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Abstract

The equations of motion of point vortices embedded in incompressible flow go back to Kirchhoff. They are a paradigm of
reduction of an infinite-dimensional dynamical system, namely the incompressible Euler equation, to a finite-dimensional system,
and have been called a “classical applied mathematical playground”. The equation of motion for a point vortex can be viewed as the
statement that the translational velocity of the point vortex is obtained by removing the leading-order singularity due to the point
vortex when computing its velocity. We review the arguments used to obtain this result and discuss their history and limitations.
We give a formulation that can be extended to study the motion of higher singularities (e.g. dipoles). Extensions to more complex
physical situations are also discussed.
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1. Introduction

Vorticity has been a fundamental concept in fluid mechanics
since its introduction by Helmholtz in 1858 [1]. Helmholtz’s
paper was translated by Tait in 1867 [2], sparking a wave of
work by the Scottish school, including Kelvin and Thomson,
and others, who for a time sought a theory of “vortex atoms” to
explain the structure of matter.

Understanding elementary vortex structures has been a fo-
cus of extensive research. Given the complexity of the prob-
lem, simplified situations have been much considered. Two-
dimensional flows are a good approximation for flows that do
not vary much in the third dimensional, or that are constrained
by effects such as stratification and rotation to move along near-
horizontal surfaces. The next obvious approximation is that of
using singular vorticity distributions: this holds the promise of
being able to replace partial different equations by a system of
ordinary differential equations. Point vortices are the natural
candidate for constructing such a system. In many cases the
scale of the vortices is much smaller than the other scales in the
system, so replacing the vortices by elementary structures with
no intrinsic scale is a natural modelling step.

Point vortices have been called a “classical applied mathe-
matical playground” [3]. Applications include chaotic advec-
tion [4]; integrable systems [5–7]; control of fluid flows [8,
9]; biological locomotion and models of vortex shedding and
wakes [10–15] and geophysical applications [16, 17]. Related
problems arise in superfluids [18] and in dislocation theory [19],
but we limit ourselves here to potential flow.

The complex potential for a point vortex at zn = xn + iyn

with circulation Γn is

φn =
Γn

2πi
log (z − zn). (1)
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Then the equation of motion, or Point Vortex Equation (PVE),
is simply

żn = w̃n. (2)

The tilde indicates the desingularized complex velocity at zn.
i.e. the limit as z→ zn of

w̃n = lim
z→zn

[
w −

Γn

2πi
1

z − zn

]
, (3)

where w is the full velocity field which may include contribu-
tions from other point vortices and from a smooth irrotational
flow (e.g. due to boundaries). We stress that (2) is nothing to
do with a sum of other point vortex velocity fields: it is the
statement that the velocity of the point vortex is obtained by
removing the leading-order singularity due to the point vortex
when computing its velocity.

An extension to PVE is the Brown–Michael equation (BME)
that has been proposed to govern the motion of a point vortex
shed from a sharp corner. In potential flow, the velocity field
near a non-reentrant corner is singular. This singularity can be
related to the conformal mapping of a plane in which the con-
tour is smooth to the physical plane. A vortex can be associated
with each corner and its circulation set so as to make the ve-
locity at the edge finite. The resulting circulation varies in time
and one needs an equation for the motion of the vortex. The
result, as obtained by a number of researchers in the 1950s (not
just Brown and Michael), is not PVE but rather BME.

One can ask how other singularities might move, for exam-
ples point sinks or sources, or dipoles. A more general equa-
tion, or possibly set of equations, is needed, which we may call
the point singularity equation or PSE.

If one considers the PVE separately from their vast history
and popularity, one can ask how they are justified and what they
mean. The answer to this question is not as obvious as it may
appear at first sight. To gain some insight into the nature of the
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problem, we start in § 2 with a historical review of the justifica-
tions given for these equations (PVE, BME, PSE). We consider
in § 3 an argument based on the conservation of momentum
that gives PVE and BME. However, as we show in § 4, prob-
lems arise when moving to PSE. In § 5 we show how to resolve
these problems. We give examples in § 6 and conclude in § 7,
in which we also discuss possible extensions to more general
situations.

2. Historical overview

We concentrate here strictly on how authors have justified
or derived PVE, BME and PSE. Our review is biased in favour
of the English language literature, and, once we are past the
first few papers in the area, uses textbooks as indicators of the
received wisdom on the subject. Four rough historical periods
can be delineated. (An extensive bibliography of vortex dynam-
ics is given by Meleshko and Aref [20].)

2.1. The pioneers: derivation (1858–1912)

Helmholtz’s original work does not explicitly give the PVE.
In fact there is no mention of point vortices at all. The behavior
of parallel vortex lines (straight vortex filaments) is considered:
“If there be two rectilinear vortex-filaments of indefinitely small
section in an unlimited fluid, each will cause the other to move
in a direction perpendicular to the line joining them. Thus the
length of this joining line will not be altered. They will thus
turn about their common centre of gravity at constant distances
from it.”

The PVE is given explicitly in Kirchhoff’s 1876 Lecture
notes [21]. The relevant Lesson is translated in Appendix A.
This is essentially Helmholtz’s argument turned into equations.
Kirchhoff is talking about vortex filaments with infinitesimally
small cross-section remaining at finite distances from each other,
but allows the cross-section of the filaments to change.

In 1881, Routh [22] uses conformal mappings to obtain
the complex potential in domains for which the method of im-
ages fails. He never actually writes down what is now called
the Routhian correction. Routh’s prescription for obtaining the
PVE is as follows: “the current function of P is obtained from
that of Π by subtracting (m/2) log µ”, i.e. he removes the sin-
gularity of the complex potential in the physical plane. This
is a natural approach when one has the complex potential to
hand, given the importance of isolated singularities in complex
analysis and their usefulness for theorems such as the residue
theorem. Routh is the first to use the tools of complex variable
theory in the treatment of point vortices.

J. J. Thomson’s 1883 work A Treatise on the Motion of Vor-
tex Rings [23] is about vortex rings but first considers the stabil-
ity of a polygonal array of point vortices. Thomson first shows
(§ 39) that an almost circular column (i.e. a line vortex) has neu-
tral modes: “We shall prove that if the cross sections of two
such vortex columns are at any moment approximately circular
they will always remain so”. This result had been previously
stated and shown by William Thomson (Lord Kelvin). J. J.
Thomson later states (§ 42) “Our investigation of the motion of

two infinite cylindrical vortices shews that to retain an approx-
imately circular cross section the vortices must be at a distance
from each other large compared with the diameter of the cross
section of either”. His vortex lines hence have a finite area and
he requires them to be far enough apart to stop them from de-
forming each other’s cores. Since then, numerical calculations
have shown that if vortex patches are placed close enough to-
gether, vortex merger ensues [24]. Thomson then writes (§ 48)
“We suppose the radius of a cross section of a vortex to be small
compared with the distance between two vortices . . . The stream
function due to a single vortex of strength m at a point whose
distance from the vortex is ρ = −(m/π) log ρ.” This is implicitly
the PVE. It is clear that that singular point vortex velocity field
is being given physical credence because it has already been
shown that vortices far enough away from each other remain
circular to leading order.

Basset’s 1888 A Treatise on Hydrodynamics[25] does not
add anything new . He explicitly follows J. J. Thomson’s ac-
count (§ 290): “Hence it follows that if any number of vortices
of small cross sections are moving in the liquid, and the vor-
tices never get very close to one another, we may neglect the
effects produced by the deformations of their cross sections,
which may therefore be regarded as approximately circular.”
Then (§ 292): “We shall pass on to consider the motion of a
number of vortices of small and approximately circular cross
sections” and the PVE is derived.

In his 1893 book Théorie des tourbillons, Chap. 6, § 65–
68 [26], Poincaré treats point vortices. He takes narrow and
straight vortex tubes with circulation 2πm1, . . . , and states that
their strengths don’t change. First he shows the center of vortic-
ity of all the tubes stays fixed. Then he shows that the center of
vorticity of a single tube is fixed (this is just the previous result
actually). So, he says, to compute the motion of a single tube,
we ignore its own velocity and take only that of the other tubes.

Zhukovskii wrote about point vortices in 1893 [27]. He
writes down the streamfunction as an integral of vorticity with
the Green’s function, and then argues that the vorticity is con-
centrated into a small region. Hence it can be pulled out of the
integral and the resulting simple integral gives the PVE when
one subtracts out the leading-order singularity. This is an inter-
esting approach, related to the idea of the far-field behavior of a
concentrated vortex being essentially that of a point singularity,
but nevertheless relies on the usual discarding of the singularity.

To end this era, we note that in Volume IV of the Collected
Works of Kelvin, published in 1910 [28], there is no discussion
of point vortices at all, despite a lot of discussion of vortex rings
and filaments. Similarly the 1912 edition of Thomson and Tait’s
Principles of Mechanics and Dynamics (1st edition published in
1879 as A Treatise on Natural Philosophy) contains nothing on
point vortices either [29].

We may therefore conclude that the derivations of PVE in
this pioneering era are based on a verbal argument: the con-
tribution of the self-induced velocity of the vortex is ignored.
However, apart from Routh, all the authors talk about infinites-
imal line vortices. It is clear that they are aware that the bound-
aries of the cross-sections of these vortices can be deformed,
but the fact that the deformations take the form of neutral modes
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leads them to disregard these deformations if the other line vor-
tices are far enough away. When Routh writes down the com-
plex potential, the approach of removing the singularity directly
from the potential becomes natural. From this point on, point
vortices are usually viewed as singular structures rather than as
having infinitesimal cross sections.

2.2. The classics: formalization (1912–1954)

A number of textbooks still used today originally date from
this era (Lamb, Sommerfeld, Milne-Thomson). The complex
variable formulation of irrotational flow is mature at this point,
but we shall see that there is no change in presentation: the
verbal argument of Helmholtz is still used.

Villat’s 1930 work Leçons sur la Théorie des Tourbillons
[30] uses complex potentials. In Chapter III he derives the ve-
locity field outside a “tube infiniment delié”, i.e. an infinitely
thin tube, at a point A. “Quant au point A lui-même il reste
évidemment immobile, par raison de symétrie, puisque le fluide
est en repos a l’infini.” Then in “Application au mouvement des
tubes”, we have “La vitesse est (dx1/dt, dy1/dt), elle provient
des vitesses provoquées par les tourbillons A2, A3, . . . , et de la
vitesse eventuelle provoquee par le tube A1 lui-même. Mais ce
dernier, s’il etait seul, resterait immobile: il n’y a donc pas de
vitesse de cette provenance, . . . ”

The final edition of Lamb’s Hydrodynamics dates from 1932
[31] (the first edition dates from 1878). We find in § 155: “Since
this centre remains at rest, the filament as a whole will be sta-
tionary. [. . . ] The motion of each filament as a whole is entirely
due to the other, and is therefore always perpendicular to AB.”

Ewald, Pöschl and Prandtl’s The physics of solids and flu-
ids, with recent developments [32] discusses vortex filaments,
not point vortices: “If there are several vortex filaments, the
separate velocity fields are superposed and each vortex filament
takes part in the motion which the others produce at the place
where it is situated.

It is interesting to compare a classic hydraulics textbook,
which one might expect to have a practical bent. Rouse’s 1938
book Fluid mechanics for hydraulic engineers [33] has the nov-
elty of mentioning possible free surface effects. The derivation
of the PVE is “The existence of two or more neighboring fil-
aments thus results in a relative movement of each filament in
accord with the velocity fields of the others.” He is hence con-
sidering explicitly line vortices (straight filaments).

Sommerfeld, in his Lectures on Physics (1950, vol. 2, IV.21.2)
[34] just states that vortices move with induced velocity: “The
velocity v1 imparted to the filament F1 by F2 is equal and paral-
lel to the velocity v2 imparted to F2 by F1: v1 = v2 = µ/(2πc) =
v.”

Milne-Thomson’s Theoretical Hydrodynamics had its first
edition in 1938 (making it a successor to Lamb) and its final
edition in 1968 [35]. We read in § 13.22: “We have seen (13.10)
that a circular vortex alone in the fluid possesses no tendency to
set itself in motion and the same therefore applies to a vortex
filament. If therefore there are several vortex filaments, the mo-
tion of the filament at the point P is the same as the motion
which would be produced at P by the remaining vortices if the

vortex at P did not exist.” Milne-Thomson specifically writes
down the equation by subtracting off the singular log (z − z0)
term in the potential as in (2).

2.3. The golden age: expansion (1952–1984)
The post-Second World War era of increasing research in

aerodynamics and funding of fluid dynamics led, as part of re-
search into supersonic flow past delta wings, to BME. BME
was developed by Brown, Michael, Edwards, Cheng and Rott in
the period 1952–1956. These authors initially found equations
describing steady vortex sheets shed off delta wings, viewing
the sheets as point vortices in cross-section, and later consid-
ered moving vortices, such as those shed by shocks passing
over wedges. This development is rather interesting, but not
central to the topic of this historical review, so it is outlined in
Appendix B. However, treatments of the PVE in the textbooks
and monographs of the time shows no real change from before,
with one exception (Friedrichs).

A notable outlier is Truesdell in his 1954 book The Kine-
matics of Vorticity [36]. Ever the individualist, Truesdell talks
only about kinematic properties of vortices. Consequently, vor-
tex lines are mentioned, but there are no dynamics and no point
vortices. One might wonder whether the omission of point vor-
tices meant that Truesdell viewed them as dynamical entities,
i.e. entities for which forces are important. It is more likely that
his emphasis on three dimensions, as noted in McVittie’s 1955
book review [37]: “A curious feature of Truesdell’s treatment
of vorticity is his extreme insistence on the importance of three
spatial dimensions”, excluded them from his consideration.

Feynman’s Lectures on Physics (Vol. 2. 40.4–5) [38] dis-
cuss circulation and Helmholtz’s laws of vorticity. Point vor-
tices do not appear. Feynman’s description of inviscid fluid
mechanics as “dry fluid mechanics” is worth bearing in mind
should one be tempted to take inviscid point vortices too seri-
ously.

A number of important Russian books were translated dur-
ing this period. One is Kochin, Kibel’ and Roze’s book Theo-
retical Hydromechanics, a 1964 English translation of the 1955
Russian original [39]. § 5.13 treats the case of one vortex: “As
a consequence of the symmetry of the fluid motion around a
point vortex, it is obvious that the vortex will remain fixed”. In
§ 5.14 (two vortices), we find: “We will study the motion of the
vortices in the fluid. The vortex at the point z1 moves only un-
der the influence of the other vortex, since an individual vortex
does not move (a vortex does not act on itself); . . . ” Another
interesting Russian book by Sedov, Two-dimensional problems
in hydrodynamics and aerodynamics (1965 English translation
of 1950 Russian original) [40] does not discuss vorticity at all.
Sedov’s 1971 (1968 in Russian) A course in continuum mechan-
ics. Vol 3: Fluids, gases and the generation of thrust [41] does
consider point vortices. We read in § 10.8.13: “In order to deter-
mine the velocity of a particle at the location z0s of the vortex,
one must employ the sum (10.8.22) after omitting from it the
term Γs/(2πi)(z− z0s)−1 corresponding to the point z0s”. Finally
the influential Landau and Lifshitz (first English translation in
1959, second edition in 1987 with Pitaevskii) [42] rather sur-
prisingly does not mention point vortices at all.
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The first textbook to take a different approach is Friedrichs’
1966 Special Topics in Fluid Dynamics [43]. In it, he computes
the force exerted by the fluid on a vortex filament (point vortex)
and argues that if the vortex is free (as opposed to bound), this
force must vanish. The idea of the force acting on a vortex
filament was presumably inspired by the BME work mentioned
above and will reoccur in later books. It is also very common
in the superfluid literature.

Two well-known English textbooks are Batchelor and Trit-
ton [44, 45]. There are no point vortices in the latter, which
has a strong physical emphasis. In the former, we find in § 7.3:
“Motion of a group of point vortices. The above integral in-
variants take a simpler form when the vorticity is concentrated
at a number of points. [. . . ] The strengths of these vortices
remain constant [. . . ] the velocity of movement of the vor-
tex of strength κ j is equal to the velocity of the fluid at the
point (x j, y j) due to all the other vortices, since there is no self-
induced movement of a point vortex.”

We see essentially no change in the presentation of the PVE
in the textbooks. However, in parallel, BME is developed and
finds its ultimate form in 1956, but is only used in specialized
contexts.

2.4. The moderns: mathematics and dynamical systems (1984–
present)

There has been an explosion in the use of the PVE in re-
cent years, driven by applications and by its role as a proto-
type dynamical system [46–48]. The development of vortex
methods as a tool in computational fluid dynamics has been
another source of interest in the dynamics of vortical struc-
tures. The starting date for this era can be loosely set as 1984
when Marchioro and Pulvirenti proved that systems of small
vortex patches converge to vortex dynamics [49]. Given the vast
amount of modern material, we limit ourselves to textbooks or
articles that explicitly discuss or derive the PVE or generaliza-
tions.

In § 6.5 of Lighthill’s 1986 An informal introduction to the-
oretical fluid mechanics [50], after a comment on vortex sheets,
we find: “Similarly, a line vortex of given strength thickness
may be modelled as a line vortex with identical strength K but
with zero thickness, i.e. as a line where the velocity tangential
to a small circle of radius r around it behaves asymptotically
like eqn (155) as r → 0. These can be useful idealizations
provided that we do not forget that in either case the nonzero
thickness of the real structure, which must be present if only
because of viscous diffusion.” Then in § 6.4: “Line vortices do,
of course, move with the fluid. Figure 37, illustrating the two
velocity fields which together make up the flow field due to a
line vortex near a plane boundary, shows that the velocity field
(a) does not move the line vortex at all. However, the velocity
field does move it, parallel to the plane, ...” This is a pictorial
justification. Lighthill is clear however that point vortices are
“useful idealizations.”

As an aside, Krasny [51] uses a combined vortex sheet and
vortex-dipole sheet model for the numerical simulation of a

wake. The vortex-dipole distribution D evolves according to

Dt = −∇uT
· D (4)

which is the evolution governing the gradient of vorticity. This
is a Lagrangian equation. It is not quite the same as PVE or
PSE because a vortex(-dipole) sheet is considered rather than a
point vortex(-dipole). The result (4) will be useful later.

Ting and Klein’s 1991 book Viscous Vortical Flows (up-
dated in 2007 with Knio) [52, 53] presents work that goes back
to the 1960s. The three-dimensional case is the real motivation,
but we find a Matched Asymptotic Expansion (MAE) calcu-
lation for the Rankine vortex in a uniform stream in § 2.1.1.2.
The result is the PVE equations in the far field (i.e. on scales
far larger than the vortex) and neutral modes on the edge of the
vortex.

In his 1992 textbook [54], Saffman (§ 2.3) gives a momen-
tum flux argument using velocity potential: “it is appropriate
to give a direct argument based on momentum conservation”.
Subsequently he presents “[. . . ] an alternative argument based
on vortex force”.

Meleshko and Konstantinov’s 1993 book Dynamics of Vor-
tex Structures [55] says that Helmholtz’s law that vorticity is
frozen into fluid lines justifies the PVE.

Other textbooks from the 1990s approach the PVE in a num-
ber of ways. Chorin and Marsden’s 1993 A Mathematical In-
troduction to Fluid Mechanics [56] states on pp. 61–62: “As
the fluid moves according to Euler’s equations, the circulations
Γ j associated with each vortex will remain constant” and later
“Each one ought to move as if convected by the net velocity
field of the other vortices”. Chorin’s 1994 Vorticity and Turbu-
lence [57] is interesting in that it combines the smoothed kernel
argument related to numerical vortex methods with the Victo-
rian argument about being able to neglect the deformations of
small patches, We find in § 1.3 the following: “Consider the
motion of the centers of each of the functions of small support,
neglecting the deformation of that support by the flow; their ve-
locities are ... (The exclusion of i = j is convenient and at this
stage obviously harmless.)” The may no be not quite so harm-
less once one replaces functions with small support by delta
functions. Faber’s 1995 Fluid Dynamics for Physicists [58] is
unusual for a fluid mechanics book in that it is written from a
physicist’s perspective. It contains a long discussion of vortex
filaments, unsurprisingly, since they are so important in super-
fluid helium. In particular § 4.11–4.14 has an extensive discus-
sion of forces on vortex lines. The vortex lines are viewed as
physical entities that exert forces on each other, which is ulti-
mately what makes the vortices move.

Panel methods in aerodynamics are based upon single- and
double-layer potentials for Laplace’s equations, and their nu-
merical solution uses discrete representations of the potentials.
A single-layer potential can hence be viewed as a collection of
point vortices along a boundary. A clear book on the topic is
Katz and Plotkin’s Low-Speed Aerodynamics [59]. The veloc-
ity fields due to vortex filaments and line vortices are worked
out, but the vortices are not considered as moving entities.

Newton’s 2001 book The N-Vortex Problem – Analytical
Techniques [60] is entirely about point vortices. In § 1.1.4,
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Newton refers to the question of whether “point vortices faith-
fully track the centers of vorticity of smoothed out vorticity dis-
tributions (such as vortex patches) for sufficiently short times”.
However, when deriving the PVE, one finds “since each point
vortex moves with the local velocity of the fluid”, i.e. back to
the old argument.

Majda and Bertozzi’s 2002 book Vorticity and Incompress-
ible Flow [61] is mathematical in flavor. The derivation of the
PVE in § 7.3 is rather physical however: “Ignoring the fact that
the velocity of a point vortex is infinite at its center, intuitively
as in the exact radial eddies described in Example 2.1, Chap.
2, we find that a point vortex induces no motion at its center.
[. . . ] It is worth noting here that such dynamic equations as
those of Eqs. (7.90) have a self-consistent derivation through
formal asymptotic expansions as the high Reynolds number
limit of suitable solutions of the 2D Navier-Stokes equations.
The interested reader can consult the book by Ting and Klein
(1991) for a detailed discussion.” Later in 7.5.3: “In Chap. 2
of their book, Ting and Klein (1991) present a detailed formal
asymptotic derivation of the point-vortex equations of Section
7.3 from solutions of the Navier-Stokes equations. Can this for-
mal work be combined with estimates for the 2D Navier-Stokes
equations to rigorously justify this approximation?”

In their 2006 monograph, Wu, Ma and Zhou [62] state “For
a free point-vortex system, which experiences no external force
and in which each vortex moves under the induction of oth-
ers”, so there is a passing mention of forces, but no explana-
tion of what happens to the self-induction. However, they later
write “Equation (8.103) can also be derived by using asymp-
totic expansion as the high-Reynolds-number limit of the two-
dimensional Navier–Stokes equation (see Ting and Klein 1991)”,
so a reference to the MAE approach is given.

Alekseenko, Kuibin and Okulov in 2007 [63] equate the
motion of a point vortex with the fluid velocity at the vortex,
and find this velocity as follows; “The fluid velocity at the point
coinciding with the vortex position z0p is determined by the fol-
lowing rule: in sum (2.25) we eliminate the term including z0p

which is responsible for singularity”. They also mention the
vortex force argument: “The idea of the vortex force can also
be applied to the determination of velocity of the straight vortex
filament subject to the external force F. Indeed, in the coordi-
nate system moving together with the vortex, the vortex force is
ρ(u−uV )×Γ, where u is the flow velocity, uV is the vortex veloc-
ity. The equilibrium condition requires that F+(u−uV )×Γ = 0.
If the vortex filament is oriented along basis vector k, we obtain
u = u + k × F/Γ”.

From this list we see that in the modern era almost all au-
thors continue to use the original Helmholtz argument. The
force balance argument is followed up in the BME literature but
not in textbooks, except in Saffman and Alekseenko. The Ting
approach, which is really an MAE formalization of the original
physical argument, is mentioned by Majda and Bertozzi and by
Wu.

3. Conservation of momentum

This is the argument outlined in Saffman’s 1992 book [54].
It has been used to derive BME [13], but we limit ourselves to
PVE. It provides a mathematical formalization of the physical
arguments used in the original derivations.1

For a general contour C, enclosing only fluid, that moves
and deforms with a position-dependent velocity uc, Newton’s
second law for the fluid inside C is given by

d
dt

∫
S
ρu dS = −

∫
C

pn dl −
∫

C
ρu[(u − uc) · n] dl, (5)

where the left-hand side is the rate of change of the momentum
inside the contour C and the terms on the right-hand side are
respectively the force applied by the outside fluid on the contour
and the flux of momentum through C. Assuming that the flow is
irrotational and the density constant, one can write the complex
potential and velocity as F = φ+ iψ and w = u− iv respectively,
and obtain from Bernoulli’s equation

p = p0(t) − 1
2ρ(Ft + F̄t + ww̄). (6)

Then (5) can be written as

d
dt

∫
C
ρw̄ dS = Ṁ = −

iρ
2

∫
C

(
Ft + F̄t

)
dz

+
iρ
2

∫
C

w(w − wc) dz −
iρ
2

wc

∫
C

w̄ dz. (7)

Now shrink the contour down to a circle centered at the vor-
tex position with radius ε. The complex potential and velocity
can be decomposed as

F =
Γn

2πi
log(z − zn) + F̃n(z), (8)

w =
Γn

2πi(z − zn)
+ w̃n(z) (9)

with F̃n and w̃n single-valued and analytic on and inside C ex-
cept at the vortex position zn. As ε → 0, the velocity of the
contour becomes uniform with wc = ˙̄zn. Using these results, the
integrals in (7) can be evaluated and we obtain

Ṁ → iρΓn(żn − ¯̃wc). (10)

Near the vortex, the flow is purely azimuthal, so the linear mo-
mentum goes to zero. More precisely,

M =
∫

C
ρw̄ dS ∼ ρ

∫ ε

0

∫ 2π

0

Γneiθ

2πir
r dr dθ → 0. (11)

Hence Ṁ = 0 (Saffman implicitly uses this result) and we ob-
tain PVE. We have satisfied Newton’s Second law in an integral
sense for the fluid around the vortex.

1Graham [64] carries out a similar procedure in reverse for BME, computing
the force on a solid from the form of the complex potential at infinity, using
BME to obtain the result. However his argument cannot really be reversed to
obtain BME from Newton’s Second Law. In particular only one contour is used,
which cannot lead to separate equations for each vortex.
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This argument does not actually require the flow outside the
vortex to be irrotational. The non-singular term retained from
the rest of the velocity field is constant, which is always an ir-
rotational flow whatever the nature of the O(ε) terms. Similarly
the pressure could be obtained by integrating the leading-order
(differential) momentum equation, which would be equivalent
to the local form of the irrotational Bernoulli equation. Hence
the irrotational form can be viewed as a convenient way to carry
out the calculation. The same process applied to angular mo-
mentum carries through for PVE.

The same approach also gives BME:

żn + (zn − zn,0)
Γ̇n

Γn
= w̃n. (12)

It is necessary in this case to integrate through the branch cut
associated with the complex logarithm in the potential. There
is then an unbalanced torque when angular momentum is con-
sidered, and angular momentum is not conserved for BME.

The fact that the BME model cannot conserve at the same
time linear and angular momenta in an integral sense around the
vortex and branch cut is no surprise. Introducing a point vor-
tex in the flow provides three degrees of freedom for the sys-
tem: two for vortex position and one for circulation. For BME
the regularity condition fixes circulation, while conservation of
momentum gives two equation for the components of position.
Angular momentum is not in general conserved unless Γ̇ = 0.

The fact that Γ̇ does not enter PVE does not mean that Γ is
constant. This requires a separate argument (for BME Γ̇ is given
by considerations of regularity). For irrotational flow outside
the vortex, integrating the vorticity equation around the vortex
leads necessarily to the result that Γ is constant. Body forces
will not affect BME or PVE provided that they are not as sin-
gular as r−2 near the vortex.

4. General singularities

One can naturally ask how other singular potentials would
evolve, analogously to vortices. The first such attempt goes
back to Fridman and Polubarinova in 1928 [65]. Two classes
of further singular potential have been investigated in detail:
points sinks and sources, and dipoles.

Point sinks or sources correspond to taking Γ imaginary;
vortex-sinks or twisters have Γ complex [66–68]. The equation
of motion in all cases was just obtained by using complex Γ in
PVE, with no justification being advanced for this choice.

Newton [69] considers dipoles. By considering two point
vortices that come closer together, he argues that the dipole
strength will align itself with the flow, and writes down an ad
hoc equation governing this alignment process. He writes down
PVE for the position of the dipole.

In terms of general approaches to this problem, Fridman and
Polubarinova use a different argument to find PSE. They com-
pute what they call the linear and angular momenta of the fluid
lying in an annulus l1 < r < l2 centered around the singularity

and moving with a complex velocity expressed as the Laurent
series

w =
∞∑

n=−∞

anzn. (13)

The point vortex has a−1 purely complex. They argue that the
linear and angular momentum are a0 and Im a−1/(l21 + l22) re-
spectively. They then ignore the latter term and argue that the
point vortex moves with a0, which is just w̃ as for PVE.

Saffman and Meiron [70] discuss generalizations of point
vortices to three-dimensional “vortons” and conclude that the
concept doesn’t work. Their approach, which they claim works
for point vortices, is based on weak solutions to the vorticity
equation. Subsequent works [71, 72] argue that this approach
relies implicitly on a certain special definition of regulariza-
tion, essentially a choice of order of integration. Chefranov
[73] argues that there is actually no problem for vortex dipoles
both in two and three dimensions (there can be no point vortex
equivalent in three dimensions because of the solenoidal nature
of the vorticity field). His method discards the singularity in
the energy and obtains the dynamical equations from the usual
Hamiltonian equation. This method should also work for point
vortices. It is, however, a formal procedure. Similar equations
[74, 75] are produced for a dipoles, quadrupolar vortices and
point vortices.

The PSE has been derived recently [76, 77] by writing the
vorticity field as a series of delta functions, substituting into
the vorticity equation, and equating degrees of singularity. This
requires multiplying a delta function by another function that
is singular where the argument of the delta function vanishes.
This is not defined for standard distributions. This gives the
form of the equations for point vortices and for dipoles, but does
not really justify the procedure (cf. the comments of [49] for
point vortices). For higher singularities, the resulting evolution
equations are claimed to be inconsistent.

It is tempting to try the momentum conservation argument
of § 3 to obtain PSE. This fails for a number of expected and un-
expected reasons. For a twister, write F = Cn/(2π) log (z − zn)+
F̃n(z). Then the right-hand side of Newton’s Second Law gives

−
ρ

2
Cnżn +

ρ

2
[−2w̃n + żn]Cn. (14)

For real Cn (source or sink), we find w̃n = 0, which is not an
evolution equation.

For a dipole, with

w =
Dn

2π
1

(z − zn)2 + w̃n + w̃′n(z − zn) + · · · , (15)

the same approach gives

0 = −
ρ

2
Ḋn − ρDnw̃′n. (16)

This is an equation for the dipole strength, not for the position
of the dipole. The factor of 2 is inconsistent with the known
equation for the evolution of the vorticity gradient (4) [51, 76].
This is because the surface integral M has been interpreted in a
certain sense by carrying out the azimuthal integral first to give
0, but it is not a regular integral and this interpretation leads to
the wrong answer.
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5. Generalized momentum argument

We can deal with these problems by using a generalized
argument. We no longer write down Newton’s Second Law in
integral form; instead we multiply the Euler equation written
in terms of u − uc by a test function T and carry out the same
procedure. In vectorial form, this gives

d
dt

∫
S
ρT (u − uc) dS =

∫
S

(
ρ

DT
Dt

(u − uc) − ρT u̇c + p∇T
)

dS

−

∫
C

T pn dl −
∫

C
ρT (u − uc)[(u − uc) · n] dl, (17)

In complex form and using Bernoulli’s equation where appro-
priate, this becomes

d
dt

∫
C
ρT (w̄ − w̄c) dS = Ġ = −

iρ
2

∫
C

T (Ft + F̄t) dz

+

∫
S

(
ρ

DT
Dt

(w̄ − w̄c) − ρT ˙̄wc + 2pT z̄

)
dS

+
iρ
2

∫
C

T (w − wc)2 dz −
iρ
2

∫
C

T (w̄wc + ww̄c − |wc|
2) dz. (18)

For the monopole, we do not need T . We find the usual
PVE whatever the phase of Cn. Integrating the vorticity equa-
tion around the singularity gives Im Cn = 0, which hence is a
consequence of the underlying dynamics. It is worth noting that
the sink/source strength is not constrained by the dynamics and
can be specified arbitrary; this freedom does not seem to have
been exploited previously.

For the dipole, we take T = 1 and T = (z − zn). For
T = (z − zn), the surface integrals do not contribute and we
again recover żn = w̃n. For T = 1, the pT z̄ and w̄c terms are
small. The critical terms are the left-hand side of (18) and the
DT/Dt term. This former is singular and we know that ignor-
ing it leads to inconsistent results. However, the singular part
of the integral is dynamically irrelevant. As discussed in [54],
momentum is not defined in an infinite region since the integral
is only conditionally convergent. The hydrodynamic impulse of
a fluid is however well-defined and plays the part of momentum
for unbounded fluid. We are faced here with a similar problem.
We use the result 3.11.31 of [54]:

∫
S u dS = 1

2 D. This holds for
a large circle, and the same result holds here, since the singu-
larity in our small circle is the same. Hence the left-hand side
of (18) becomes 1

2ρḊn in complex notation. The DT/Dt term
in the integral is singular and must be ignored (again it vanishes
if the azimuthal integral is carried out first). We obtain the ex-
pected equation for Dn, without the factor of 2 present in (16).
The resulting PSE for the dipole is

żn = w̃n, Ḋn + Dnw̃′n = 0. (19)

We define general singularities by the local behavior

w =
An

2π
(z − zn)−l−1 + w̃n(z) + w̃′n(z)(z − zn) + · · · . (20)

Evaluating all moments for higher singularities will lead to an
inconsistent set of equations [76]. If, as for BME, we take the

view that these equations are nevertheless useful since they sat-
isfy a subset of the moment integrals, we can proceed as fol-
lows. Taking T = (z − zn)l leads to the usual result for żn. To
find Ȧn, we take T = (z−zn)l−1. The same issue as for the dipole
arises, and we deal with the integrals in the same fashion. The
only difference is a factor of l−1 in F. We find

żn = w̃n, Ȧn +
2l

l + 1
Anw̃′n = 0. (21)

We see that the singularity strength evolves in time accord-
ing to a very similar equation for all singularities. The irrota-
tional approach used above for PVE works even when the point
vortex is embedded in a rotational flow. For higher singularities,
this is no longer likely to be true because it is in terms like w̃′

that the effects of background vorticity appear. This procedure
gives a well-defined pair of equations. For hybrid singularities,
i.e. ones in which there is more than one singular term in the
potential, this approach will lead to PSE for the dominant sin-
gularity, but will not give evolution equations for the weaker
ones.

The obtained PSE is different from the equations previous
found: the singularity strengths of [65] do not evolve in time,
the equation for the singularity strength of [69] is different, and
in [76] it is claimed that only the dipole system is consistent.
We do not expect to be able to satisfy all moments: we use 4
moments to obtain 2 complex equations.

6. Example

As a short example, we calculate the motion of a dipole with
strength D = Dr + iDi and position z = x + iy in the upper half-
plane. We place an image dipole with strength D̄ and position z̄
to satisfy the no-normal flow condition along the x-axis. It can
be shown that Dr is constant in time, while the other unknowns
obey the system

ẋ = −
Dr

8πy2 , ẏ = −
Di

8πy2 , Ḋi = −
D2

r + D2
i

8πy3 . (22)

If Dr = 0, the dipole moves vertically, either away from the
wall if Di(0) < 0 or toward the wall if Di(0) > 0 (the sign of Di

may look backward but the image dipole has opposite Di and
the physical dipole is moving in its field). The dipole’s position
is given by

y =

√
y2

0 −
Di(0)t
4πy(0)

, (23)

so the dipole reaches the wall at time t = 4πy(0)3/Di(0) with
infinite velocity.

If Dr , 0, the trajectory of the dipole is given by

y =
|Dr |y0√

D2
r + Di(0)2

cosh

cosh−1

√
D2

r + Di(0)2

|Dr |

+

√
D2

r + Di(0)2

Dry0
(x − x0)

 . (24)

For large times, the dipole moves away from the wall with
decreasing velocity.
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7. Conclusion and future work

We have shown how to derive the PVE, BME and PSE using
generalized momentum arguments. The Euler equation is satis-
fied pointwise everywhere outside the singularity, and moments
of it are satisfied in an integral sense around a contour arbitrar-
ily close to the moving singularity. The singularity moves with
the flow, but its strength evolves for dipoles and higher singu-
larities. The evolution equation for the strength requires certain
choices in regularizing singular integrals. For the dipole we are
guided by previous results. It is disappointing that two different
regularizations are needed, and the general PSE result should
possibly be viewed with some suspicion. It does not satisfy all
moments of the Euler equation (this is also true for BME). To
a certain extent, the utility of such singularities as dynamical
entities lies in how well and how simply they describe interest-
ing physical phenomena. Mathematically they provide a new
class of dynamical systems that may be of some intrinsic inter-
est. The physical underpinning for the treatment of the singular
integrals in PSE would benefit from further explanation.

A historical overview of the PVE shows that the earliest
workers knew that line vortices with circular cross-section sup-
ported neutral modes. Hence parallel line vortices that were
sufficiently far from each other could be treated as dynamical
objects, neglecting their internal core structure. The later com-
plex variable formalism removed the singularity, but did not
address the internal structure of the vortices. The conservation
of momentum argument that appears with BME provides a jus-
tification for treating higher singularities.

The matched asymptotic expansion approach [52] can be
viewed as a mathematical reformulation of the original argu-
ment. However it does not appear to work for higher singulari-
ties.

Additional physical effects have been added to point vor-
tices, including the influence of viscosity [78, 79] and mass,
using “mass vortices” (with infinite density) [80, 81]. Any ef-
fect that can be described simply as an extra term in the incom-
pressible Euler equation falls into the current framework. Any
body force that is not singular does not modify PSE. Hence ad
hoc approaches such as the beta-plane point vortices [82] (with
no associated vorticity field) are inconsistent with momentum
conservation.

The effect of compressibility is particularly interesting. Point
vortices in a compressible flow have an obvious problem: close
to the center of the vortex, the velocity becomes supersonic.
Barsony-Nagy et al. constructed steady point-vortex like solu-
tions with hollow internal structure for small Mach number us-
ing the Imai–Lamla version of the Rayleigh–Janzen expansion
[83]. A number of considerations lead to a standard problem
in complex variable theory, one of these being that the force on
the vortex (obtained by the appropriate generalization of Bla-
sius theorem) vanish. This leads to the obvious equation of
the corresponding generalization to the unsteady case. It is not
clear that the internal structure that is used is appropriate and
more work is required in this interesting area.

Partial support from NSF grant CTS-01133978 is acknowl-
edged, as well as a UCSD Senate Travel Grant. The author is

grateful to N. Rott and to the late H. K. Cheng for conversa-
tions on their contribution to the original development of the
BM equation, and to A. Borisov for providing a copy of Frid-
man and Polubarinova. Conversations with Sébastien Michelin,
Darren Crowdy and David Hill were extremely helpful.

Appendix A. Extract from Kirchhoff’s Lesson Twenty

Kirchhoff’s remarkable 1876 work Lectures on Mathemat-
ical Physics [21] does not appear ever to have been translated
into English. We hence provide our translation of the relevant
section, using the original notation (italics in the original) and
formatting.

[Vortex filaments. Straight and parallel vortex fila-
ments. Motion of several such threads of infinitely
small cross-section. Straight filaments that fill a
cylinder of elliptical cross-section. Circular vortex
filaments with a common axis. Motion of a vor-
tex ring and of two vortex rings of infinitely small
cross-section.]

§ 1.. [. . . ]

§ 2.. [. . . ]

§ 3.. We now want to apply the results of the pre-
vious paragraphs to the case of a single filament
or a number of vortex filaments of infinitely small
cross-section. We assume next that only one fila-
ment exists and set∫

ζ d f = m; (A.1)

hence we take m to be finite; ζ must hence be in-
finitely large. We do not set ζ to be finite in what
follows, but ζ must not change its sign; the center
of gravity of the vortex filament then always lies
inside or infinitely close to its cross-section. For
all points that lie at a finite distance from the vor-
tex filament, the equations, according to (K11)2,
are

u =
dW
dy

, v = −
dW
dx

,

W = −
1
π

m log ρ, (A.2)

where the origin of ρ is any point of the cross-
section of the filament. Infinitely close and in-
side the filament, W, u, v are in general infinitely
large and their values depend on its cross-section
and the values that ζ takes for the individual par-
ticles; according to the results of the end of § 2,

2Derived in § 2 of the Lesson.
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we have for the center of gravity of the vortex fila-
ment u = v = 0. To this extent we can say that the
vortex filament stays in place, although in general
its cross-section changes and its center of gravity
occupies different locations in the fluid at different
times; each fluid element at a finite distance from
the filament describes a circle with uniform veloc-
ity

m
π
ρ. (A.3)

Now let there be other such vortex filaments, as
previously we had considered only one; let m1, m2,
. . . be the values of the integrals given by m in (A.1)
for these filaments; let x1, y1, x2, y2, . . . be the co-
ordinates of their centers of gravity at time t, and
let ρ1, ρ2, . . . be the distances of the centers from
the point (x, y); then for all the points that lie at a
finite distance from the vortex filaments,

u =
dW
dy

, v = −
dW
dx

,

W = −
1
π

∑
m1 log ρ1, (A.4)

where the sum is to be carried out over the index.
The centers of gravity of the vortices move; the
parts of the velocity u and v at the center of a vor-
tex from that vortex vanish however; it is hence
assumed, when we refer to u1 and v1 at the center
of the filament with index 1, that two vortices are
always at a finite distance from each other,

u1 =
dW1

dy1
, v = −

dW1

dx1
,

W1 = −
1
π

∑
(m2 log ρ12 + m3 log ρ13 + · · ·),(A.5)

where ρ12, ρ22, . . . are the distances of the center
of gravity of filament 1 to the centers of filaments
2, 3, . . . The equations which can be formed in this
fashion can be written

m1
dx1

dt
=

dP
dy1

, m2
dx2

dt
=

dP
dy2

,

m1
dy1

dt
= −

dP
dx1

, m2
dy2

dt
= −

dP
dx2

,

P = −
1
π

∑
m1m2 log ρ12 (A.6)

where the sum is to be taken over all combinations
of two different indices.

[. . . ]

Date Author Submitted
1952 Legendre 6/23/1952
6/1953 Adams 3/23/1953
2/1954 Edwards 11/10/1953
? Cheng Tech. Rep. ?
3/1954 Cheng JAS forum 12/1/1953
10/1954 BM JAS 1/1954 (presented)
5/5/1955 BM Tech. Rep.
4/1955 Cheng JAS 6/11/1954
5/1956 Rott 1/1/1956

Table B.1: Timeline of the development of the BM equation. Publication and
submission or presentation dates are from the articles (JAS: Journal of the Aero-
nautical Sciences, later Journal of the Aerospace Sciences).

Appendix B. The history of the Brown–Michael equation

The 1950s saw active research on the lift acting on delta
wings. A remarkable series of papers deriving BME appeared
in rapid succession, initially considering two-dimensional sec-
tions going down the delta wing, and studying two-dimensional
dynamics in each section. The chronology is presented in Ta-
ble B.1. There is also a review of vortex sheet roll-up from delta
wings by Legendre dating from 1966 [84] and a mention in a
report on EUROMECH meeting 471 by Riley from 1974 [85].

After the work of Legendre in 1952 and Adams in 1953
[86, 87], Edwards in 1954 [88] was the first to derive what
is essentially BME from vorticity considerations for the delta-
wing case. This approach should work in the general two-
dimensional case. He uses circulation theorems taking into ac-
count the vorticity being fed into the vortex by the cut. Cheng
in the 1954 JAS forum piece [89] “Remarks on Nonlinear Lift
and Vortex Separation” is the first to consider time dependence.
The Cheng Technical Report cannot be found now.

Brown and Michael’s 1954 JAS article “Effect of Leading-
Edge Separation on the Lift of a Delta Wing” [90] is in fact a
precursor to their widely-cited technical report [91]. This con-
siders the steady problem for the delta wing problem which in-
troduces some extra terms that go away in two dimensions.

Cheng’s 1955 JAS paper “Aerodynamics of a Rectangular
Plate with Vortex Separation in Supersonic Flow” [92] attacks
the steady delta-wing problem. Extensive discussion of BM
equation, including the following: “Since the exact boundary
condition requires continuity of the pressure across the free vor-
tex sheet, the equivalent condition in the simplified model shall
then be the vanishing of the total force on the vortex system,
which is in reality the fulfillment of the exact boundary condi-
tion by the mean value. [...] In order to render the vortex system
dynamically free, this force shall be balanced by the one acting
on the vortex core at r = ε, which is essentially a “Joukowski
Force.” [...].”

In 1956, Rott, while talking about vortex sheet shedding,
discusses the ‘single vortex’ approximation [93]. He attributes
force balance argument to the Brown and Michael technical re-
port and to Edwards (1954). He quotes Cheng (albeit with the
wrong year: 1955 rather than 1954) as saying this equation can
be applied to any flows with vortex generation, even without
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similarity. This is really the origin of the BME.
After Rott’s paper, the equation is used and called the BME,

both for the delta-wing and two-dimensional situations. Typi-
cal uses are to model steady vortex sheets, in which the vor-
tex sheets are represented by point vortices, but a BM vortex
to model the end of the vortex sheet [94, 95]. Jones (2003)
should, and might, be doing this as well. A modified approach
is suggested by Howe [96] but has not been adopted elsewhere.
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[87] M. C. Adams, Leading-edge separation from delta-wings at supersonic
speeds, J. Aero. Sci. (1953) 430–430.

[88] R. H. Edwards, Leading-edge separation from delta-wings, J. Aero. Sci.

21 (1954) 134–135.
[89] H. K. Cheng, Remarks on nonlinear lift and vortex separation, J. Aero.

Sci. 21 (1954) 212–214.
[90] C. E. Brown, W. H. Michael, Effect of leading-edge separation on the lift

of a delta-wing, J. Aero. Sci. 21 (1954) 690–694.
[91] C. E. Brown, W. H. Michael, On slender delta wings with leading-edge

separation, Technical Report NACA-TN-3430, NACA, 1955.
[92] H. K. Cheng, Aerodynamics of a rectangular plate with vortex separation

in supersonic flow, J. Aero. Sci. 22 (1955) 217–226.
[93] N. Rott, Diffraction of a weak shock with vortex generation, J. Fluid

Mech 1 (1956) 111–128.
[94] J. H. B. Smith, Improved calculations of leading-edge separation from

slender thin delta wings, Proc. R. Soc. Lond. A 306 (1968) 67–90.
[95] D. I. Pullin, Large-scale structure of unsteady self-similar rolled-up vor-

tex sheets, J. Fluid Mech. 88 (1978) 401–430.
[96] M. S. Howe, Emendation of the Brown & Michael equation, with appli-

cation to sound generation by vortex motion near a half-plane, J. Fluid
Mech. 329 (1996) 89–101.

11


