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A complete solution is obtained for the wave field generated by the time-harmonic
edgewise oscillations of a horizontal circular disk in an incompressible stratified
viscous fluid. The linearized equations of viscous internal waves and the no-slip
condition on the rigid disk are used to derive sets of dual integral equations for
the fluid velocity and vorticity. The dual integral equations are solved by analytic
reduction to sets of linear algebraic equations. Asymptotic results confirm that this
edgewise motion no longer excites waves in the small-viscosity limit. Broadside
oscillations and the effect of density diffusion are also considered.

1. Introduction
The theory of internal waves has a long and rich history dating back at least

to Rayleigh (1883). Internal waves play a critical role in atmospheric and ocean
dynamics. For example, global and vertical ocean transport of heat, nutrients and
dissolved gases is significantly influenced by mixing associated with the dissipation of
internal tides, which are internal waves at tidal frequencies (Munk & Wunsch 1998;
Garrett & Kunze 2007).

In parallel with theoretical and observational work, experimental studies have been
crucial to improve our understanding of internal waves. Laboratory studies were
pioneered by Görtler (1943), but those of Mowbray & Rarity (1967) led to much
further work, most of which, at least until 2003, is reviewed by Voisin (2003). It is well
known that the simplest possible experiment, namely oscillating a body in a stratified
solution at a fixed frequency, produces the St Andrew’s cross pattern (as seen on the
cover of some printings of Lighthill 1978).

Laboratory experiments are naturally on a smaller scale than geophysical situations
and viscosity is therefore expected to play a more important role. However, in one
important respect, viscosity has not yet been treated fully consistently in theoretical
work, even for the simplest linear generation problem. As discussed by Voisin (2003),
previous studies have not applied the correct no-slip boundary condition but instead
have carried out viscous calculations with free-slip boundary conditions (Hurley &
Hood 1997; Hurley & Keady 1997) or applied the no-slip condition at a fictitious
interface, with an iterative procedure to correct the latter approach (e.g. Vasil’ev &
Chashechkin 2006, and a number of other papers by Chashechkin and collaborators).

† Email address for correspondence: sgls@ucsd.edu



Tangential oscillations of a circular disk in a viscous stratified fluid 343

Broadside

r

θ

z

ρ (z)

Edgewise

Figure 1. Cartoon of the geometry of this problem.

In this paper we provide the first consistent calculation of the linear internal waves
generated by a moving object in a stratified fluid. Physical situations in which these
results are expected to make a difference include laboratory experiments on internal
wave generation by an oscillating disk using modern experimental techniques such
as synthetic Schlieren. These techniques are now accurate enough for the inclusion of
viscous effects in theoretical calculations to be necessary for quantitative agreement
between prediction and experiment, as shown by experiments on a variety of body
shapes (e.g. Sutherland & Linden 2002; Ermanyuk & Gavrilov 2008). We examine
the time-harmonic wave field generated by a horizontal disk moving at constant
frequency.

The focus of the analysis is the horizontal motion of the disk, i.e. tangential
oscillations, in which case the viscosity is the sole generating mechanism: fluid is set
in motion by the no-slip condition on the surface of the disk and without viscosity
the bulk of the fluid remains at rest. In addition, vortex shedding, which cannot be
considered here because of the restriction to small-amplitude motion, is unimportant.
By contrast, vertical motion, i.e. broadwise oscillations, generates a wave field that is
more likely to exhibit vortex shedding at higher Reynolds numbers. Figure 1 shows
the geometry under consideration. We do not consider twisting of the disk, just
translation parallel and normal to the disk.

The governing parameters are the radius of the disk (a), the frequency of oscillation
ω, the buoyancy frequency N and the fluid’s kinematic viscosity ν. The Boussinesq
approximation is taken and N is assumed to be constant in the vertical. The velocity
of the disk v0 does not enter the solution except as a scaling factor because of the
linearization: we are assuming that the Keulegan–Carpenter number av0/ν is small.
Then the remaining parameters can be grouped into the two dimensionless quantities:
N/ω and (ν/ω)1/2/a.

The analysis in this paper covers the entire parameter space spanned by these two
quantities. The limit N = 0 recovers oscillatory Stokes flow, while small (ν/ω)1/2/a
corresponds to inviscid internal waves, with the general case being that of viscous
internal waves.

In § 2 we obtain the solution to the problem in terms of two unknown functions that
satisfy coupled dual integral equations. This derivation is related to that in Davis &
Nagem (2004). We transform these equations into an infinite set of linear equations
in § 3. Results are presented in § 4, starting with an asymptotic approximation for the
far-field radiated pressure and the behaviour of the force on the disk for small and
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large Stokes numbers. This is followed by numerical results over a range of parameter
values, showing the effects of viscosity on the force on the disk and on the radiated
wave field. Results for vertical motion of the disk are presented in § 5, while the effect
of density diffusion is examined in § 6. Finally we summarize in § 7.

2. Theory
The standard Boussinesq equations for linearized flow in a homogeneous, stratified,

non-rotating, viscous fluid are the continuity equation

∇ · v = 0, (2.1)

the momentum equation

∂v

∂t
= − 1

ρ0
∇p + ν∇2v − ρ

ρ0
gez, (2.2)

and the buoyancy equation

∂ρ

∂t
= ρ0

N2

g
v · ez. (2.3)

Here v is the fluid velocity vector, N = [−(g/ρ0)(dρB/dz)]1/2 is the buoyancy frequency
where ρB is the background hydrostatic fluid density and ρ0 is a reference density, ρ
is the density perturbation, p is the fluid pressure and ν is the kinematic viscosity.
With N assumed to be constant, it may be deduced from (2.1)–(2.3) that the vorticity
Ω satisfies

∂

∂t

(
∂

∂t
− ν∇2

)
Ω + N2∇ × [(v · ez)ez] = 0, (2.4)

while p is determined from the flow field by

∂

∂t
∇2p + N2ρ0

∂

∂z
(v · ez) = 0. (2.5)

These are the governing equations for viscous stratified flow.
A horizontally oriented rigid disk is at z = 0, 0 ! r < a and, due to the fluid viscosity,

generates a three-dimensional disturbance by oscillating in its own plane with velocity
amplitude v0 and period 2π/ω. The dimensionless quantity a2ω/ν, sometimes called the
Stokes number, need not be large and may well be O(1) in laboratory experiments.
After suppressing the time factor e−iωt , the no-slip condition v = v0ex at the disk
implies that the cylindrical velocity components v0(Vr cos θ, Vθ sin θ, Vz cos θ) satisfy

Vr = 1, Vθ = −1, Vz = 0 at z = 0, 0 ! r < a. (2.6)

Also, the stress discontinuities are confined to the disk. The calculation of the velocity
field, which evidently is such that Vz = 0 in the plane z = 0 of the vibrating disk,
is simplified by its confinement to the first Fourier mode but complicated by the
imposed stratification. We are able to eschew the use of scalar potentials by working
from the vorticity field in an arguably more direct construction of the radiated
wave field.
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Equation (2.4) implies that the vorticity components v0(Ωr sin θ, Ωθ cos θ, Ωz sin θ)
are governed by

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+

iω

ν

)



Ωz

Ωr + Ωθ

Ωr − Ωθ



 =
1

r2




Ωz

0

4(Ωr − Ωθ )



+
N 2

iων





0

Vz

r
+

∂Vz

∂r

Vz

r
− ∂Vz

∂r




.

(2.7)
Suitable solutions, with Ωz an even function of z, are the Hankel transforms given by

Ωz =

∫ ∞

0

kB(k)

(k2 − iω/ν)1/2
e−(k2−iω/ν)1/2|z|J1(kr) dk, (2.8)

and, since ∇ · Ω =0 implies that

∂

∂r
(Ωr + Ωθ ) +

1

r2

∂

∂r
[r2(Ωr − Ωθ )] + 2

∂Ωz

∂z
= 0, (2.9)

Ωr + Ωθ = sgn(z)

∫ ∞

0

[
F (k, z) − B(k)e−(k2−iω/ν)1/2|z|

]
J0(kr) dk, (2.10)

Ωr − Ωθ = sgn(z)

∫ ∞

0

[
F (k, z) + B(k)e−(k2−iω/ν)1/2|z|

]
J2(kr) dk, (2.11)

where F (k, z) is a function to be determined. Substitution of (2.10) and (2.11) into
(2.7) gives two equations for Vz which yield

Vz =
iων

N2
sgn(z)

∫ ∞

0

[
d2F

dz2
−
(

k2 − iω

ν

)
F

]
J1(kr)

k
dk. (2.12)

Then, because the horizontal vorticity components are defined in terms of the velocity
components by

Ωr + Ωθ = −1

r

∂

∂r
(rVz) +

∂

∂z
(Vr − Vθ ), (2.13)

Ωr − Ωθ = r
∂

∂r

(
1

r
Vz

)
− ∂

∂z
(Vr + Vθ ), (2.14)

the z-derivative of

∂

∂r
(Vr − Vθ ) +

1

r2

∂

∂r
[r2(Vr + Vθ )] + 2

∂Vz

∂z
= 0, (2.15)

obtained from (2.1), facilitates deduction of the relation

∂

∂r
(Ωr + Ωθ ) − 1

r2

∂

∂r
[r2(Ωr − Ωθ )] + 2

(
∂2Vz

∂r2
+

1

r

∂Vz

∂r
+

∂2Vz

∂z2
− Vz

r2

)
= 0. (2.16)

When the vorticity components in (2.10) and (2.11) and Vz in (2.12) are substituted,
it is found that F is governed by

(
d2

dz2
− k2

)(
d2

dz2
− k2 +

iω

ν

)
F +

iN2k2

ων
F = 0. (2.17)

Hence, F is a linear combination of e−λ1|z|, e−λ2|z|, where

Re (λ1) > 0, Re (λ2) > 0,
λ2

1

λ2
2

}
= k2 − iω

2ν
± i

√
ω2

4ν2
+

iN2k2

ων
. (2.18)
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Because Vz vanishes in the plane z = 0, it follows that (2.12) may be written as

Vz = − sgn(z)

∫ ∞

0

iC(k)√
ω2

4ν2
+

iN2k2

ων

[
e−λ1|z| − e−λ2|z|] kJ1(kr) dk, (2.19)

whence, by using (2.18),

F = − C(k)√
ω2

4ν2
+

iN2k2

ων




e−λ1|z|

λ2
1 − k2 +

iω

ν

− e−λ2|z|

λ2
2 − k2 +

iω

ν




N2k2

ων

= − iC(k)√
ω2

4ν2
+

iN2k2

ων

[(
λ2

1 − k2
)
e−λ1|z| −

(
λ2

2 − k2
)
e−λ2|z|] . (2.20)

After substitution of (2.20) into (2.10) and (2.11), (2.13), (2.14) and (2.19) now yield

Vr − Vθ =

∫ ∞

0






iC(k)√
ω2

4ν2
+

iN2k2

ων

[
λ1e

−λ1|z| − λ2e
−λ2|z|]

+
B(k)

(k2 − iω/ν)1/2
e−(k2−iω/ν)1/2|z|

}
J0(kr) dk, (2.21)

Vr + Vθ =

∫ ∞

0





− iC(k)√

ω2

4ν2
+

iN2k2

ων

[
λ1e

−λ1|z| − λ2e
−λ2|z|]

+
B(k)

(k2 − iω/ν)1/2
e−(k2−iω/ν)1/2|z|

}
J2(kr) dk. (2.22)

Equations (2.21) and (2.22) show that the Helmholtz decomposition,

Vr =
∂Φ

∂r
+

Ψ

r
, Vθ = −∂Ψ

∂r
− Φ

r
, (2.23)

of the horizontal velocity field is such that

Φ =

∫ ∞

0

iC(k)√
ω2

4ν2
+

iN2k2

ων

[
λ1e

−λ1|z| − λ2e
−λ2|z|] J1(kr)

k
dk, (2.24)

Ψ =

∫ ∞

0

B(k)

(k2 − iω/ν)1/2
e−(k2−iω/ν)1/2|z| J1(kr)

k
dk. (2.25)

It is possible to work from the outset using potentials related to wave-vortex
decompositions of stratified flow (Kistovich & Chashechkin 2001; Voisin 2003), but
the functions C(k) and B(k) provide the simplest framework here.

The unknown functions C(k), B(k) are now determined by imposing the prescribed
disk velocity and requiring no net stress discontinuities at z = 0, r > a. It is readily
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seen from (2.18), (2.21) and (2.22) that (2.6) is satisfied provided
∫ ∞

0

[
− 2C(k)

λ1 + λ2
+

B(k)

(k2 − iω/ν)1/2

]
J0(kr) dk = 2, (r < a), (2.26)

∫ ∞

0

[
2C(k)

λ1 + λ2
+

B(k)

(k2 − iω/ν)1/2

]
J2(kr) dk = 0, (r < a). (2.27)

After deducing from (2.5), (2.19) that the pressure is given by

p =
N2

ω
ρ0v0 cos θ

∫ ∞

0

C(k)√
ω2

4ν2
+

iN2k2

ων

[
λ1e−λ1|z|

λ2
1 − k2

− λ2e−λ2|z|

λ2
2 − k2

]
kJ1(kr) dk, (2.28)

it is evident that the in-plane oscillations cannot generate a normal stress disparity
at the disk, and equations valid for r > a are obtained by considering the tangential
stresses at the plane z = 0. Their discontinuities are, according to the solutions (2.21)
and (2.22), confined to the disk provided

∫ ∞

0

[−2C(k) + B(k)]J0(kr) dk = 0, (r > a), (2.29)

∫ ∞

0

[2C(k) + B(k)]J2(kr) dk = 0, (r > a). (2.30)

The pairs (2.26)–(2.27) and (2.29)–(2.30) are identified as dual integral equations for
C(k) and B(k). As expected, they have the same structure as the n= 1 cases of (27)
and (30) in Davis & Nagem (2004).

3. The radiated field: solution by Tranter’s method
As shown by Tanzosh & Stone (1995), the coupled pairs above can be directly

converted into linear algebraic equations. Tranter’s method (Tranter 1966) starts with
the key observation that

A(u) = uα

∞∑

m=0

amJν−α+2m+1(u) (3.1)

satisfies ∫ ∞

0

A(u)Jν(xu) du = 0, (x > 1) (3.2)

for |α| < 1 and arbitrary am. Explicit expressions for the coefficients are available when
the integrand for the interval x < 1 has only the additional factor u−2α . Otherwise,
the choice of α is determined by the behaviour of the additional factor as u → ∞. So,
because the velocities introduce a factor that is O(k−1) as k → ∞, α = 1/2 here. Thus,
equations (2.29) and (2.30) are satisfied by writing

∓2C(k) + B(k) = (ka)1/2
∞∑

m=0

(∓2cm + bm)J2m+1/2(ka), (2c0 + b0 = 0); (3.3)

we shall find the coefficients cm and bm from the remaining integral equations. After
substituting (3.3) and writing u = ka, r = aξ , a[λ1(k)+λ2(k)] = 2Λ(u), (2.26) and (2.27)
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become

∞∑

m=0

∫ ∞

0

[
∓ cm

Λ(u)
+

bm

(u2 − ia2ω/ν)1/2

]
u1/2J2m+1/2(u)J1∓1(uξ ) du = 1 ± 1, (ξ < 1).

(3.4)
Tranter’s method, described in Sneddon (1966, § 4.6), now transforms these functional
identities into linear algebraic equations by using

21/2Γ (ν + l + 1)

Γ (ν + 1)Γ (l + 1/2)

∫ 1

0

ξν+1

(1 − ξ 2)1/2
Fl(ν + 1/2, ν + 1; ξ 2)Jν(uξ ) dξ = u−1/2J2l+ν+1/2(u),

(3.5)
with ν = 0, 2 respectively and Fl a Jacobi polynomial, to obtain (for l " 0)

∞∑

m=0

∫ ∞

0

[
− cm

Λ(u)
+

bm

(u2 − ia2ω/ν)1/2

]
J2m+1/2(u)J2l+1/2(u) du = 2δl0

√
2

π
, (3.6)

∞∑

m=0

∫ ∞

0

[
cm

Λ(u)
+

bm

(u2 − ia2ω/ν)1/2

]
J2m+1/2(u)J2l+5/2(u) du = 0. (3.7)

Non-dimensionalization has been eschewed to this point because the governing
equations have length scale determined by viscous oscillations while the disk radius is
the length scale of the mixed boundary conditions. With the application of Tranter’s
method now complete, the role of the Stokes number, S2 = a2ω/ν, is elucidated by
writing u = Sv, that is v = k

√
ν/ω, in (2.18) to obtain

Re (λ1) > 0, Re (λ2) > 0,
(aλ1)2

(aλ2)2

}
= S2

[
v2 − i

2
± i

√
1

4
+

iN2v2

ω2

]
, (3.8)

and in the linear system (3.6) and (3.7) to obtain (again for l " 0)

∞∑

m=0

∫ ∞

0

[
− Scm

Λ(Sv)
+

bm

(v2 − i)1/2

]
J2m+1/2(Sv)J2l+1/2(Sv) dv = 2δl0

√
2

π
, (3.9)

∞∑

m=0

∫ ∞

0

[
Scm

Λ(Sv)
+

bm

(v2 − i)1/2

]
J2m+1/2(Sv)J2l+5/2(Sv) dv = 0. (3.10)

The system is completed by 2c0 + b0 = 0 and (3.8) yields 2D(v) = [2v2 − i +
2v
√

v2 + i(N2/ω2 − 1)]1/2 where D(v) = S−1Λ(Sv), which shows that S appears in
only the Bessel function arguments.

The tangential stress yields a drag force given by

F = −πe−iωt exρ0νv0

∫ a

0

[
∂

∂z
(Vr − Vθ )

]0+

z=0−
r dr = 2

√
2π(−2c0 + b0)e

−iωt exρ0νv0a,

(3.11)
after substitution of (2.22). In what follows we use the non-dimensionalized x-
component of F given by Fx = 2

√
2π(−2c0 + b0).
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4. Results
4.1. Far-field pressure

The radiated pressure, given by (2.28), can be estimated in the far field by using the
small-k approximations,

λ2
1 ∼ k2

(
1 − N2

ω2

)
, λ2

2 ∼ − iω

ν
, C(k) ∼ c0

√
2

π
sin(ka), (4.1)

deduced from (2.18) and (3.3), to obtain, for ω >N , r2 + z2 * ν/ω and r2 + z2 * a2,

p ∼ −2c0

√
2

π
ρ0νv0 cos θ

∫ ∞

0

(
1 − N2

ω2

)1/2

e−k|z|(1−N2/ω2)1/2

J1(kr) sin ka dk (4.2)

and hence

p ∼ −2c0

√
2

π
ρ0νav0 cos θ

(
1 − N2

ω2

)1/2

r

[
r2 +

(
1 − N2

ω2

)
z2

]3/2
. (4.3)

If ω < N , the integrand lacks exponential decay and more care is required. Note that
λ1 must lie in the first quadrant because

λ2
1 = k2 +

iω

2ν
(ξ − 1 + iη), (0 < η < ξ ), (4.4)

where ξ 2 − η2 = 1 and ξη = 2N2k2ν/ω3. Thus, λ1 ∼ ik
√

N2/ω2 − 1 in (4.1) and so

p ∼ 2c0

√
2

π
ρ0νv0

∂

∂x

∫ ∞

0

i

(
N2

ω2
− 1

)1/2

e−ik|z|(N2/ω2−1)1/2

J0(kr)
sin ka

k
dk

∼ 2c0

√
2

π
ρ0νav0

∂

∂x

(
N2

ω2
− 1

)1/2






[(
N2

ω2
− 1

)
z2 − r2

]−1/2

[N |z| > ω (r2 + z2)1/2]

i

[
r2 −

(
N2

ω2
− 1

)
z2

]−1/2

[N |z| < ω (r2 + z2)1/2],

(4.5)

except near the St Andrew’s cone. The apparent singular behaviour in (4.5) is
mitigated, as in Voisin (2003), by using the more accurate small-k approximation,

λ1 ∼ k

(
N2

ω2
− 1

)1/2 [
i +

N4k2ν

2ω3(N2 − ω2)

]
. (4.6)

On setting ω = N cos φ0, (4.5) is then replaced by

p ∼ 2c0

√
2

π
ρ0νav0

∂

∂x

∫ ∞

0

i tan φ0 e−ik|z| tan φ0J0(kr) exp

[
− ν|z|k3

2ω cos3 φ0 sin φ0

]
dk

∼ 2c0

√
2

π
ρ0νav0

∂

∂x
i sin φ0

(
2ω sin φ0

3ν|z|

)1/3

×
∫ π

0

Hi

[
i

(
2ω sin φ0

3ν|z|

)1/3

(r cos α cos φ0 − |z| sin φ0)

]
dα, (4.7)

in which (r cos α cos φ0 − |z| sin φ0) is identified as the projection of the position vector
(r cos α, r sin α, |z|) on the typical normal, (cos φ0, 0, − sin φ0), to the St Andrew’s cone,
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and Hi denotes the Airy function defined (Abramowitz & Stegun 1965, (10.4.4)) by

Hi(Z) =
1

π

∫ ∞

0

euZ−u3/3 du. (4.8)

As expected, this far-field pressure estimate is also obtained when the disturbance is
generated by the drag force in (3.11) applied at the origin. The asymptotic result (4.7)
can be viewed as the generalization of the Thomas & Stevenson (1972) similarity
solution to a three-dimensional situation forced by an oscillating object.

When ω = N , the above results do not apply and a viscous calculation is needed
to obtain the asymptotic behaviour, as in Gordon & Stevenson (1972). We find
λ2

1 ∼ k4(iν/ω). Thus,

p ∼ c0

√
2

π
ρ0νav0|z|−1 ∂

∂x
exp

[
−e−iπ/4

√
ω

ν

r2

4|z|

]
. (4.9)

Hence, the pressure is exponentially small except in a parabolic region near the z-axis.
It vanishes on the z-axis to this order.

4.2. Asymptotic results for the force on the disk

If S2 is not large, the evaluation of the semi-infinite integrals is facilitated by noting
that 2Λ(u) = a[λ1(k) + λ2(k)] ∼ 2ka = 2u as u → ∞ and making use of the identity

∫ ∞

0

J2m+1/2(Sv)J2l+1/2(Sv)

v
dv =

δml

4m + 1
. (4.10)

This has the advantage of giving the dominant contribution to the diagonal terms in
(3.9) and (3.10) in a closed form. The result is

−cl + bl

4l + 1
−

∞∑

m=0

cm

∫ ∞

0

[
S

Λ(Sv)
− 1

v

]
J2m+1/2(Sv)J2l+1/2(Sv) dv

+
∞∑

m=0

bm

∫ ∞

0

[
1

(v2 − i)1/2
− 1

v

]
J2m+1/2(Sv)J2l+1/2(Sv) dv = 2δl0

√
2

π
, (4.11)

cl+1 + bl+1

4l + 5
+

∞∑

m=0

cm

∫ ∞

0

[
S

Λ(Sv)
− 1

v

]
J2m+1/2(Sv)J2l+5/2(Sv) dv

+
∞∑

m=0

bm

∫ ∞

0

[
1

(v2 − i)1/2
− 1

v

]
J2m+1/2(Sv)J2l+5/2(Sv) dv = 0, (4.12)

with the system completed by 2c0 + b0 = 0.
The O(1) solution, b0 − c0 = 2

√
2/π, substituted into (3.11), yields the known zero-

frequency limit value, F =(32/3)exρ0νv0a, for an edgewise translating disk in creeping
flow. The O(S) correction term arises solely from the m = 0 = l terms. The integrals
multiplying b0 and c0 respectively in (4.12) give

∫ ∞

0

[
1

(v2 − i)1/2
− 1

v

]
J1/2(Sv)J1/2(Sv) dv ∼ 2

π
e3iπ/4S = βS, (4.13)

as in Davis (1993), and
∫ ∞

0

[
S

Λ(Sv)
− 1

v

]
J1/2(Sv)J1/2(Sv) dv ∼ 2S

π

∫ ∞

0

[
Sv

Λ(Sv)
− 1

]
dv = γ S, (4.14)
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with γ (ω/N ) available in a closed form (the expression is so complicated however
that it was not used and instead γ was computed numerically). The infinite set of
matrix equations can then be truncated to two equations and solved, yielding

Fx =
32

3

(
1 − β + 2γ

3
S + O(S2)

)
. (4.15)

If S2 is large, the evaluation of the integrals in (3.9) and (3.10) is obtained by
following the procedure of Bleistein & Handelsman (1986). Starting from the Parseval
formula

∫ ∞

0

f (v)h(Sv) dv =
1

2πi

∫ c+i∞

c−i∞
S−zM[f ; 1 − z]M[h; z]dz, (4.16)

where M denotes the Mellin transform, the large-S behaviour of (4.16) is obtained by
pulling the contour of the right-hand integral to the right and computing the residues
of the poles that are exposed. We have

M[h; z] =

∫ ∞

0

J2m+1/2(t)J2l+1/2(t)t
z−1 dt

=

2z−1Γ (1 − z)Γ

(
m + l +

1 + z

2

)

Γ
(
m − l + 1 − z

2

)
Γ
(
l − m + 1 − z

2

)
Γ

(
m + l +

3 − z

2

) , (4.17)

M[(t2 − i)−1/2; 1 − z] =
eiπz/4

2
√

π
Γ

(
1 − z

2

)
Γ
( z

2

)
, (4.18)

each of which has poles at z = 1, 3, 5, . . . . The consequent double pole at z =1 in
(4.16) yields

∫ ∞

0

1

(v2 − i)1/2
J2m+1/2(Sv)J2l+1/2(Sv) dv

∼ (−1)l+m

πS
eiπ/4

[
ln S − iπ

4
− γ − ψ(m + l + 1) − ψ

(
|m − l| +

1

2

)]
, (4.19)

where γ is Euler’s constant and ψ(x) = Γ ′(x)/Γ (x). The residue at the double pole at
z = 1 can be evaluated by taking limits from the strip of regularity. Thus,

∫ ∞

0

Sv

Λ(Sv)
J2m+1/2(Sv)J2l+1/2(Sv) dv

∼ (−1)l+m

πS

{
2eiπ/4

[
ln(S/2) − γ − ψ(m + l + 1) − ψ

(
|m − l| +

1

2

)]
+ q

}
(4.20)

where q is given by the finite part integral

q = f.p.

∫ ∞

0

S

Λ(Sv)

dv

v
=

∫ 1

0

[
S

Λ(Sv)
− 2eiπ/4

]
dv

v
+

∫ ∞

1

S

Λ(Sv)

dv

v
. (4.21)

Thus, the matrix elements are O(S−1 ln S, S−1). Inverting the matrix cannot be carried
out in a closed form without breaking up the O(S−1) and O(S−1 ln S) terms, which
is undesirable. However, because the right-hand side is O(1), the resulting {bm} and
{cm} must have orders that lie between S−1 and (S ln S)−1.
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Figure 2. (a) Real and imaginary parts of Fx for ω/N =0.1 (solid curve), 1/2 (dashed curve),
1 (dash-dotted curve) and 10 (dotted curve). The real parts tend to 32/3 and the imaginary
parts vanish at S = 0. Dots indicate the asymptotic behaviour for small S. (b) |Fx |/S2 for the
same values of ω/N (same line styles), as well as the curves 5/S and 30/(S ln S) (dots).

4.3. Numerical results

Numerical results of the infinite set of linear equations are obtained by calculating
the matrix elements numerical using routine DQAGI of QUADPACK (Piessens et al.
1983) and truncating the sums at m =M . This leads to a square system of 2(M + 1)
equations.

In general, the required values of M and N increase with increasing values of the
disk radius (a) and with decreasing values of the viscosity parameter. For large a and
small ν, the viscous effects are confined to a small boundary layer near the edge of
the disk, and the modal summations (3.3) require several terms in order to resolve
the velocity and pressure fields in this boundary layer. In practice, it was found that
with M = 2, the relative change in the coefficients was less than 1 % compared to the
results with M =4, so the results presented use M = 2. The coefficients show a clear
exponential decay with m, indicating that the series is spectrally accurate.

Figure 2(a) shows the force coefficient Fx =2
√

2π(−2c0 + b0). For values of ω/N
greater than 1/2 or so, the curves are almost the same. The small-S behaviour is
linear in S and is indicated in figure 2(a) by dots. For large ω/N , i.e. the elliptic case,
this approximation is good for relatively large S. In the internal wave regime, the
exact value of Fx rapidly departs from the asymptotic limit.

For large S, the non-dimensionalization used to define Fx is not helpful. The
viscosity scales out of the more appropriate variable Fx/S

2 that is plotted in figure 2(b).
The dashed and dot-dashed lines are proportional to S−1 and (S ln S)−1, respectively,
these being the scaling bounds obtained previously.

The far-field pressure can be written as p ∝ ∂pM/∂x, the x-derivative of a term
that we call the equivalent monopole. The equivalent monopole is defined to be the
non-dimensional quantity

pM = −
∫ ∞

0

C(k)√
ω2

4ν2
+

iN2k2

ων

[
λ1e−λ1|z|

λ2
1 − k2

− λ2e−λ2|z|

λ2
2 − k2

]
J0(kr) dk. (4.22)

Figure 3 shows the absolute value of this equivalent monopole multiplied by the
distance from the origin R ≡ a−1

√
r2 + z2. In the far field, pMR becomes a scattering

cross-section independent of R from (4.5). The singularity of (4.5) is clearly visible on
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Figure 3. Equivalent monopole pressure cross-section |pM |R as a function of angle from the
vertical, φ, for (a) S = 1, (b) S = 100 and R = 100. The solid curves correspond to ω/N = 1/2,
the dash-dotted curves to ω/N = 1 and the dotted curves to ω/N =2. The dots and circles
show the asymptotic solution (4.5), which is not valid for ω = N . The vertical line corresponds
to the angle of the St Andrews cross.

Figure 4. Energy flux along St Andrews cross and beam width 2(βz+)1/3 for S = 10, (left
half-plane) ω/N =

√
3/2 and (right half-plane) ω/N = 1/2. The scale for the energy flux is

arbitrary. The disk (whose thickness is obviously not to scale) is visible at the origin of the
beams.

the St Andrews cross. The curve for ω = N shows that the signal propagates in the
vertical. As S increases, the scattering cross-section decreases in amplitude (in this
normalization).

The energy flux per unit area is I = (Re [pv∗])/2. This is a vector quantity. Its
component along the St Andrews cross is shown in figure 4 along with the beams
emanating from the disk. It is natural to define coordinates along and perpendicular to
the beam, z+ and x+ respectively, which are non-dimensional versions of the variable
defined in Voisin (2003). The subscript + is appropriate to the region above the disk,
while x+ points in the direction of energy propagation. The width of the beam scales
like |z|1/3 from (4.7). There is no difficulty defining a beam width because the disk
provides a length scale.
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Figure 5. (a) Normalized energy flux for S = 10, (a) ω/N =
√

3/2 and (b) ω/N = 1/2
for z+ = 25, 50, 75, 100.

Figure 5 shows the normalized energy flux along the St Andrews cross as a function
of x+/(βV z+)1/3. The factor βV ≡ ν/2N sin θ0 is included to make the plots directly
comparable with those in Voisin (2003). The curves tend to functions of this variable
and the curves for different distances from the origin are almost indistinguishable.
The shape of the profile depends strongly on ω/N .

5. Comparison with the axisymmetric case
Viscosity is solely responsible for the generation of the wave field described above

by edgewise oscillations of the disk. Such is not the case with broadside oscillations:
then viscosity is expected to play a lesser role. Inviscid calculations were presented
by Sarma & Krishna (1972), Lai & Lee (1981) and Gabov & Pletner (1988), while
Bardakov, Vasil’ev & Chashechkin (2007) carried out viscous experiments.

The continuity equation (2.1) is satisfied by introducing the cylindrical velocity
components v0r

−1(−∂ψ/∂z, 0, ∂ψ/∂r), in terms of which the only non-zero vorticity
component is given by

Ωθ = −v0

r

(
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

)
ψ = −v0

r
L−1ψ. (5.1)

With the time dependence e−iωt already suppressed, substitution of (5.1) into (2.4)
shows that the streamfunction satisfies

1

r

(
L−1 +

iω

ν

)
L−1ψ =

iN2

ων

∂

∂r

(
1

r

∂ψ

∂r

)
. (5.2)

A suitable solution is

ψ(r, z) =

∫ ∞

0

F (k, z)rJ1(kr) dk, (5.3)

where F satisfies (2.17). The condition ∂ψ/∂z = 0 on the disk, z =0, r < a, requires ψ
to be an even function of z, vanishing at z =0. Thus

ψ(r, z) =

∫ ∞

0

[
e−λ1|z|

λ1
− e−λ2|z|

λ2

]
A(k, z)

k
rJ1(kr) dk, (5.4)
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which allows the pressure field to be deduced from (2.5) as

p =
iN2

ω
ρ0v0 sgn(z)

∫ ∞

0

[
e−λ1|z|

λ2
1 − k2

− e−λ2|z|

λ2
2 − k2

]
A(k, z)J0(kr) dk. (5.5)

So pressure discontinuities are confined to the disk provided
∫ ∞

0

(
λ2

2 − λ2
1

) A(k)

k2
J0(kr) dk = 0, (r > a), (5.6)

after use of (2.18). The prescribed broadside velocity of the disk is imposed by
invoking (5.4) to obtain

1

r

(
∂ψ

∂r

)

z=0

=

∫ ∞

0

(
1

λ1
− 1

λ2

)
A(k)J0(kr) dk = 0, (r < a). (5.7)

The Tranter method is now applied, with α = 1/2 as in § 3. Equation (5.6) is satisfied
by writing

(
λ2

2 − λ2
1

) A(k)

k2
= (ka)1/2

∞∑

m=0

amJ2m+1/2(ka), (5.8)

whose substitution in (5.7) gives

∞∑

m=0

am

∫ ∞

0

(ka)1/2J2m+1/2(ka)
k2J0(kr)

λ1λ2(λ1 + λ2)
dk = 1, (r < a). (5.9)

Working as in § 3, the coefficients are shown to satisfy the linear system

∞∑

m=0

am

∫ ∞

0

v

D(v)

J2m+1/2(Sv)J2l+1/2(Sv)

[v2 + i(N2/ω2 − 1)]1/2
dv = 2δl0

√
2

π
, (l " 0). (5.10)

The pressure jump at the disk yields a normal force F = Fzρ0νv0e−iωt ez with

Fz = −4π

∫ a

0

∫ ∞

0

(
λ2

2 − λ2
1

) A(k)

k
rJ0(kr) dk dr = −4

√
2πa0 (5.11)

after substitution of (5.8).
The small-S behaviour, obtained as in § 4, yields Fz = − 16(1 − αS), with

α =
2

π

∫ ∞

0

[
v2

D(v)

1

[v2 + i(N2/ω2 − 1)]1/2
− 1

]
dv. (5.12)

The S = 0 value reproduces the known zero-frequency limit value for a broadside
translating disk in creeping flow.

For large S, the results are non-uniform. When ω = N , the integral in (5.10) reduces
to the first integral in (3.9). As a result, the behaviour of the force is the same as in
§ 4. In particular, the force decays for large S. However, when ω /= N , the pole in
(4.16) at z = 1 becomes a simple pole. The appropriate expansion is then

∫ ∞

0

v

D(v)

J2m+1/2(Sv)J2l+1/2(Sv)

[v2 + i(N2/ω2 − 1)]1/2
dv ∼ (−1)l−m

π
M[f ; 0]S−1

+
2√

N2/ω2 − 1
M[h; 2]S−2 + O(S−3). (5.13)
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Figure 6. (a) Real and imaginary parts of Fz for ω/N = 0.1 (solid curve), 1/2 (dashed curve),
1 (dash-dotted curve) and 10 (dotted curve). The real parts tend to −16 and the imaginary
parts vanish at S =0. Dots indicate the asymptotic behaviour for small S. (b) |Fz|/S2 for the
same values of ω/N (same line styles), as well as the curves 5/S and 30/(S ln S) (dots) and the
asymptotic values (8/3)|N2/ω2 − 1|1/2 (horizontal dotted curves).

Both terms are required to obtain the large-S behaviour of am. We find

M[h; 2] = (−1)l−m+1|l − m|
(
l + m + 1

2

)
, M[f ; 0] =

∫ ∞

0

1

D(v)
√

v2 + i(N2/ω2 − 1)
dv.

(5.14)

The matrix elements thus scale like O(S−1). However, the leading-order matrix is
singular, and in fact an are O(S2) and satisfy a homogeneous equation to leading
order. One finds a0 = a1 = (

√
2/π/3)S2

√
N2/ω2 − 1 and an = O(S) for N > 1 in the

limit of large S. The result for the force is Fz = − (8/3)S2
√

N2/ω2 − 1. Hence,
for large S, the force scaled appropriately for the inviscid limit, Fz/S

2, tends to a
constant, which is quite different from the edgewise case but not surprising. The
dimensional result is F = − (8/3)

√
N2 − ω2ρ0v0a

3e−iωt ez, as in Lai & Lee (1981).
Vertical oscillations remain an effective mechanism of excitation as the viscosity
decreases while horizontal oscillations do not, because the latter impart motion to
the fluid via the no-slip condition.

Figure 6 shows the non-dimensional force for ω/N = 0.1, 1/2, 1 and 10. The small-S
asymptotic behaviour is poor for the ω = N case. For large S, the difference between
the critical ω = N case, for which the scaled force decays as S increases, and the other
three cases, for which it tends to a constant, is clear.

6. The effect of density diffusion
The results so far have concentrated on the effects of fluid viscosity, which affects

the boundary condition on the surface of the disk as well as the nature of the wave
field near the St Andrews cross. In a real fluid, density is not conserved along fluid
particles and the energy equation becomes the advection–diffusion equation

∂ρ

∂t
= ρ0

N2

g
v · ez + κ∇2ρ. (6.1)

The density diffusion coefficient κ appears and the Prandtl number Pr ≡ ν/κ (≈ 7
for water) becomes relevant. There have been some previous studies of internal
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waves that explicitly considered diffusion, among others Thomas & Stevenson (1973),
Kistovich & Chashechkin (1995) and Bardakov et al. (2007).

The analysis in §§ 2–5 can be carried out in an analogous fashion and only the main
results are given here. The z-component of (2.7) is unchanged and hence the vertical
vorticity is given by (2.8). Thus, density diffusion has no boundary layer analogous to
the Stokes layer, which is due to the no-slip condition.

The counterpart of (2.17), which determines the internal wave dynamics, is
(

d2

dz2
− k2

)(
d2

dz2
− k2 +

iω

ν

)(
d2

dz2
− k2 +

iω

κ

)
F − N2k2

νκ
F = 0. (6.2)

The auxiliary equation is now a bi-cubic rather than a bi-quadratic, and its solutions
no longer take simple forms as in (2.18). They can be written ±λ1, ±λ2, ±λ3. Density
diffusion adds another length scale to the problem, namely

√
κ/ω.

The vertical velocity is then

Vz = sgn(z)

∫ ∞

0

3∑

j=1

Cj (k)e−λj |z| J1(kr)

k
dk, (6.3)

with C1 + C2 + C3 = 0 ensuring that Vz = 0 on the plane z = 0. The density becomes,
from (6.1),

ρ = −ρ0v0N
2

gκ
sgn(z)

∫ ∞

0

3∑

j=1

Cj (k)

λ2
j − k2 + iω/κ

e−λj |z| J1(kr)

k
dk. (6.4)

The appropriate boundary condition is no flux of density through the disk, but
symmetry considerations show that this holds over the entire plane z =0. Hence

3∑

j=1

λjCj (k)

λ2
j − k2 + iω/κ

= 0. (6.5)

The same procedure as previously gives the zonal velocity components, from which
it is found that the pair of velocity conditions (2.26) and (2.27) has k−2

∑3
j = 1 λjCj (k)

instead of aC(k)/Λ(ka) and the pair of stress conditions (2.29) and (2.30) has
k−2

∑3
j = 1 λ

2
jCj (k) instead of 2C(k). The application of Tranter’s method proceeds as

above and the resulting dual integral equations (3.6) and (3.7) have a/Λ(u) replaced by

2
3∑

j=1

λjCj (k)

/ 3∑

j=1

λ2
jCj (k) = 2

∣∣∣∣∣∣∣

λ1 λ2 λ3

1 1 1
λ1

λ2
1 − k2 + iω/κ

λ2

λ2
2 − k2 + iω/κ

λ3

λ2
3 − k2 + iω/κ

∣∣∣∣∣∣∣

/

∣∣∣∣∣∣∣

λ2
1 λ2

2 λ2
3

1 1 1
λ1

λ2
1 − k2 + iω/κ

λ2

λ2
2 − k2 + iω/κ

λ3

λ2
3 − k2 + iω/κ

∣∣∣∣∣∣∣
. (6.6)

This ratio of determinants clearly exhibits the algebraic effect of introducing density
diffusion. However, the counterpart of (3.8) is the trio of roots of

[(
λa

S

)2

− v2

][(
λa

S

)2

− v2 + i

][(
λa

S

)2

− v2 + i Pr

]
=

N2

ω2
Pr v2, (6.7)

deduced from (6.2).
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At small k, the O(k3) term in λ1 has (ν + κ) instead of ν in (4.6) and this change,
equivalent to the factor (1 + Pr−1) ≈ 8/7 for water, appears in the far-field pressure
estimate (4.7). The asymptotic behaviour outside the cone is unchanged, but the
beams are broadened by a factor of (1 + Pr−1)1/3, which is a very small correction
for water (2.3 %). At large k,

λ2
j − k2 = µj, (µ1, µ2, µ3) ∼

(
eiπ/3, −1, e−iπ/3

)(N2k2

νκ

)1/3

, (6.8)

and the ratio of determinants is asymptotically k−1 again.
The asymptotic analysis of § 4 carries through to the present section. The scalings

remain unchanged, as does β of (4.13), but the coefficients γ and q of (4.14) and
(4.21) now incorporate a dependence on Prandtl number that involves the above
cubic roots. The numerics are more complicated but basically the same and therefore
omitted. Hence, as found in previous studies, density diffusion has a very minor effect.
Naturally, density diffusion can also be incorporated in the axisymmetric problem.

7. Summary
A complete solution is derived for the wave field due to an edgewise oscillating

horizontal circular disk in an incompressible stratified viscous fluid. The viscous
decay length assumes a fundamental role and the Stokes number takes account of the
disk radius. Large values of S2 produce the familiar inviscid beams but small values
reveal how viscosity can modify the ‘St Andrew’s cross’ beams. Broadside oscillations,
included for comparison, remain an effective excitation mechanism as the viscosity is
reduced, because they do not rely on the no-slip condition. The addition of density
diffusion complicates the mathematics but barely affects the physical features.

We thank an anonymous reviewer for a very careful reading of the manuscript and
detailed comments.
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