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ABSTRACT

The radiation from the mixed layer into the interior of the ocean of near-inertial oscillations in the presence
of the beta effect is reconsidered as an initial-value problem. Making use of the fact that the mixed layer depth
is much smaller than the total depth of the ocean, the solution is obtained in the limit of an ocean that is
effectively infinitely deep. For a uniform initial condition, analytical results for the velocity, horizontal kinetic
energy density, and fluxes are obtained.

This is the canonical solution for the radiation of near-inertial oscillations in the vertical, which captures the
basic mechanisms due to the beta effect, and leads to the formation of small scales in the vertical. By superposing
events, an average vertical wavenumber spectrum is constructed. The predicted decay of near-inertial mixed
layer energy in the presence of the beta effect occurs on a timescale similar to that observed.

1. Introduction

There is much observational evidence, starting with
Webster (1968) and Pollard and Millard (1970), that
storms can excite near-inertial currents in the mixed
layer of the ocean. This phenomenon is evident in ob-
servations from the Ocean Storms Experiment (D’Asaro
et al. 1995; Levine and Zervakis 1995; Qi et al. 1995).
Simple models that treat the mixed layer as a solid slab
have been quite successful at explaining the process by
which wind generates such currents [see, e.g., Pollard
and Millard (1970); D’Asaro (1985)]. A weakness of
the model of Pollard and Millard (1970) is that it ex-
plains the decay of these currents with an arbitrary decay
constant. Much subsequent work has attempted to de-
termine the detailed characteristics of this decay, with
possible mechanisms including nonlinear interactions
that transfer energy to other frequencies (Henyey et al.
1986), turbulent dissipation (Hebert and Moum 1994),
and the radiation of downward propagating near-inertial
oscillations (NIOs) excited by inertial pumping into the
interior of the ocean (Gill 1984). NIOs are the portion
of the oceanic internal wave field close to the Coriolis
frequency and have been the subject of much interest
recently (e.g., Garrett 2000). The downward radiation
of NIOs will be the focus of this paper.
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Observations give a timescale on the order of 10–20
days for the decay of the energy deposited by the passing
storm (D’Asaro et al. 1995; Levine and Zervakis 1995;
Qi et al. 1995). This timescale stands in contrast with
estimates, such as that by Gill (1984), that near-inertial
currents decaying through the downward propagation of
NIOs and with a horizontal length scale typical of the
atmospheric forcing mechanism can remain in the mixed
layer for longer than a year. To account for this differ-
ence, several mechanisms for the enhancement of ver-
tical propagation of NIOs have been suggested. D’Asaro
(1989) demonstrated that the b effect causes a reduction
of horizontal scales because the meridional wavenumber
evolves according to l 5 l0 2 bt, where l0 is the initial
wavenumber, and l , 0 corresponds to southward prop-
agation. This accelerates the rate of inertial pumping of
energy out of the mixed layer, thereby enhancing the
decay of the NIOs. The decay is also enhanced through
interaction with the background (quasi)geostrophic flow
(e.g., Balmforth et al. 1998; van Meurs 1998; and Balm-
forth and Young 1999).

This paper reexamines the vertical propagation of
near-inertial energy deposited into the mixed layer by
a storm, in the presence of the b effect, using the for-
malism of Young and Ben Jelloul (1997) outlined in
section 2. In section 3, a simplified model with three
main assumptions is presented. First, there is no back-
ground flow. Second, the buoyancy frequency is taken
to be constant and small in the mixed layer, and constant
in the ocean interior beneath the mixed layer. Third, we
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assume that the storm has moved rapidly across the
ocean and has created a horizontally uniform near-in-
ertial current to the east concentrated within the mixed
layer; it is the subsequent evolution of this motion that
is examined. Section 4 uses the fact that the depth of
the ocean is very much larger than the mixed layer depth
to formulate and solve the model for an ocean that is
effectively infinitely deep. Section 5 constructs an av-
erage wavenumber spectrum due to the superposition of
random events. Section 6 discusses the results and sug-
gests directions for further investigation.

2. The NIO equation

We consider an ocean of infinite horizontal extent and
depth D, with the mixed layer comprising the region
2Hmix , z , 0, and the rest of the water column oc-
cupying 2D , z , 2Hmix. The x and y axes are taken
to point to the east and north, respectively. The buoy-
ancy frequency N 5 N(z) is an arbitrary piecewise con-
tinuous function of depth z.

Young and Ben Jelloul (1997) derive an evolution
equation for a complex field A(x, y, z, t) that governs
leading-order NIO motion in the absence of a back-
ground flow and in the presence of the b effect:

i
2LA 1 f ¹ A 1 ibyLA 5 0, (1)t 02

where
2] f ]A0LA 5 , (2)
21 2]z N ]z

and the Coriolis parameter is f 5 f 0 1 by. Here
subscripts denote partial differentiation.2 2 2¹ 5 ] 1 ] ;x y

(See Young and Ben Jelloul (1997) and Balmforth et
al. (1998) for the effect of a background flow.) The NIO
velocity field (u, y, w), buoyancy b, and pressure p are
given by

2i f t0u 1 iy 5 e LA, (3)

1
2 22 2i f t0w 5 2 f N (A 2 iA )e 1 c.c., (4)0 xz yz2

i
2i f t0b 5 f (A 2 iA )e 1 c.c., (5)0 xz yz2

i
2i f t0p 5 (A 2 iA )e 1 c.c. (6)x y2

The buoyancy b is related to the density r by

z1 b
2r 5 r 1 2 N (z9) dz9 2 , (7)0 E[ ]g g0

where r0 is the reference density at the top of the ocean.
The pressure p has been normalized by r0.

The boundary conditions are that Az 5 0 at z 5 0
and z 5 2D. This ensures that w vanishes at the top

and bottom of the ocean. Using these boundary con-
ditions,

0

(u 1 iy) 5 0. (8)E
2D

Thus barotropic motion is not included in the analysis.
However, Gill (1984) has shown that the barotropic re-
sponse to a storm is instantaneous and the associated
currents are weak.

3. A simplified model

Our analysis neglects the effect of the barotropic ve-
locity and vorticity but crucially keeps the b effect. The
initial NIO motion is taken to be uniform in x; hence
A will remain independent of x. The buoyancy frequency
profile is taken to be

2eN for 2H , z , 00 mix2N 5 (9)
25N for 2D , z , 2H ,0 mix

where e K 1. Finally, the storm is assumed to have
produced an initial condition of a horizontally uniform
near-inertial current to the east concentrated within the
mixed layer. Instead of approaching this problem by use
of an integral operator as in D’Asaro (1989) or by pro-
jecting onto normal modes (e.g., Gill 1984; Balmforth
et al. 1998), the problem will be formulated as an initial
value problem on a semi-infinite domain corresponding
to an ocean that is effectively infinitely deep. In order
to formulate the problem properly for this limit, this
section considers an ocean of finite depth. In section 4
the solution in the limit in which the depth of the interior
is much greater than the mixed layer depth will be found.

This formulation as a radiation problem that ignores
the presence of the ocean bottom requires the projection
of the initial condition to be spread across all the normal
modes. This is certainly true for small mixed layer
depths in the model of Gill (1984), as shown in Table
1 of that paper; see also Table 1 of Zervakis and Levine
(1995). For deeper mixed layers, it is no longer true
since half of the initial energy becomes concentrated in
the first two or three modes. However, as pointed out
in section 7 of Gill (1984), the depth of the ocean ‘‘in-
fluences the rate of loss of energy by imposing modu-
lations on the rate, but the average rate of loss is not
affected very much by depth changes.’’ Hence the re-
sults presented here should be qualitatively relevant
even when the continuum assumption is not valid.

a. Nondimensionalization

Quantities are nondimensionalized according to

ŷ 5 y/Y, ẑ 5 1 1 z/H , t̂ 5 Vt,mix

N̂ 5 N/N , (10)0

where
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1/3 1/32 2 2 2 2H N b H Nmix 0 mix 0Y [ , V [ . (11)1 2 1 2b f f0 0

This scaling corresponds to a balance of the tendency,
dispersive, and beta terms so that all three enter the
problem. Typical values b 5 10211 m21 s21, Hmix 5 100
m, f 0 5 1024 s21, N0 5 1022 s21 give Y 5 105 m and
V 5 1026 s21. The relevant timescale is thus V21 5
11.5 days. The NIO velocity and field A are nondimen-
sionalized by

2(u, y) f 0ˆ(û, ŷ) 5 , A 5 A, (12)
2 2U UN H0 mix

where U is a characteristic value of the initial NIO ve-
locity.

The carets are now dropped for ease of notation. With
this nondimensionalization, the buoyancy frequency
profile is

e for 0 , z , 1
2N 5 (13)51 for 2H [ 1 2 D/H , z , 0,mix

and the NIO equation (1), the boundary conditions, and
initial condition become

i
2A 1 N A 1 iyA 5 0, (14)zzt yy zz2

A 5 0, z 5 2H, z 5 1, (15)z

2A 5 N (u 1 iy), t 5 0. (16)zz

The requirement that u and y remain finite implies the
jump conditions

A | 5 eA | , A | 5 A | ,1 2 1 2z z50 z z50 yy z50 yy z50 (17)

where z 5 01 and z 5 02 are the limits as z → 0 from
positive and negative values of z, respectively. The first
condition comes from integrating (3) across the base of
the mixed layer, while the second follows from this and
(14).

This nondimensionalization allows some immediate
conclusions to be drawn about the propagation of NIO
energy downward. Most importantly, if Hmix increases,
then the timescale V21 decreases. Thus, assuming that
the storm causes a uniform near-inertial current through-
out the whole mixed layer, energy transfer will be faster
for a deeper mixed layer. This confirms the results of
Gill (1984), which associated the more efficient transfer
with a larger projection of the initial velocity profile on
the first vertical mode.

b. Boundary condition at the base of the mixed layer

Expanding A(y, z, t) 5 A0(y, z, t) 1 eA1(y, z, t) 1
O(e 2) for 0 , z , 1, (14) becomes, at O(e 0),

A 1 iyA 5 0.0zzt 0zz (18)

Integrating this subject to the boundary condition that

Az and A0 z vanish at z 5 1 and using the property of
the initial condition that A 5 O(e) in the mixed layer,
leads to the result that A0 is independent of z. At O(e),

i
A 1 iyA 1 A 5 0, (19)1zz t 1zz 0yy2

which may be integrated subject to the boundary con-
dition that A1z vanishes at z 5 1 to give

i
A 1 iyA 1 A (z 2 1) 5 0. (20)1z t 1z 0yy2

Evaluating at z 5 01, and using Ayy 5 A0yy 1 O(e) and
Az 5 eA1z 1 O(e2), gives

ie
2 1A 1 iyA 2 A 5 O(e ), z 5 0 . (21)z t z yy2

Finally, applying (17) gives the upper boundary con-
dition for the NIO field in the ocean interior to leading
order in e:

i
2A 1 iyA 2 A 5 0, z 5 0 . (22)z t z yy2

Results obtained in the ocean interior using (22) are, in
fact, leading-order solutions. We shall however use the
notation A, even though it is really the leading-order
term in the expansion.

c. Initial condition

The initial condition may be thought of as being gen-
erated by the rapid passage of a storm with a horizontal
scale that is much larger than the scales under consid-
eration. There is hence a uniform flow in the mixed
layer, which we take to be to the east. For simplicity,
the initial velocity is assumed to be piecewise constant
with depth:

(1, 0) for 0 , z , 1
(u, y) 5 (23)

215(2H , 0) for 2H , z , 0.

The weak flow in the ocean interior is necessary to
ensure that the flow has no barotropic component. In-
tegrating Eq. (16) with respect to z and using the bound-
ary conditions (15) gives, at t 5 0,

e(z 2 1) for 0 , z , 1
A 5 (24)z 52(z 1 H )/H for 2H , z , 0.

4. Solution for an infinitely deep ocean

The total depth of the ocean is typically on the order
of 100 times the depth of the mixed layer. Thus, the
limit of infinite depth is considered. The initial condition
is taken to be Eq. (24) with H → `. The boundary
condition for z → 2` is taken to be Azz → 0, corre-
sponding to the near-inertial velocities vanishing at in-
finite depth. Of course, this limit excludes the possibility
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of reflections off the bottom of the ocean which may
be important. Finally, the boundary condition for z 5
02 given by Eq. (22) is used. Hence the problem to be
solved for the semi-infinite domain z , 0 becomes

i
A 1 A 1 iyA 5 0, z , 0, (25)zzt yy zz2

i
2A 2 A 1 iyA 5 0, z 5 0 , (26)zt yy z2

A → 0, z → 2`, (27)zz

A 5 21, t 5 0. (28)z

a. NIO velocity field

The system (25)–(28) may be solved using transform
techniques. Writing A(y, z, t) 5 e2iytB(y, z, t), and Fou-
rier transforming in y to give B̂(l, z, t), leads to the
equations

i
2ˆ ˆB 2 (t 2 l) B 5 0, z , 0, (29)zzt 2

i
2 2ˆ ˆB 1 (t 2 l) B 5 0, z 5 0 , (30)zt 2

B̂ → 0, z → 2`, (31)zz

B̂ 5 2d(l), t 5 0. (32)z

Rewriting this system in terms of the new variable T [
(t 2 l)3/3, which gives B̂zzt 5 (t 2 l)2B̂zzT, leads to a
set of equations where l only appears in the initial con-
dition as the argument of a delta function. The solution
will be proportional to this initial condition, and so the
presence of the delta function in the inverse Fourier
transform to recover B will lead to a solution B(z, t)
with no y dependence. We therefore take A(y, z, t) 5
e2iytB̃(z, T) where T 5 t3/3, and Eqs. (25)–(28) become

i˜ ˜B 2 B 5 0, z , 0, (33)zzT 2

i
2˜ ˜B 1 B 5 0, z 5 0 , (34)zT 2

B̃ → 0, z → 2`, (35)zz

B̃ 5 21, t 5 0. (36)z

Defining the Laplace transform of B̃(z, T) by

`

2pT˜ ˜b(z, p) [ L [B] [ B(z, T )e dT, (37)E
0

the governing equation (33) and the initial condition
(36) become

i
pb 2 b 5 0, (38)zz 2

while the boundary conditions (34) and (35) become

i
2pb 1 b 5 21, z 5 0 , andz 2

b → 0, z → 2`. (39)zz

The solution to this system is

1 1 az
b(z, p) 5 2 exp . (40)1 2a Ïp 1 a Ïp

where a [ (1 1 i)/2.
The Laplace transform (40) and its derivatives with

respect to z must be inverted numerically for the ocean
interior (z , 0). At the top of the ocean interior (z 5
02) however, they may be obtained in closed form (us-
ing, e.g., Abramowitz and Stegun 1972). For example,

1 1 i32 2iyt i t /6 3/2A (y, 0 , t) 5 e e erfc t 2 1 . (41)zz 1 2[ ]2Ï3

We now consider the back-rotated velocity Azz 5
, which filters out purely inertial motionif t/V0e (u 1 iy)

at frequency f 0. Back-rotated velocities may be rep-
resented by hodographs that show the vector (Re(Azz),
Im(Azz)) as curves parameterized by time. For f 0 . 0,
if these curves are traced out in a clockwise (counter-
clockwise) fashion, the corresponding motion has fre-
quency larger (smaller) than f 0. Figure 1 shows the
back-rotated velocity at different locations. A common
characteristic is that the magnitude of the back-rotated
velocity starts at zero, reaches a peak value shortly after
the storm, then decays away. The depth dependence of
the back-rotated velocity is seen by comparing Figs. 1a
and 1b, where both have y 5 0 and thus the same value
of the Coriolis parameter f . Qualitatively the results are
the same, but closer to the mixed layer the direction
change of the back-rotated velocity becomes slower,
meaning that the frequency is closer to f 0. An idea of
the latitudinal dependence is seen by comparing Figs.
1a, 1c, and 1d: at y 5 1 the hodograph is traced out in
a clockwise fashion as for y 5 0, but at y 5 22 it is
traced out in a counterclockwise fashion.

b. Kinetic energy density and fluxes

The horizontal kinetic energy (HKE) per unit area
contained within the mixed layer is, to leading order,

2 21 1 1A Azz zz 2dz 5 dz 5 dz |A | .E E E 1zz2) ) ) )N e0 0 0

Expanding B̃(z, T) 5 B̃0(z, T) 1 eB̃1(z, T) 1 O(e2) in
the mixed layer, (19) may be used to show that

i˜pb 2 B (z, 0) 2 b 50, (42)1zz 1zz 02
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FIG. 1. Back-rotated velocity for (a) z 5 21, y 5 0; (b) z 5 20.5, y 5 0; (c) z 5 21, y 5 1; and (d) z 5 21,
y 5 22. The diamonds are drawn at t 5 0, 5, 10, 15, 20.

where b1 5 L[B̃1] and b0 5 L[B̃0]. The initial condition
within the mixed layer is B̃1zz(z, 0) 5 1 from (23). Now
A is continuous across z 5 0, and B̃0 is independent of
z in the mixed layer. Hence

1 i 1
b 5 2 , (43)1zz p 2ap Ïp 1 a

which may be inverted to give

1 1 i32iyt it /6 3/2A (y, t) 5 e e erfc t . (44)1zz 1 22Ï3

Therefore the HKE within the mixed layer is

2
1 1 i

3/2e [ erfc t . (45)ML ) 1 2)2Ï3

The time dependence of eML is shown in Fig. 2. As-
ymptotic results from Abramowitz and Stegun (1972)
for the complementary error function imply that

2
3/2e ; 1 2 t , t K 1, andML Ï3p

6
e ; , t → `. (46)ML 3pt

Since the energy that leaves the mixed layer enters the
interior of the ocean, this implies that for short times
the energy in the interior increases like t3/2. This does

not contradict the result from D’Asaro (1989) that for
short times the thermocline energy grows like t6. That
result assumes that the wind persists to generate a con-
stant inertially oscillating velocity and that there is no
propagating inertial motion. Here, the wind has an in-
stantaneous effect, causing an initial horizontally uni-
form inertial current, and propagating inertial motion is
included fully.

Another quantity of interest is the flux of HKE. Using
(14) and its complex conjugate gives

2
] ] A i ]zzHKE 5 5 (A A* 2 A* A )zz y zz y2 2) )]t ]t N 2N ]y

i ]
1 (A* A 2 A A*). (47)yz y yz y22N ]z

Assuming vanishes for |y | → ` and us-A A* 2 A* Azz y zz y

ing Eq. (15),

2d ` `d
2dz dx dy |A |E E E zzdt

2H 2` 2`

` `

5 F (y, t; d) dx dy, (48)E E E

2` 2`

where
i

F (y, t; d) [ (A* A 2 A A*)| (49)E yz y yz y z52d2

gives the flux of HKE from the region z . 2d to the
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FIG. 2. HKE per unit volume in the mixed layer, eML. The solid curve shows the exact result
and the dashed curves the asymptotic results for small and large times.

FIG. 3. (a) FE(t; d ) and (b) E(t; d ) for different depths d below the
base of the mixed layer. These show instantaneous and time-integrated
fluxes of HKE.

region z , 2d. For this model, we consider the flux
per unit area and hence discard the horizontal integrals.
Integrating (48) with respect to time shows that the
quantity

t

E(t; d) [ F dt (50)E E

0

gives the total amount of HKE (per unit area) that has
penetrated into the region z , 2d. Note that E(t; d) →
1 corresponds to all the energy originally in the mixed
layer having reached depths below z 5 2d. Results for
FE(t; d) and E(t; d) obtained by numerically inverting
the appropriate Laplace transforms are shown in Fig. 3.
The flux FE peaks at the nondimensionalized time t ø
0.62. For the typical values quoted in section 3a, this
corresponds to a week after the storm. From Fig. 3b,
and using the fact that whatever energy flows through
z 5 02 must have initially been in the mixed layer, we
see that by t 5 1 (about 11.5 days after the storm) nearly
half of the energy associated with horizontal NIO cur-
rents caused by the storm has left the mixed layer; how-
ever, only about 38% of the total energy has penetrated
below z 5 21. By t 5 2 (about 23 days after the storm),
82% of the total energy has left the mixed layer, but
only 58% has penetrated below z 5 21. Thus, at t 5
2 nearly a quarter of the total energy is contained in the
distance Hmix immediately beneath the mixed layer. This
is reminiscent of the accumulation of NIO energy below
the mixed layer seen in Balmforth et al. (1998). This
model thus gives reasonable estimates for the timescale
for which the decay of NIO energy occurs: for example,
D’Asaro et al. (1995) found that the mixed layer inertial
energy was reduced to background levels by 21 days
after the storm.

Figure 4 shows the vertical dependence of the HKE
and FE at different times. As time increases the instan-
taneous distribution of HKE becomes more sharply
peaked near the base of the mixed layer, but remains
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FIG. 4. Vertical profiles of (a) u2 1 y 2 and (b) FE(t, |z |) at y 5 0
for different times showing the decay of energy from the mixed layer
(0 , z , 1) and resultant behavior in the interior (z , 0). Note the
different vertical scales. FIG. 5. Contour plots of the asymptotic results for (a) u2 1 y 2 and

(b) FE. Darker shading corresponds to smaller values.

bounded (asymptotically approaching unity) because of
energy conservation. As in van Meurs (1998), the ve-
locity step at the bottom of the mixed layer decreases
at first; however, in our model this velocity step in-
creases for larger times.

c. Large-time behavior

The asymptotic behavior of near-inertial properties
may be derived using the method of steepest descents.
The definitions

2/3 2 1/3p [ (2z/T ) w, j [ (z T ) ,
1/3h [ (2z/T ) (51)

take the inverse Laplace transform of b to the form

2 exp[j(2a/Ïw 1 w)]h
B̃(z, T ) 5 2 dw, (52)E2pai B hÏw 1 a

where B is the Bromwich contour. The method of steep-
est descents can now be used to obtain the behavior of
B̃(z, T) and of its derivatives in the limit of large j (see
appendix A). The result is that for large j, the back-
rotated NIO velocity and the energy flux amplitude are
given by

i f t /V0A 5 e (u 1 iy)zz

1 1 ih 2p
21/2 i(23j /21p/4)2iyt; 2 j e ,

2 !p(1 1 h ) 3

2h0F ; , (53)E 2p(1 1 h )t0

respectively, where h0 5 2(3z)1/3/t. A useful way to
represent the asymptotic results is to draw contour plots
of quantities of physical interest in the (z, t) plane; this
is shown in Fig. 5. In the asymptotic limit for large j,
with z constant, u2 1 y 2 and FE decrease as time in-
creases. Note that j is large for sufficiently large z and/
or t, so good results can be obtained for large depths at
quite small times.

d. Generation of small scales

The form of the asymptotic solution confirms what
could have been predicted from the presence of the term
B̃zzT in the governing equations, namely that for large
times the vertical scale will decrease. Figure 6 shows
the back-rotated NIO velocity components as a function
of depth at y 5 0 for two different times: t 5 1 and t
5 8. The formation of smaller vertical scales is very
apparent.

The vertical shear in the interior can also be calculated
using the steepest descents analysis, giving
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FIG. 6. Real and imaginary parts of the back-rotated NIO velocity Azz 5 (solidif t/V0e (u 1 iy)
and dotted curves, respectively) and asymptotic approximations (dash and dash–dotted curves)
for y 5 0.

2
2 2 2 2˜u 1 y 5 |A | 5 |B | ; (54)z z zzz zzz 4 2 3ph (1 1 h )t0 0

for large z2t3. At fixed depth h0 ; 1/t, so the Richardson
number, decreases with time, with2 2 2Ri [ N /(u 1 y ),z z

Ri ; 1/t. Hence the static stability decreases, which
could be important in the path to mixing: smaller vertical
length scales could lead to overturning and localized
mixing regions. The Richardson number is not neces-
sarily a good indicator of static stability though since
the flow has a vertical wavelike structure that is not
captured by Ri.

The shear at the top of the ocean interior can be
computed explicitly, however, since

2a
2b (0 , p) 5 2 . (55)zzz

p(p 1 aÏp)

The inverse Laplace transform of this function may be
calculated using results from Abramowitz and Stegun
(1972), giving

1 1 i32 2iyt i t /6 3/2A (y, 0 , t) 5 e 1 2 e erfc tzzz 1 2[ 2Ï3

3t
2 (1 1 i) . (56)]!3p

For large time, this leads to at the base2 2 3u 1 y ; tz z

of the mixed layer. Hence Ri ; t23 at the base of the

mixed layer, and the flow becomes progressively less
stable.

At t 5 01, the shear is actually finite, even though
the initial velocity was discontinuous. Thus, the un-
physical nature of the initial condition is somewhat re-
deemed. The shear then grows in time, which suggests
the possibility of mixing events being more and more
likely to happen just below the mixed layer.

5. Vertical wavenumber spectrum

A natural quantity to compute using the above results
is the vertical wavenumber spectrum. We consider the
superposition of many wind events and compute the
resulting average spectrum. The response calculated
above, A, is causal and linear, so the result of super-
posing many such events will just be S wnA(t 2 tn).
Here tn is the time at which an event occurs and the
(complex) amplitude wn gives the amplitude and direc-
tion of the initial wind input from the event.

To calculate an average spectrum, tn was taken to
come from a uniform distribution over a time interval
(0, Tm) with an average time between storms of t. The
total time interval Tm was taken to be 200 nondimen-
sional time units, which is about 6 years, the average
time between storms, t, was taken to be 2 units or 23
days, and 100 realizations were carried out to obtain
average values. The real and imaginary parts of the
random amplitudes wn were taken to be drawn from a
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FIG. 7. (a) Average back-rotated NIO velocity (real part solid, imaginaryif t/V0A 5 e (u 1 iy)zz

part dashed) after 200 time units averaged over 100 realizations. (b) Resulting power spectrum
density calculated for downward-propagating waves using Welch’s algorithm. The dots at the
bottom show the largest upward propagating values and, hence, serve as an indicator for the
numerical accuracy of the procedure. The dashed line has a slope of 21.

normal distribution with zero mean (the variance is ir-
relevant since the problem is linear).

Some way of taking into account dissipative pro-
cesses such as the ones mentioned in the introduction
is required: these processes contribute to a loss of NIO
energy beyond that due to downward radiation, which
is the only mechanism explicitly captured by the current
model. Viscous processes would presumably lead to a
scale-selective damping, while Newtonian damping
would just lead to exponential decay. In the absence of
any estimates for dissipation, damping was imposed by
performing many realizations and then averaging. This
is akin to calculating means over long times with the
amplitude of each event decaying exponentially. The
time interval Tm and number of realizations was found
not to affect results significantly. Since one is interested
in results over long times (in nondimensional units), the
asymptotic form (53) can be used with very little loss

in accuracy, especially since this approximation does
well even for not so large times, provided z is not too
small.

The power spectrum density of the resulting average
NIO velocity field can then be calculated, as in D’Asaro
and Perkins (1984). The N 2 stretching of the vertical
coordinate is not required since N 2 is constant in the
present model. The rotary decomposition of Leaman and
Sanford (1975) was not carried out. Instead, the power
spectrum density |Uk | 2 of u 1 iy was calculated (at y
5 0) from values of A between z 5 21.05 and z 5
215, that is, between 100 and 1500 m below the mixed
layer, where observational data used to calculate spectra
have been obtained. Welch’s algorithm was used, as
implemented by MATLAB’S PWELCH function, with
eight overlapping data intervals and a Hamming filter.
This gives the clockwise, downward propagating part
of the spectrum separately from the counterclockwise,
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upward propagating part of the spectrum; see Fig. 7. In
this calculation, the latter component is essentially zero
to within numerical accuracy.

The resulting spectral slope appears to be close to
21 rather than 23 as found in observations by Sanford
(1991). The value of 21 is not an artifact of the tech-
nique in the sense that different values are obtained with
synthetic data (i.e., other choices of A). This discrepancy
might be resolved by taking into account other effects,
such as the finite extent of storms, reflections from the
ocean bottom, etc.

6. Conclusions

A simplified model has been developed to examine
the decay due to the b effect of near-inertial currents
excited in the mixed layer by a passing storm. This
decay occurs due to the radiation of downward propa-
gating NIOs into the interior of the ocean. The main
assumptions of the model are that the background flow
is zero, that the ocean has a simple (piecewise constant)
buoyancy frequency profile, and that the storm has
moved very quickly over the ocean causing a horizon-
tally uniform near-inertial current concentrated in the
mixed layer. The b effect is included in the analysis and
is responsible for the radiation of NIOs. Because the
depth of the mixed layer is much smaller than the total
depth of the ocean, the problem is formulated in the
limit of an effectively infinitely deep ocean. The re-
sulting initial value problem can be solved by Laplace
transforms. Analytical results are given for the hori-
zontal kinetic energy density in the mixed layer, and
results from the numerical inversion of the appropriate
Laplace transforms are given for horizontal kinetic en-
ergy, energy flux, and back-rotated velocity. The as-
ymptotic behavior is also investigated.

This is the canonical solution for the downward ra-
diation of NIOs into the ocean interior and shows the
formation of small-scale structures in the vertical. The
magnitude of the shear increases in the ocean interior
at constant depth. The shear at the base of the mixed
layer is finite for t . 0 and also grows in time. Thus,
one might expect overturning events to be triggered by
the downward propagation of the NIOs.

The vertical wavenumber spectrum due to a super-
position of random events can also be calculated. Energy
clearly propagates downward, but the spectral slope of
21 does not correspond to observations. This suggests
that some of the processes not considered in this ap-
proach are crucial for reproducing the observed behav-
ior of the near-inertial portion of the oceanic internal
wave spectrum.

Nevertheless, although this simplified model cannot
be expected to capture the full complexity of the after-
math of a storm passing the ocean, it does capture much
of the observed behavior. Most importantly, in the pres-
ence of the b effect the decay of near-inertial mixed
layer energy is found to occur on the appropriate time-

scale (approximately 20 days), as in the analysis of
D’Asaro (1989) and the observations by D’Asaro et al.
(1995), Levine and Zervakis (1995), and Qi et al.
(1995). The main advantage of the approach described
in this paper is that many aspects of the decay in the
mixed layer are analytically obtained for all times, un-
like the approach of D’Asaro (1989) which predicts the
timescale for the decay in a short time limit or estimates
it in terms of the time it takes normal modes to become
out of phase (cf. Gill 1984). Extensions to a more re-
alistic ocean and storm would involve including a more
realistic buoyancy frequency profile [e.g., the profile
used by Gill (1984)], and considering the effect of dif-
ferent initial velocities (including both horizontal and
vertical structure) and the effect of background flow.
The study of all of these could use the same formalism
of Young and Ben Jelloul (1997) and an approach sim-
ilar to that presented here.
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APPENDIX

Steepest-Descents Calculation

The argument of the exponential in (52) is the func-
tion . Using the principal branchh(w) [ 2a/Ïw 1 w
of the square root, this function has saddle points at w1

5 e2ip/2/2 and w2 5 e5pi/6/2. The Bromwich contour
can be deformed onto a contour of stationary phase that
passes through both saddle points and the origin, avoid-
ing the branch cut on the negative real axis. The as-
ymptotic behavior for large j can now be computed.

The contribution from w2 is exponentially small com-
pared to that of w1, so we may use the following formula
for large |j |:

jh(w)I(j ) [ f (w)e dwE
B

1/22p
jh(w ) ig1; f (w )e e , (A1)11 2|jh0(w )|1

where g is the angle at which the path passes through
the saddle. Here g 5 p/4, so for large |j | , we have

2h (1 1 ih) 2p
21/2 i(23j /21p/4)B̃ ; j e . (A2)

2 !p(1 1 h ) 3

An almost identical calculation leads to asymptotic be-
haviors for B̃z and B̃zz, which take the form



1560 VOLUME 31J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

h(i 2 h) 2p
21/2 i(23j /21p/4)j e and

2 !p(1 1 h ) 3

1 1 ih 2p
21/2 i(23j /21p/4)2 j e , (A3)

2 !p(1 1 h ) 3

respectively.
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