatory
advance of the edge layers: the curves labelled 0.017 and 0.0218 in figure 17 show
sudden jumps in z∗ as gradient spikes are eroded from the periphery of the spike
pattern. (Note that, in figures 17 and 18, we located the boundary of the edge layer
according to the criterion g = 2ε/3; for ε � 1, this is the singular point where the
similarity scaling must break down.)

When the centre does not layer, the numerical solution shows a cleaner self-similar
scaling. In fact, the solution in the interior also takes a similarity form. However,
the similarity scaling breaks down at the mixing front separating the edge layer and
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interior (figure 15). A simple analytical characterization of this structure has eluded
us.

Finally, the similarity equation (6.6) is independent of ε. This property also ap-
proximately extends to the numerical solutions of the full equations: figure 19 shows
that the form of the edge layer solution is roughly independent of ε for fixed initial
gradients.

7. Discussion
In this paper we have crudely modelled the evolution of a turbulent and stratified

fluid. Solutions of the model equations display features such as the relatively rapid
formation of mixed layers separated by interfaces, the subsequent slower development
of the pattern of interfaces, and the ultimate decay to the homogeneous state. The
slow development of the pattern takes place through layer merger in the interior,
and by the advance of the edge layers. The pattern itself is characterized by a nearly
constant buoyancy flux, with any residual variations stemming from layer merger
events. These aspects of the model are in agreement with the experiments of Ruddick
et al. (1989) and Park et al. (1994).

In addition to layering, the model also predicts two other types of evolutionary
behaviour. First, when the initial state is not sufficiently strongly stratified, or if
the turbulence is sufficiently intense, turbulent mixing is unimpeded by the stable
stratification and the system decays to the homogeneous state without forming layers
and interfaces. This too is a prominent feature of the experiments.

If the initial stratification is very strong, then layering is suppressed in the interior
and only in the edge regions is there an instability. Mixing fronts form in each edge
layer and then erode into the stable interior. This type of evolution has not been seen
in experiments. However, it is not clear whether those experiments have been carried
out at sufficiently high Richardson numbers to isolate this hypothetical regime; this
is a testable prediction of our model.

The model also predicts several other features of the system, some of the more
notable ones being the following:

(a) The edge layers advance at a rate t1/2. Moreover the solution is nearly self-
similar.

(b) Layer merger events continue indefinitely. As time proceeds though, and the
mixed layers cover larger and larger areas, the timescale for merging becomes expo-
nentially long. This type of behaviour is expected from asymptotic theory of coherent
structure interactions (reviewed by Balmforth 1995), and from the analogy with
Cahn–Hilliard dynamics.

(c) Gradient spikes have a maximum amplitude dictated by the upper branch of
the flux–gradient relation. However, depending on how many times the layers have
merged, their thickness can vary greatly. In experimental terms, this means that
interfaces may have different thicknesses, but the interfacial buoyancy gradient does
have a maximum value.

(d) The initial pattern of gradient spikes emerges as a result of linear instability.
Consequently, simple initial states such as (4.1a, b) or those used in the experiments
show that the spike pattern appears first at the edges, then works into the interior.
However, by preparing experiments with different initial conditions it should be
possible to produce patterns that emerge first in the centre of the domain (cf. figure
13).

(e) Edge layers appear because of the no-flux boundary conditions. If, however,
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we maintain a constant flux near the special value, f∗, then the edge layers do
not appear. Instead, the pattern of gradient spikes occupy the whole domain and
coarsening continues until the pattern reaches a final state with a single, thick interface
(we have computationally verified this).

These features of the model are all potentially testable by existing or new experi-
ments. For example, the t1/2 advance of the edge layers might be verified by existing
experimental data.

Another test of the theory is to change the way the experiment is performed. Our
model relies upon the idea that the stirrer operates at fixed speed. Importantly, this
is different to delivering either constant force or power. Modified experiments using
these alternative forcing mechanisms may be feasible.

One basic flaw of the model is that it describes the turbulent fluid in terms of
horizontally averaged kinetic energy density and buoyancy. This cannot adequately
represent the details of turbulence. All of these details are swept conveniently into
the ‘universal constant’ ε.

Perhaps one way to represent more of the turbulent dynamics is by including
‘fluctuations’, as well as the averages, much as one follows standard averaging or
mean field methods. Most crudely one might try to model the fluctuations as a
random forcing of the mean equations. In fact, such forcings, even if very small,
can play an important role in the layer dynamics, since the layer interactions are
exponentially weak for thick layers and hence prone to being overshadowed by
random noise. In that circumstance, one expects the layer merging to cease at some
stage, and random drifting of the gradient spikes to ensue, much like a Brownian
motion (see Kawakatsu & Munakata 1985).

In any event, the model is not intended to be a quantitative theory of the dynamics
of stratified, turbulent fluid. At best it establishes a language of inquiry that may
guide future experimental and theoretical directions. Moreover, once we have some
grounds for believing the model results, we may hope to adapt it to problems in
astrophysical and geophysical fluid dynamics.

This work began at the 1996 Woods Hole Oceanographic Institution’s Summer
Study Program on Geophysical Fluid Dynamics. We thank the Director, Steve
Meacham, and all the participants for a productive summer; it is a pleasure to
recall summer conversations on stratified layering with Barry Ruddick. This research
was supported by the National Science Foundation under award OCE-9616017 with
additional support for N.J.B. from the Green Foundation and for S.G.L.S. by a
Lindemann Trust Fellowship.

Appendix. Amplitude expansion near the critical point
The dynamics revealed by numerical simulation is characteristic of gradient systems

familiar in theory of phase transitions. We can go further in drawing this analogy by
deriving an amplitude equation valid in one asymptotic limit of the model equations.
This amplitude equation is the Cahn–Hilliard equation, a classical system used in
phase transition theory (Cahn & Hilliard 1958).

The critical point is at

r0 = 7 + 4
√

3, g0 = −1

2
+

1√
3
, e0 =

1

2
− 1

2
√

3
. (A 1)
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We then expand r, g and e about their critical values:

r = r0 + ε2r2 + · · · , g = g0 + εg1 + · · · , e = e0 + εe1 + · · · . (A 2)

Note that we expand such that the energy and buoyancy perturbations scale like ε,
while the criticality parameter is O(ε2). To complete the asymptotic reduction of the
problem we further need to rescale the space and time coordinates. The appropriate
time and spatial scales are given by T = ε4t and Z = εz.

Given the series (A 2), and the long length and time scales, we may then rewrite
the governing equations, order the various terms according to powers of ε, and solve
order by order. The leading orders give algebraic relations:

g = g0 + [g1 + A(Z,T )]ε

+

[
(9 + 6

√
3)(g1 + A(Z,T ))2 − 33− 19

√
3

12
r2

]
ε2 + O(ε3), (A 3a)

e = e0 − (2 +
√

3)[g1 + A(Z,T )]ε+ O(ε3), (A 3b)

r = r0 + r2ε
2 + O(ε3). (A 3c)

Note that, according to (A 3a), there is a redundancy in g1 and the vertical average of
the perturbation amplitude A(Z,T ); we remove this ambiguity by defining A(Z,T )
to have zero spatial average. At order ε5, we need to apply a solvability condition
which gives an equation for the amplitude function A. This governing equation is the
Cahn–Hilliard equation:

AT =
∂2

∂Z2

{[
21/235/4(9 + 5

√
3)g2

1 − 2−5/231/4(−19 + 11
√

3)r2

]
A

−2−3/231/4(2 +
√

3)AZZ + 21/235/4(9 + 5
√

3)A2 + 21/231/4(9 + 5
√

3)A3
}

(A 4)

≈ [(98.6g2
1 − 0.012r2)A− 1.74AZZ + 98.6g1A

2 + 32.9A3]ZZ . (A 5)

The formation of layers and their subsequent slow evolution and merging is a
well known feature of Cahn–Hilliard dynamics (Cahn & Hilliard 1958; Bates & Xun
1995). In fact, the motion of layers in the Cahn–Hilliard system is strikingly similar
to the world lines of the gradient spikes shown in figure 11 (Kawasaki & Ohta 1982;
Kawakatsu & Munakata 1985).
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