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Abstract. This article examines the classic problem of Stokes flow into a divided channel with,
in contrast to previous literature, the divider barrier asymmetrically placed with respect to the
moving, parallel channel walls. The boundary value problem is reduced to a Wiener–Hopf equation
that is of matrix form and of a class for which no exact solution is known. An explicit approximate
solution, in general accurate to any specified degree, is obtained by a recent method which employs
Padé approximants. Numerical results exhibit the flows due to moving walls or various combinations
of downstream pressure gradients.
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Padé approximants

AMS subject classification. 78A45

DOI. 10.1137/070703211

1. Introduction. A classic problem in two-dimensional creeping flow, having an
analogy in plane elastostatics, is the disturbance created by the presence of a semi-
infinite barrier in a channel flow (see Figure 1.1) driven by a pressure gradient and
or shearing. The “parallel lines” geometry suggests the use of the Wiener–Hopf tech-
nique; however, the advantage of the constricting walls in creating unidirectional flows
both upstream and downstream is offset by the appearance, in general, of a matrix
Wiener–Hopf system. The exception is the case of symmetric geometry which yields
Wiener–Hopf equations of standard (scalar) type [1], since then the flow components
that are even and odd with respect to the centerline can be considered separately.
Despite this simplification, the even problem (no flow across the line of the barrier),
which is the case of greater interest, requires an intricate factorization constructed
and used by Buchwald and Doran [2] and Foote and Buchwald [3]. An erroneous at-
tempt was presented earlier by Graebel [4] with the aim of achieving better accuracy
than the approximate, yet still complicated, solutions given by Koiter [5]. Richardson
[6] neglected an important feature of the factorization in [2]. Jensen and Halpern [7]
verified the calculations of Buchwald and coworkers in using their solution to examine
the role of the stress singularity at the edge of surfactant between thin fluid layers.
Without a general procedure for solving matrix Wiener–Hopf problems (see further
discussion on this point is section 3.1), an alternative strategy for the biharmonic
equation is to employ complex variable techniques, facilitated by the removal of one
wall (that is, the receding of one channel wall to infinity). Approximations are still
required using this approach, as presented by Moore, Buchwald, and Brewster [8] for
a Stokesian entry problem, in which the remaining wall translates, and by Kim, Choi,
and Jeong [9] for a model of the half-pitot tube, in which a shear flow is prevented
from generating any flux into the channel. The following study is both an application
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Fig. 1.1. Geometry of problem.

of a new Padé approximant procedure [10] and the first solution of this classic problem
by the Wiener–Hopf technique.

Consider the unidirectional flow between rigid walls at y = −1, h, where (x, y)
are Cartesian coordinates, at which the velocity u has the prescribed values u−1, uh,
respectively (see Figure 1.1). The flow u∞(y)x̂, where x̂ is the unit vector in the x
direction, is given by

(1.1) u∞(y) = uh

(
y + 1

h + 1

)
+ u−1

(
h− y

h + 1

)
− G

2μ
(h− y)(y + 1).

Here the first two terms of the velocity profiles may be identified as a shear flow with
different wall speeds and the last term with a flow driven by a pressure gradient G
that accounts for the prescribed flux being different from the flux generated by the
shear flow. It is readily observed from (1.1) that only the weighted average of the wall
velocities has a role in the study of the disturbance flow generated by the introduction
of a fixed plate at y = 0, x < 0. With uh + u−1h = −U(h + 1), this occurs when the
flow speed at y = 0, namely

(1.2) u∞(0) =
uh + u−1h

h + 1
− Gh

2μ
= −

(
U +

Gh

2μ

)
,

is nonzero, or when there is a flux “mismatch” in (−1, 0) between the upstream flow
and that in the downstream channel.

In terms of pressure gradients G−, G+ at infinity (as shown in Figure 1.1), the
downstream (x → −∞) unidirectional velocity profiles are given by

u∞
− (y) = −u−1y +

G−
2μ

y(y + 1), −1 < y < 0,(1.3)

u∞
+ (y) = uh

y

h
− G+

2μ
y(h− y), 0 < y < h,(1.4)

whose total flux must equal that in the upstream (x → ∞) unidirectional velocity
profile (1.1). Thus

(1.5)
(G+ −G)h3 + (G− −G)

6μ
= (h + 1)

(
U +

Gh

2μ

)
,
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which is to be viewed as determining the upstream pressure gradient G in terms of
G+, G−, U . The flux “mismatch,” ΔQ, is now given by

(1.6) ΔQ =

∫ 0

−1

[
u∞(y) − u∞

− (y)
]
dy = −1

2

(
U +

Gh

2μ

)
+

(G− −G)

12μ
.

Evidently the sets of values of the wall velocities and pressure gradients in (1.1),
(1.3) for which the presence of the semi-infinite barrier creates a disturbance flow
form a two-parameter family described by nonzero values of the vector [u∞(0),ΔQ],
with only its direction being significant. Thus any two flows of type (1.1), (1.3) that
yield parallel values of this vector, determined by (1.2), (1.6), may be regarded as
equivalent because their suitably weighted difference must be a unidirectional flow
with zero velocity at y = 0.

For example, the two flows determined by G− = 0 = G and either u−1 = 0, uh =
V ∗ or u−1 = −V, uh = 0 both yield values of [u∞(0),ΔQ] that are parallel to (2, 1)
because, if V ∗ = −V h, they differ by the shear flow u = V y. The former is the finite
version of the two-dimensional model of a half-pitot tube studied by Kim, Choi, and
Jeong [9], whose motivation was the experimental work reported by Stanton, Marshall,
and Bryant [11] and Taylor [12]. The latter is the finite version of a Stokesian entry
problem, with no pressure gradient far down the semi-infinite channel, studied by
Moore, Buchwald, and Brewster [8]. The condition of no pressure gradient upstream
ensures, for any uh, that their flow is recovered in the limit h → ∞.

In the case of symmetric geometry, h = 1 and evidently (1.2)–(1.6) show that
flows with u−1 = −U = uh, G+ = G− are equivalent to the even case:

(1.7) ΔQ = 0, u∞
− (−y) = u∞

+ (y), 0 < y < 1,

which consists downstream of a shear and pressure-driven flow combination, while
flows with u−1 = 0 = uh, G+ = −G− are equivalent to the odd case:

(1.8) G = 0, u∞(0) = 0, ΔQ =
G−
12μ

, u∞
− (−y) = −u∞

+ (y), 0 < y < 1,

which is a pressure-driven flow out of one channel into the other.
In view of the above discussion, a generic study which covers all possible flow

cases in fact need only consider forcing due solely to the moving walls and various
combinations of downstream pressure gradients. The two cases are therefore the
following:

1. U �= 0 and G+ = 0 = G−. Therefore, [u∞(0),ΔQ] is parallel to [2(h2 − h +
1), h(h− 1)], so its direction depends on h only.

2. U = 0 and various flux ratios. Hence

(1.9)
ΔQ

u∞(0)
=

3h + 1 −G−/G

6h
,

which displays a two-parameter dependence.
As an illustration of the use of MATLAB, a computational solution of this channel
flow, using approximate boundary conditions, was given by Fehribach and Davis [13].

2. The Wiener–Hopf problem. The equations of steady creeping flow, the
Stokes equations [14], are

(2.1) ∇p = μ∇2v, ∇ · v = 0,
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where v is the velocity, p the dynamic pressure, and μ the viscosity. For two-
dimensional flow referred to Cartesian coordinates (x, y), equations (2.1) allow a
stream function ψ(x, y) to be introduced such that

(2.2) v =
∂ψ

∂y
x̂ − ∂ψ

∂x
ŷ, ∇4ψ = 0.

Consider the flow between rigid walls at y = −1, h and a semi-infinite fixed barrier
at y = 0, x < 0 at which the stream function has distinct constant values and its y-
derivative has the prescribed values u−1 = −U , uh = −U , 0, respectively (see Figure
1.1). Then v ∼ u∞(y)x̂ as x → ∞ and v ∼ u∞

± (y)x̂ as x → −∞, where u∞(y)
and u∞

± (y) are given by (1.1) and (1.3), (1.4), with the upper “plus” (lower “minus”)
sign referring to the upper (lower) duct region. It is advantageous to choose for the
disturbance field not v−u∞(y)x̂ but rather v−u∞

± (y)x̂. Thus, on setting, as in (2.2),

(2.3) v − u∞
± (y)x̂ =

∂ψ̄

∂y
x̂ − ∂ψ̄

∂x
ŷ,

{
0 < y < h,
−1 < y < 0,

the disturbance stream function ψ̄(x, y) is biharmonic, satisfies the homogeneous con-
ditions

(2.4) ψ̄ = 0 =
∂ψ̄

∂y
at y = −1, h, −∞ < x < ∞, and y = 0, x < 0,

is continuous along with its y-derivative on y = 0, x > 0, and, according to (1.3),
(1.4), and (2.3), is generated by the discontinuities

(2.5)

[
∂2ψ̄

∂y2

]0+

0−
= U

h + 1

h
+

G+h + G−
2μ

,

[
∂3ψ̄

∂y3

]0+

0−
= −G+ −G−

μ

on y = 0, x > 0. If, for convenience, these discontinuities tend to zero as x → ∞, i.e.,
(2.5) is modified to

(2.6)

[
∂2ψ̄

∂y2

]0+

0−
=

[
U
h + 1

h
+

G+h + G−
2μ

]
e−εx,

[
∂3ψ̄

∂y3

]0+

0−
= −G+ −G−

μ
e−εx

on y = 0, x > 0, where ε is a small positive real constant, then the disturbance stream
function ψ̄ and its derivatives tend to zero as x → ±∞ as a consequence of the choice
(2.3), which further implies that the unknown functions s(x), t(x), defined by

(2.7)

[
∂2ψ̄

∂y2

]0+

0−
= s(x),

[
∂3ψ̄

∂y3

]0+

0−
= t(x), y = 0, x < 0,

also decay to zero as x → −∞. On completion of the solution procedure ε will be set
to zero.

In terms of the Fourier transform

(2.8) Ψ(k, y) =

∫ ∞

−∞
ψ̄(x, y)eikxdx,

the boundary conditions (2.4), (2.6), (2.7) yield

(2.9) Ψ(k,−1) = 0 = Ψy(k,−1), Ψ(k, h) = 0 = Ψy(k, h),
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(2.10) Ψ(k, 0) =

∫ ∞

0

ψ̄(x, 0)eikxdx = Ψ+(k, 0), Ψy(k, 0) = Ψ+
y (k, 0),

[Ψyy(k, y)]
0+
0− =

∫ 0

−∞
s(x)eikxdx +

[
U
h + 1

h
+

G+h + G−
2μ

] ∫ ∞

0

eix(k+iε)dx(2.11)

= S−(k) +

[
U
h + 1

h
+

G+h + G−
2μ

]
i

k + iε
,

[Ψyyy(k, y)]
0+
0− =

∫ 0

−∞
t(x)eikxdx− G+ −G−

μ

∫ ∞

0

eix(k+iε)dx(2.12)

= T−(k) − G+ −G−
μ

i

k + iε
.

Convergence of the above Fourier full- and half-range transforms is ensured if k lies
in an infinite strip containing the real line, here and henceforth referred to as D,
with its width limited from below by the singularity at k = −iε. Evidently (see [1])
the unknown pairs of (half-range transform) functions Ψ+(k, 0), Ψ+

y (k, 0) and S−(k),
T−(k) are regular in the region above and including D, denoted D+, and the region
below and including D, denoted D−, respectively. Thus, D+ ∩ D− ≡ D.

In view of the behavior of ψ̄ at x = ±∞, the Fourier transform (2.8) can be
applied to the biharmonic equation, whence

(2.13)

(
d2

dy2
− k2

)2

Ψ = 0

and hence a general solution which satisfies (2.9) is

Ψ(k, y) = A(k)k(1 + y) sinh[k(1 + y)](2.14)

+ B(k){k(1 + y) cosh[k(1 + y)] − sinh[k(1 + y)]}, −1 < y < 0,

Ψ(k, y) = C(k)k(h− y) sinh[k(h− y)](2.15)

+ D(k){k(h− y) cosh[k(h− y)] − sinh[k(h− y)]}, 0 < y < h.

Application of the conditions (2.10) now yields(
A(k)
B(k)

)
=

1

sinh2 k − k2
(2.16)

×
(

k sinh k −(k cosh k − sinh k)
−(k cosh k + sinh k) k sinh k

)(
Ψ+(k, 0)

k−1Ψ+
y (k, 0)

)
,

(
C(k)
D(k)

)
=

1

sinh2 kh− k2h2
(2.17)

×
(

kh sinh kh kh cosh kh− sinh kh
−(kh cosh kh + sinh kh) −kh sinh kh

)(
Ψ+(k, 0)

k−1Ψ+
y (k, 0)

)
.

As Ψ+(k, y) and Ψ+
y (k, y) are continuous across the line y = 0, the discontinuities

(2.11), (2.12) may be regarded as conditions on Ψyy − k2Ψ and its derivative, which
facilitates the deduction of the following matrix Wiener–Hopf equation:
(2.18)(

T−(k)
−S−(k)

)
− i

k + iε

(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
= K(k)

(
Ψ+(k, 0)
Ψ+

y (k, 0)

)
,
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where

K(k) =

(
k2[f(k) + g(k)] −ke(k)

−ke(k) g(k) − f(k)

)
,(2.19)

e(k) = 2k

(
k2

sinh2 k − k2
− k2h2

sinh2 kh− k2h2

)
,(2.20)

f(k) = 2k

(
k

sinh2 k − k2
+

kh

sinh2 kh− k2h2

)
,(2.21)

g(k) = k

[
sinh 2k

sinh2 k − k2
+

sinh 2kh

sinh2 kh− k2h2

]
.(2.22)

It can easily be seen that K(k) possesses the properties

(2.23) K(k) = K(−k) = [K(k)]T ,

where T denotes the transpose, a fact that is exploited subsequently. The determinant
of the kernel is

(2.24) |K(k)| =
4k4[sinh2 k(h + 1) − k2(h + 1)2]

(sinh2 kh− k2h2)(sinh2 k − k2)
.

The forcing term in (2.18) displays the two independent flows identified above. In
the case of symmetric geometry, h = 1 implies that e(k) is identically zero, and hence
the Wiener–Hopf equation (2.18) separates into disjoint scalar equations of standard
type. Then, in the even case, G+ ≡ G− implies that T− and Ψ+ vanish, while, in the
odd case, U ≡ 0 ≡ G+ + G− implies that S− and Ψ+

y vanish, as expected.
It remains to consider the pressure singularity at the barrier edge. In the neigh-

borhood of r = 0, using the obvious polar coordinate representation,

ψ̄ ∼ 21/2r3/2 cos
1

2
θ[Λ1 sin θ + Λ2(1 + cos θ)](2.25)

= Λ1(r + x)1/2y + Λ2(r + x)3/2,(2.26)

after rejecting the more singular terms of order r1/2. Thus

(2.27) ψ̄(x, 0) ∼ Λ2(2x)3/2,
∂ψ̄

∂y
(x, 0) ∼ Λ1(2x)1/2 as x → 0+,

and by writing, for x < 0,

(2.28) ψ̄ ∼ Λ1y|y|
(r − x)1/2

+
Λ2|y|3

(r − x)3/2
;

it follows that

(2.29)
∂2ψ̄

∂y2
(x, 0) ∼ ±Λ1

(
2

−x

)1/2

,
∂3ψ̄

∂y3
(x, 0) ∼ ±Λ2

6

(−2x)3/2

as x → 0− on the upper/lower side of the barrier. The latter result indicates that
the pressure jump across the barrier behaves as 6μΛ2(2/(−x))1/2 as the edge is ap-
proached. This agrees with the asymptotic form
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(2.30) μ−1p̄ ∼ 21/2r−1/2

(
−Λ1 cos

1

2
θ + 3Λ2 sin

1

2
θ

)
,

obtained from (2.25) by noting that (2.1) and (2.2) ensure that p̄ and μ∇2ψ̄ are
conjugate functions. The rejection of order r1/2 terms in (2.25) thus minimizes the
order of this edge singularity in the pressure, as, for example, in the calculations for
the spherical cap [15] and the hollow sphere with caps removed [16]. A bounded
pressure jump occurs if Λ2 = 0, which may be achieved by a suitable choice of the
direction of the forcing vector in (2.18). Such a procedure is unnecessary for the
geometrically symmetric even case since then Λ2 must be zero for ψ̄ to be an odd
function of θ in (2.25). The Wiener–Hopf calculation [2, 3, 5] generates an entire
function that is identically zero, from which it is deduced that Λ1 = 2/

√
π.

3. Factorization of the duct kernel.

3.1. Introduction and overview of the factorization procedure. In the
previous section the matrix Wiener–Hopf equation was derived, in which the kernel,
K(k), is written in (2.19). The aim of this section is to factorize K(k) into a product
of two matrices

(3.1) K(k) = K−(k)K+(k),

one containing those singularities of K(k) lying in the lower half-plane, referred to as
K+(k), and K−(k), which is analytic in the lower half-plane D− and hence contains
the singularities of K(k) lying above the strip D. Note that [K+(k)]−1 and [K−(k)]−1

are also analytic in the regions D+ and D−, respectively. Further, it is necessary for
successful completion of the Wiener–Hopf procedure that K±(k) are at worst of al-
gebraic growth (see Noble [1]). Unfortunately, although matrix kernel factorization
with the requisite growth behavior has been proven to be possible for a wide class of
kernels (Gohberg and Krein [17]), to which the kernel (2.19) belongs, no constructive
method has been found to complete this in general. There are classes of matrices
for which product factorization can be achieved explicitly, the most important of
which are those amenable to Hurd’s method [18] and Khrapkov–Daniele commutative
matrices [19, 20]. Details of these, and an extensive bibliography on matrix kernel
factorization, can be found in [21, 10, 22]. The present problem yields a kernel which,
to the authors’ knowledge, falls outside of the classes permitting an exact factoriza-
tion, and so an approximate decomposition will be performed here. The approach
follows that developed recently by one of the authors and has been successfully ap-
plied to problems in elasticity [21, 22] and acoustics [10]. Essentially, the procedure
is to rearrange the kernel into an appropriate form, namely, to resemble a Khrapkov
(commutative) matrix, and then to replace a scalar component of it by a function
which approximates it accurately in the strip of analyticity D. The new approximate
kernel is able to be factorized exactly (into an explicit noncommutative decomposi-
tion), and, in the previous cases cited above, strong numerical evidence was offered
for convergence of the resulting approximate factors to the exact ones as the scalar
approximator is increased in accuracy. Further, the convergence to the solution has
been validated for one particular matrix kernel [23], where an exact noncommutative
factorization can be derived by an alternative procedure.

The kernel in (2.19) appears, on face value, significantly simpler to factorize than
those in the previously mentioned articles [21, 10], because it contains only simple
pole singularities rather than branch cuts. Therefore, it could perhaps be considered
as more appropriately factorized by pole removal methods, such as those suggested
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by Idemen [24], Noble [1], Rawlins [25], Abrahams [26], and Abrahams and Wickham
[27], reducing the problem down to an infinite algebraic system of equations which
needs to be solved numerically. However, there are three reasons why this approach
is not useful here. The first is a technical point; it can be shown that the procedure
for removing singularities from the kernel, and thereby obtaining the kernel factors
K±(k), is not nearly as straightforward as for those kernels considered by the afore-
mentioned authors. Second, the pole locations are complex and are found from the
zeros of the determinant of the kernel K(k) in (2.24), i.e., the roots of the transcen-
dental Papkovich–Fadle dispersion relation. This creates further complications in the
factorization scheme. The third, and most compelling, reason for avoiding this ap-
proach is that we would like a final solution which will offer uniformly accurate results
for all values of upper duct height h, from h = 1 to h = ∞, a range that does not
imply any loss of generality. Clearly, as h → ∞, more and more of the Papkovich–
Fadle poles need to be included to maintain constant accuracy (more and more move
down close to the strip D), and so the corresponding algebraic system to solve has to
be truncated after a greater and greater number of terms. Thus, we cannot expect
to recover the h → ∞ case, that is, when the upper duct top wall is removed, so we
could not employ such a factorization in a solution which we would hope to compare
with other results for this particular flow domain (Moore, Buchwald, and Brewster
[8], Kim, Choi, and Jeong [9], etc.)

In view of the above arguments we aim to employ the Wiener–Hopf approximant
matrix (WHAM) method [10] discussed previously and to do this in such a way
that maintains the requisite accuracy over all values of h ≥ 1. As mentioned in the
introduction, when h = 1, then the kernel should reduce to two scalar functions,
reflecting the symmetric and antisymmetric motions clearly evident to exist from
the symmetry in duct geometry. When h = ∞, the upper duct wall is removed, and
although others have tackled this by alternative approximate/numerical means, it can,
in fact, be shown that the kernel actually reduces to a commutative (Khrapkov) form
[23]. Therefore, an exact factorization is again achievable. Hence, if the approximate
factorization, to be achieved here by the WHAM method, is organized so that in both
limits, h → 1 and h → ∞, it reduces to the exact kernel decomposition, then very
good accuracy can be expected for all intermediate h values. This is what will be
done below. However, as a complication to this factorization, we must take account
of two unfortunate features of the kernel. The first is the fact that the elements
of K(k), and in particular e(k), f(k) shown in (2.20)–(2.22), differ by a factor of
k near the origin. This is identical to that found for the kernel in [21] and can be
handled by a suitable rearrangement of terms. The second is due to the fact that
K(k) must be written as a product of three matrices such that the inner matrix L(k)
(see (3.6) below) has a determinant with behavior proportional to k−2 as k → 0. This
is a removable singularity because it is pre- and postmultiplied by matrices which
each have determinant k. Unfortunately, the inner matrix is the one we initially
factorize, and so additional arrangement is necessary to take this small-k behavior
into account. With these points of explanation in mind, the factorization procedure
is now elucidated.

3.2. Conditioning of the matrix kernel.

3.2.1. Behavior for large |k|. The matrix K(k) is characterized by its elements
e(k), f(k), g(k), given in (2.20)–(2.22), and in particular by their behavior for large
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and small k. For large k it is easily deduced that

e(k) ∼ 8k3(e−2|k| − h2e−2|k|h), |k| → ∞, k ∈ D,(3.2)

f(k) ∼ 8k2(e−2|k| + he−2|k|h), |k| → ∞, k ∈ D,(3.3)

g(k) ∼ 4|k|, |k| → ∞, k ∈ D.(3.4)

It is appropriate to arrange the kernel to be diagonally dominant as k → ∞ in D, and
so simple algebra gives

(3.5) K(k) =
1

2

(
0 −k
1 0

)(
1 −1
i i

)
L(k)

(
i 1
i −1

)(
k 0
0 1

)
,

where L(k) may be written in the form

(3.6) L(k) = g(k)I +

(
0 f(k) + ie(k)

f(k) − ie(k) 0

)
,

with I the identity.

3.2.2. Behavior of the kernel near the origin. Near the origin the scalar
functions e(k), f(k), g(k) take the form

e(k) ∼ 6

(
h2 − 1

h2

)
1

k
,(3.7)

f(k) ∼ 6

(
h3 + 1

h3

)
1

k2
,(3.8)

g(k) ∼ 6

(
h3 + 1

h3

)
1

k2
,(3.9)

to leading order, and it is easy to show that at the next order

(3.10) g(k) − f(k) ∼ 4

(
h + 1

h

)
,

so that we may write

(3.11) g(k) − f(k) ∼ β2k2f(k),

in which

(3.12) β2 =
2

3

h2

h2 − h + 1
.

Note that β2 tends to its minimum value 2/3 as h → 1 or h → ∞ and takes the
maximum value 8/9. This small variation in value over all h is important to ensure
an eventually uniform factorization accuracy. We may also express e(k) in terms of
f(k) near the origin:

(3.13) e(k) ∼ δkf(k),

where the parameter δ takes the value

(3.14) δ =
h(h− 1)

h2 − h + 1
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and is monotonic in h going from δ = 0 at h = 1 to δ = 1 at h = ∞. Again, this small
variation will prove helpful to the factorization.

We now arrange L(k) to appear in Khrapkov form, namely, that the square of the
second matrix term should be a scalar polynomial in k times the identity. We can do
this by removing the factor

√
f2(k) + e2(k) from this matrix in (3.6). However, as

(3.15) f(k) ± ie(k) ∼ f(k)(1 ± iδk), k → 0,

it is more effective [21] to write L(k) as

(3.16) L(k) = g(k)I +

√
f2(k) + e2(k)

1 + δ2k2
J(k),

(3.17) J(k) =

(
0 d(k)(1 + iδk)

d−1(k)(1 − iδk) 0

)
,

in which

(3.18) d(k) =

√(
f(k) + ie(k)

f(k) − ie(k)

)(
1 − iδk

1 + iδk

)
.

It is a simple matter to show that we can choose a branch of d(k) which is regular
in D, takes the value unity at k = 0, and, in view of the relative magnitudes of e(k),
f(k) as |k| → ∞ in D, (3.2), (3.3), also tends to unity at infinity in the strip. If we
had omitted the factor (1 − iδk)/(1 + iδk) in d(k), then arg(d(k)) would not have
tended to zero as k → ±∞.

The matrix L(k) now appears to be in Khrapkov form, in view of the property

(3.19) J2(k) = Δ2(k)I,

where Δ2(k) is the polynomial

(3.20) Δ2(k) = 1 + δ2k2.

However, J(k) is not entire, as required for a Khrapkov factorization, but contains
d(k), which has infinite sequences of finite branch cuts at rotationally symmetric
locations in the upper and lower half-planes. These will have to be considered once
the partial Khrapkov decomposition is complete but, for the present, will be ignored.

3.3. Partial decomposition of K(k).

3.3.1. Limiting values of L(k). The first point to remark here is that (3.19)
is arranged in appropriate form for the limiting values of h. As h → 1, expression
(2.20) reveals immediately that e(k) = 0 and similarly, from (3.14), δ = 0. Hence
L(k) reduces to

(3.21) L(k) = g(k)I + f(k)

(
0 1
1 0

)
, h = 1.

By adding and subtracting rows this can be trivially reduced to two scalar decompo-
sition problems, but this will also be decomposed exactly in the following Khrapkov
factorization as d(k) ≡ 1. Similarly, as h → ∞, δ → 1 and

(3.22) e(k) = kf(k) =
2k3

sinh2 k − k2
, h → ∞.
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Hence in this limit d(k) = 1 also and

(3.23) L(k) = g(k)I + f(k)

(
0 1 + ik

1 − ik 0

)
, h = ∞,

which also permits an exact factorization [23] and justifies the particular form of d(k)
chosen in (3.18).

3.3.2. Introduction of resolvent matrix. Before performing the Khrapkov
factorization on L(k), there is a problem, alluded to above, which must be resolved
first. Note that as k → 0, from (3.6), (3.11), and (3.13),

(3.24) L(k) ∼ f(k)

(
1 + β2k2 1 + iδk
1 − iδk 1 + β2k2

)

so that

(3.25) |L(k)| ∼
[
6
h3 + 1

h3k2

]2

(2β2 − δ2)k2 ∼ 12(h + 1)4

h4k2
+ O(1).

This is clearly singular at the origin and therefore violates the original assumption
of regularity in D. Of course, this is because we are working with L(k) and not the
original kernel K(k). To overcome this “removable singularity” in the determinant it
is convenient to introduce the new matrix, R(k), called the resolvent, where

(3.26) R−1(k) = (1 + β2k2)I − J(k),

with J(k) as in (3.17), which commutes with L(k). The combined matrix

(3.27) T(k) = R−1(k)L(k)

has determinant value

(3.28)

[
2(h + 1)3

h(h2 − h + 1)

]2

at k = 0, and so T(k) may now be factorized instead of L(k). We will later have to
deal with factorizing R(k), but this will not prove to be a problem.

3.3.3. Partial decomposition of matrix T(k). We have seen above that
R−1(k) and L(k) commute, and indeed any matrices of the form αI + βJ(k) will
commute with any other. Therefore, we may pose (see [19]) the product factors of
T(k) in the form

(3.29) T±(k) = r±(k)

(
cosh[Δ(k)θ±(k)]I +

1

Δ(k)
sinh[Δ(k)θ±(k)]J(k)

)
,

where r±(k), θ±(k) are scalar functions of k with the analyticity property indicated
by their superscript. The function Δ(k), given by (3.20), generates no branch cuts
because (3.29) contains only even powers of Δ(k). The scalar factors r±(k), θ±(k)
are deduced by equating

(3.30) T(k) = T+(k)T−(k),
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which yields

r+(k)r−(k) cosh[Δ(k)(θ+(k) + θ−(k))] = g(1 + β2k2) − Δ
√

f2 + e2,(3.31)

r+(k)r−(k) sinh[Δ(k)(θ+(k) + θ−(k))] =
√
f2 + e2(1 + β2k2) − Δg.(3.32)

These may be separated to give

[r+(k)r−(k)]2 = (g2 − f2 − e2)
[
(2β2 − δ2) + β4k2

]
k2,(3.33)

tanh[Δ(k)(θ+(k) + θ−(k))] =

√
f2 + e2(1 + β2k2) − Δg

g(1 + β2k2) − Δ
√

f2 + e2
,(3.34)

and by the usual sum-split formula (e.g., equation (1.17) of Noble [1])

θ+(k) =
1

2πi

∫ ∞

−∞

1

Δ(ζ)
tanh−1

{√
f2(ζ) + e2(ζ)(1 + β2ζ2) − Δ(ζ)g(ζ)

g(ζ)(1 + β2ζ2) − Δ(ζ)
√

f2(ζ) + e2(ζ)

}
dζ

ζ − k

=
k

πi

∫ ∞

0

1

Δ(ζ)
tanh−1

{√
f2(ζ) + e2(ζ)(1 + β2ζ2) − Δ(ζ)g(ζ)

g(ζ)(1 + β2ζ2) − Δ(ζ)
√

f2(ζ) + e2(ζ)

}
dζ

ζ2 − k2
,(3.35)

valid for �(k) > 0. Note that the last result is true because the integrand is even in
ζ, and this further implies that

(3.36) θ−(k) = θ+(−k), k ∈ D−.

Actually, the full range integral could be taken along any path in D parallel to the real
axis, and so if θ+(k) is required for real k, then the first integral would be indented
below (above for θ−(k)) this point. We can confirm that the integral representations
in (3.35) exist by examining the integrand as ζ → 0 and ζ → ∞ (it is finite valued
at all other points in D). From (3.7)–(3.9) a little algebra reveals that the right-
hand side of (3.34) is O(k2), k → 0, and similarly (3.2)–(3.4) suggests that (3.34) is
O(k−1), k → ∞. Hence, the first integrand in (3.35) is bounded in D and decays
proportionally to O(ζ−3) as |ζ| → ∞ in the strip. Therefore, this representation is
ideal for computing θ±(k) and can be directly coded for numerical evaluation.

This procedure has to be modified for [r+(k)r−(k)]2 in (3.33) whose right-hand
side tends to [2(h + 1)3/h(h2 − h + 1)]2 as k → 0 and ∼ 16β4k6 as |k| → ∞, k ∈ D.
The latter behavior is not suitable for direct application of the product decomposition
formula (Noble [1, equation (1.20)]), which requires a function that tends to the value
unity at infinity. This is simply circumvented by applying a suitable divisor to (3.33),
employing the standard factorization formula, and then decomposing the divisor into
upper- and lower-half functions by inspection. This yields

r+(k) =

[
31/2

(
h + 1

h

)
− 2ik

]1/2 [
31/4

(
h + 1

h

)
(1 + i) − 2ik

]1/2

×
[
31/4

(
h + 1

h

)
(1 − i) − 2ik

]1/2
h

[3(h2 − h + 1)]1/2

× exp

{
1

4πi

∫ ∞

−∞
log

[
[g2(ζ) − f2(ζ) − e2(ζ)]ζ2

12
(
h+1
h

)4
+ 16ζ4

]
dζ

ζ − k

}
(3.37)
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for �(k) > 0, and indentation of the contour below k is taken if k is real. Note that
the exponential function in this expression may be reexpressed as

(3.38) exp

{
k

2πi

∫ ∞

0

log

[
[g2(ζ) − f2(ζ) − e2(ζ)]ζ2

12
(
h+1
h

)4
+ 16ζ4)

]
dζ

ζ2 − k2

}
,

where convergence of this and the above integral are now ensured. The function r−(k),
analytic in the lower half-plane, is again, due to the symmetry, simply obtained from

(3.39) r−(−k) = r+(k), k ∈ D+.

Hence T±(k) have been determined (see (3.29), (3.35), (3.37)) in a form which can be
evaluated directly, and these are analytic in their indicated half-planes, D±, except
for the singularities occurring in K(k) (due to d(k)) which have yet to be resolved.

3.3.4. Partial decomposition of the resolvent matrix. Having introduced
the inverse of R(k) above in order to improve the convergence of L(k), we now need
to factorize it directly. The form of R(k) has been chosen to enable us to do this
easily. First, R−1(k) may, by inspection, be written in the form

(3.40)
1

2
[(1 + ik

√
2β2 − δ2)I − J(k)][(1 − ik

√
2β2 − δ2)I − J(k)],

where both matrices are entire save for the finite cuts in the scalar function d(k)
contained within J(k). The first matrix has determinant

(3.41) −2β2k(k − iγ),

where

(3.42) γ =

√
2β2 − δ2

β2
=

√
3

2

(
h + 1

h

)
,

and the second has determinant

(3.43) −2β2k(k + iγ).

Hence we may write

(3.44) R(k) = 2R+(k)R−(k),

where

(3.45) R±(k) =
1

2β2k(k ± iγ)

[
(1 ∓ ikβ2γ)I + J(k)

]
are the partial decomposition matrices; i.e., they are analytic in their indicated half-
planes except for poles at k = 0 and the finite branch cuts in d(k). Note that R±(k)
commute with each other and with T±(k), while the pole at k = iγ lies in the upper
half-plane. Hence, this completes the partial product factorization of K(k), and from
(3.5), (3.27), (3.30), (3.44), we obtain

(3.46) K(k) = Q−(k)Q+(k),
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where

Q−(k) =

(
−ik −ik
1 −1

)
R−(k)T−(k),(3.47)

Q+(k) = T+(k)R+(k)

(
ik 1
ik −1

)
.(3.48)

Note that Q±(k) are free of a pole singularity at k = 0 even though R±(k) contain this
singularity (verified in section 3.4.3). All that remains is to remove (approximately)
the residual singularities appearing in J(k).

3.4. Approximate factorization.

3.4.1. Padé approximation and partial decomposition of approximate
kernel. There is no exact procedure known for eliminating the finite branch cuts
in d(k) from the upper (lower) half-planes of the matrix factor Q+(k) (Q−(k)). To
obtain an approximate factorization we replace the original matrix K(k) by a new
one, KN (k), where

(3.49) KN (k) =
1

2

(
0 −k
1 0

)(
1 −1
i i

)
LN (k)

(
i 1
i −1

)(
k 0
0 1

)
,

(3.50) LN (k) = g(k)I +

√
f2(k) + e2(k)

1 + δ2k2
JN (k),

and JN (k) is as given in (3.17) but with a modified scalar d(k) → dN (k), i.e.,

(3.51) JN (k) =

(
0 dN (k)(1 + iδk)

d−1
N (k)(1 − iδk) 0

)
.

We follow the procedure outlined in articles [21, 10, 23, 22] closely and so do not give
the arguments here, contained in those papers, for the convergence of approximate
factors to the exact ones. It will suffice to later verify the results obtained herein
by numerical experiment. The scalar dN (k) is any function which approximates d(k)
accurately in the strip D, and for efficacy of the following method it is most convenient
to use a rational function approximation

(3.52) dN (k) =
PN (k)

QN (k)
,

where PN (k), QN (k) are polynomial functions of order N . Note that the order of each
polynomial is the same, as we require that dN (k) → 1 as |k| → ∞. There is a variety of
ways of generating the coefficients of these polynomials, and the simplest and perhaps
most justifiable (in terms of its analyticity properties) is to use Padé approximants
[28]. As a note of caution, we must check that dN (k) does not introduce spurious
singularities into the strip of analyticity D; otherwise we will produce an inaccurate
factorization. One-point Padé approximants, if they exist, are determined uniquely
from the Taylor series expansion of the original function at any point of regularity. If
we work with the origin, then the (one-point) Padé approximant of d(k) is found by
solving

(3.53)
∞∑
i=0

eik
i − PN (k)

QN (k)
= O(k2N+1),
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where
∑∞

i=0 eik
i is the Maclaurin expansion of d(k). This provides ample accuracy for

our purposes (see section 5), due to the rapid decay at large real k that is otherwise
present in the Fourier transform inversion formulas (4.7) and (4.8).

Note that the approximation of just d(k) ensures that the scalar Khrapkov factors
(3.35), (3.37) remain the same, etc., and so a partial decomposition of KN (k) is simply

(3.54) KN (k) = Q−
N (k)Q+

N (k),

in which Q±
N (k) are given by (3.47), (3.48), with R±(k) replaced by R±

N (k) and T±(k)
replaced by T±

N (k), for which the subscript N denotes that JN (k), given by (3.51),
replaces J(k) everywhere. Thus, the factorization of KN (k) has been accomplished
apart from sequences of poles, arising from the zeros and poles of dN (k) occurring in
both half-planes exterior to D. If we can remove these singularities, then an explicit
exact factorization of KN (k) will have been achieved, which approximates the actual
factors K±(k) in their regions of analyticity.

3.4.2. Removal of pole singularities. The exact factorization of KN (k), given
by (3.49), may be written as

(3.55) KN (k) = K−
N (k)K+

N (k),

(3.56) K−
N (k) = Q−

N (k)M(k), K+
N (k) = M−1(k)Q+

N (k),

in which M(k) must be a meromorphic matrix which has to be chosen to eliminate the
poles of Q−

N (k) in the lower half-plane and the poles of Q+
N (k) in D+. We can pose

a (nonunique) ansatz for M(k) after noting certain symmetry properties of Q±
N (k).

First, from (3.18),

(3.57) d(−k) = 1/d(k),

which must be reflected in the similar approximant behavior:

(3.58) dN (−k) = 1/dN (k).

Thus,

(3.59) JN (−k) = [JN (k)]T ,

where the superscript denotes the transpose, and so by inspection of (3.45),

(3.60) R+
N (−k) = [R−

N (k)]T .

Similarly, from (3.36), (3.39) and the obvious evenness of Δ(k) in (3.20), changing k
to −k in (3.29) reveals

(3.61) T+
N (−k) = [T−

N (k)]T .

Hence we find (see (3.48)) that

(3.62) Q+
N (−k) = [T−

N (k)]T [R−
N (k)]T

(
−ik −ik
1 −1

)T

= [Q−
N (k)]T

and deduce that the second equation in (3.56) gives

(3.63) K+
N (−k) = M−1(−k)[Q−

N (k)]T .
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Symmetry properties dictate, by comparison with the first equation of (3.56), that we
can construct a suitably scaled M(k) so that

(3.64) M−1(−k) = [M(k)]T .

After this is achieved, it suffices to eliminate poles of K−
N (k) in the lower half-plane.

Now suppose that dN (k) has Np poles in the upper half-plane at k = ipn, n =
1, 2, . . . , Np (ipn �∈ D−), and Nq poles in the region below the strip at k = −iqn,
n = 1, 2, . . . , Nq. That is, QN (k) in (3.52) has zeros at k = ipn,−iqn. As has already
been stated, there are, in total,

(3.65) Np + Nq = N

simple poles in the complex plane, and, due to the symmetry (3.58), there are N
simple zeros of PN (k) at

(3.66) k = −ipn, n = 1, 2 . . . , Np; k = iqn, n = 1, 2 . . . , Nq,

in the lower and upper regions, respectively. Thus, dN (k) and its inverse may be
expressed as Mittag–Leffler expansions:

dN (k) = 1 +

Np∑
n=1

αn

pn + ik
+

Nq∑
n=1

βn

qn − ik
,(3.67)

1

dN (k)
= 1 +

Np∑
n=1

αn

pn − ik
+

Nq∑
n=1

βn

qn + ik
,(3.68)

where both tend to unity at infinity by virtue of dN (k) being a one-point Padé ap-
proximant of d(k) in (3.18). The coefficients αn, βn are easily determined from the
coefficients of the polynomials PN (k), QN (k), the numerator and denominator, re-
spectively, of dN (k). By inspection of the location of dN (k) in Q−

N (k), the ansatz for
M(k) is now posed (cf. those offered in [10, 23]) as

M(k)(3.69)

=

⎛
⎝ 1√

2
+
∑Np

n=1
An

pn+ik +
∑Nq

n=1
Bn

qn−ik −
(

1√
2

+
∑Np

n=1
Cn

pn+ik +
∑Nq

n=1
Dn

qn−ik

)
(

1√
2

+
∑Np

n=1
Cn

pn−ik +
∑Nq

n=1
Dn

qn+ik

)
1√
2

+
∑Np

n=1
An

pn−ik +
∑Nq

n=1
Bn

qn+ik

⎞
⎠ ,

where An, Bn, Cn, Dn are as yet undetermined constants. This form encapsulates
the zeros and singularities of dN (k) and is chosen to satisfy the symmetry relation
(3.64). However, the latter holds only if |M(k)| ≡ 1, whereas (3.69) gives

|M(k)| =

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn + ik
+

Nq∑
n=1

B̄n

qn − ik

⎞
⎠

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn − ik
+

Nq∑
n=1

Bn

qn + ik

⎞
⎠

+

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn − ik
+

Nq∑
n=1

Dn

qn + ik

⎞
⎠

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn + ik
+

Nq∑
n=1

Dn

qn − ik

⎞
⎠ .(3.70)

The four sets of poles can be eliminated by setting the coefficients to satisfy the two
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systems of equations

Am

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn + pm
+

Nq∑
n=1

Bn

qn − pm

⎞
⎠

+ Cm

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn + pm
+

Nq∑
n=1

Dn

qn − pm

⎞
⎠ = 0 (1 ≤ m ≤ Np),(3.71)

Bm

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn − qm
+

Nq∑
n=1

Bn

qn + qm

⎞
⎠

+ Dm

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn − qm
+

Nq∑
n=1

Dn

qn + qm

⎞
⎠ = 0 (1 ≤ m ≤ Nq).(3.72)

Then |M(k)| is entire and takes the value unity at infinity. Hence Liouville’s theorem
implies that the determinant is indeed |M(k)| = 1 everywhere, as required.

By premultiplying M(k) by R−(k)T−(k) and eliminating poles in the lower half-
plane, conditions relating these coefficients can be found. From (3.29) and (3.45) we
know that [

(1 + ikβ2γ)I + JN (k)
]

(3.73)

×
[
cosh[Δ(k)θ−(k)]I +

1

Δ(k)
sinh[Δ(k)θ−(k)]JN (k)

]
M(k)

must be analytic in D−, and so from (3.51) we wish to remove poles in the lower
half-plane from

(3.74)

(
a−(k) b−(k)(1 + iδk)dN (k)

b−(k)(1 − iδk)/dN (k) a−(k)

)
M(k),

where

a±(k) = (1 ∓ ikβ2γ) cosh[Δ(k)θ±(k)] + Δ(k) sinh[Δ(k)θ±(k)],(3.75)

b±(k) = cosh[Δ(k)θ±(k)] +
(1 ∓ ikβ2γ)

Δ(k)
sinh[Δ(k)θ±(k)](3.76)

are scalar functions analytic in the indicated regions. Note that

(3.77) a−(k) = a+(−k), b−(k) = b+(−k).

The top-left element of the matrix in (3.74) is, by employing (3.67),

a−(k)

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn + ik
+

Nq∑
n=1

Bn

qn − ik

⎞
⎠ + b−(k)(1 + iδk)(3.78)

×

⎛
⎝1 +

Np∑
n=1

αn

pn + ik
+

Nq∑
n=1

βn

qn − ik

⎞
⎠

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn − ik
+

Nq∑
n=1

Dn

qn + ik

⎞
⎠ ,

which appears to contain simple poles at k = −ipn, n = 1, . . . , Np, k = −iqn, n =
1, . . . , Nq, in the lower half-plane unless they are suppressed. However, there are in
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fact no poles at k = −ipn because the sum of these terms multiplies dN (k), which we
know is zero at these points. Thus, setting the expression in (3.78) to remain finite
at the remaining singularity locations k = −iqn gives the relation, after use of (3.77),

(3.79)

a+(iqm)Bm + b+(iqm)βm(1 + δqm)

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn − qm
+

Nq∑
n=1

Dn

qn + qm

⎞
⎠ = 0,

1 ≤ m ≤ Nq.

Similarly the bottom-left element of (3.74) contains no poles in the lower half-plane
if and only if

(3.80)

a+(ipm)Cm + b+(ipm)αm(1 − δpm)

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn + pm
+

Nq∑
n=1

Bn

qn − pm

⎞
⎠ = 0,

1 ≤ m ≤ Np.

Likewise, suppression of the lower half-plane poles in the second column of (3.74)
yields

(3.81)

a+(iqm)Dm − b+(iqm)βm(1 + δqm)

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn − qm
+

Nq∑
n=1

Bn

qn + qm

⎞
⎠ = 0,

1 ≤ m ≤ Nq,

(3.82)

a+(ipm)Am − b+(ipm)αm(1 − δpm)

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn + pm
+

Nq∑
n=1

Dn

qn − pm

⎞
⎠ = 0,

1 ≤ m ≤ Np.

By inspection, (3.79), (3.81) imply (3.72) and similarly (3.80), (3.82) imply (3.71).
Therefore, not only do (3.79)–(3.82) enforce K−

N (k) to be analytic in D− as required,
but relations (3.56), (3.62)–(3.64) reveal that they are also sufficient to ensure that
K+

N (k) is free of singularities in the half-plane D+, as are the inverses [K±
N (k)]−1 in

their indicated half-planes D±.
Thus (3.79)–(3.82) constitute a linear system of 2N equations for the 2N un-

knowns Am, Bm, Cn, Dn and are easily solved to determine their values. Note that it
may transpire that 1 + δqm or 1 − δpm is zero for particular choices of m, h, N , etc.,
in which case (Bm, Dm) or (Am, Cm) would vanish. However, this does not present
any difficulty (cf. equation (80) in [10]), and no cases have been encountered in which
the system for Am–Dm is singular.

3.4.3. Approximate noncommutative factorization. The explicit approx-
imate factorization of K(k) is complete, having obtained an exact noncommutative
matrix product decomposition of KN (k). The factors K±

N (k) are constructed from
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(3.56), with Q±
N (k) given from (3.51), (3.47), (3.48), (3.45), and (3.29). The mero-

morphic matrix M(k) takes the explicit form (3.69), in which the coefficients satisfy
algebraic equations (3.79)–(3.82). As N increases it is expected that K±

N (k) will con-
verge rapidly to the exact factors K±(k), and this will be borne out by numerical
results given in section 5. All that remains here is to verify that the apparent pole at
k = 0 in R±(k) is removed and to give the behavior of K±

N (k) for large |k| in D±.
As k → 0, we know that dN (k) → 1 by virtue of the function d(k) in (3.18), and

hence R±
N (k) behaves as, from (3.45), (3.51),

(3.83) R±
N (k) =

∓i

2β2kγ

(
1 1
1 1

)
+ O(1).

Therefore,

(3.84)

(
−ik −ik
1 −1

)
R−

N (k) ∼ 1

β2γ

(
1 1
0 0

)
+ O(1), k → 0.

Now, T±
N (k), from their definitions, are bounded at the origin, and, by inspection, so

is M(k) in (3.69). Hence, from (3.56) and (3.84) we can deduce that

(3.85) K−
N (k) = O(1), k → 0.

Similarly, from above,

(3.86) R+
N (k)

(
ik 1
ik −1

)
= O(1), k → 0,

and so K+
N (0) is bounded too.

As |k| tends to infinity it is a straightforward matter to deduce the asymptotic
behavior of the product factors. First, by inspection of (3.45),

(3.87) R±
N (k) ∼ i

2β2k

(
∓β2γ +δ
−δ ∓β2γ

)
,

in view of the fact that we defined dN (k) in JN (k) to behave as

(3.88) dN (k) → 1, |k| → ∞.

Second, the asymptotic form of the Krapkhov decomposition elements r±(k), θ±(k)
can be deduced from their integral definitions written in (3.37), (3.39), and (3.35),
(3.36), respectively. The latter identities are easily shown to give

(3.89) θ±(k) = ±ε/k + O(k−2), |k| → ∞, k ∈ D±,

where

(3.90) ε =
i

π

∫ ∞

0

1

Δ(ζ)
tanh−1

{√
f2(ζ) + e2(ζ)(1 + β2ζ2) − Δ(ζ)g(ζ)

g(ζ)(1 + β2ζ2) − Δ(ζ)
√

f2(ζ) + e2(ζ)

}
dζ,

and for r±(k) the integral in the exponent of (3.37) is also O(k−1) for large |k|. Hence
by inspection we find that

(3.91) r±(k) = 2β(∓ik)3/2 + O(k1/2), |k| → ∞, k ∈ D±,
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and so the asymptotic form of T±
N (k), (3.29), is

(3.92) T±
N (k) ∼ 2β(∓ik)3/2

(
cosh(εδ) ±i sinh(εδ)

∓i sinh(εδ) cosh(εδ)

)
.

Therefore, Q±
N (k) in (3.47), (3.48) can be estimated. Finally, the meromorphic matrix

(3.69) has the large |k| form

(3.93) M(k) =
1√
2

(
1 −1
1 1

)
.

Thus the asymptotic growth of K±
N (k) in (3.56) is found to be

K−
N (k) ∼ − (ik)1/2√

2β

(
−ik −ik
1 −1

)(
β2γ δ

−δ β2γ

)

×
(

cosh(εδ) −i sinh(εδ)
+i sinh(εδ) cosh(εδ)

)(
1 −1
1 1

)
,(3.94)

K+
N (k) ∼ − (−ik)1/2√

2β

(
1 1
−1 1

)(
cosh(εδ) i sinh(εδ)

−i sinh(εδ) cosh(εδ)

)

×
(

β2γ −δ
δ β2γ

)(
ik 1
ik −1

)
.(3.95)

The kernel decomposition is now complete.

4. Solution of the Wiener–Hopf equation. Having obtained an approximate
factorization of K(k), it is now a straightforward matter to complete the solution of
the Wiener–Hopf equation (2.18). Dropping the subscript N in the factorization
(3.55) for brevity, the Wiener–Hopf equation can be recast into the form

[K−(k)]−1

(
T−(k)
−S−(k)

)
− i

k + iε

{
[K−(k)]−1 − [K−(−iε)]−1

}
(4.1)

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
= E(k) = K+(k)

(
Ψ+(k, 0)
Ψ+

y (k, 0)

)

+
i

k + iε
[K−(−iε)]−1

(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
,

where k ∈ D. The left-hand side is analytic in D−, whereas the right-hand side
is regular in D+. Thus the equation has been arranged so that the two sides offer
analytic continuation into the whole complex k-plane which must therefore be equal
to an entire function, denoted E(k), say. To determine E(k) we must examine the
growth at infinity of both sides of (4.1) in their respective half-planes of analyticity.
To do this we require the large k behavior of T−(k), S−(k), Ψ+(k), Ψ+

y (k), which
relate directly to the values of the untransformed physical variables near the tip of
the splitter plate. For example, a function which behaves like xn, x → 0+, has a
half-range (0 to ∞) Fourier transform which decays like O(k−n−1), k → ∞, in the
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upper half-plane (see equation (1.74) of [1]). Hence from (2.27) and (2.29) we deduce,
respectively, that

(4.2) Ψ+(k, 0) = O(k−5/2), Ψ+
y (k, 0) = O(k−3/2)

as |k| → ∞, k ∈ D+ and hence

(4.3)

(
T−(k)
−S−(k)

)
− i

k

(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
=

(
O(k1/2)
O(k−1/2)

)

as |k| → ∞, k ∈ D−. These are used, together with the asymptotic forms (3.94),
(3.95), to reveal that both elements of the left-hand side of (4.1) decay as O(k−1)
in the lower half-plane, and similarly the right-hand side has the form O(k−1) as
|k| → ∞ in the upper half-plane. Hence, E(k) is an entire function which decays to
zero at infinity and so, by Liouville’s theorem, is identically zero. Thus, the solution
of the Wiener–Hopf equation is(

Ψ+(k, 0)
Ψ+

y (k, 0)

)
= − i

k + iε
[K+(k)]−1[K−(−iε)]−1(4.4)

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−

G+h + G−

])

or, equivalently,(
T−(k)
−S−(k)

)
=

i

k + iε

{
I − K−(k)[K−(−iε)]−1

}
(4.5)

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
.

From this we can directly deduce the coefficients A(k)–D(k), via (2.16), (2.17), and
hence establish Ψ(k, y) in −1 < y < h, from (2.14), (2.15). Finally, on setting the
convergence factor ε to zero in (4.4), the disturbance stream function is

(4.6) ψ̄ =
1

2π

∫ ∞

−∞
Ψ(k, y)e−ikxdk,

where the integral path runs along the real line indented above the origin, and

Ψ(k, y) =
−i

sinh2 k − k2

(
(1 + y) sinh[k(1 + y)]

(1 + y) cosh[k(1 + y)] − k−1 sinh[k(1 + y)]

)T

(4.7)

×
(

k sinh k −(cosh k − k−1 sinh k)
−(k cosh k + sinh k) sinh k

)
[K+(k)]−1[K−(0)]−1

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
in −1 < y < 0, whereas in 0 < y < h

Ψ(k, y) =
−i

sinh2 kh− k2h2

(
(h− y) sinh[k(h− y)]

(h− y) cosh[k(h− y)] − k−1 sinh[k(h− y)]

)T

(4.8)

×
(

kh sinh kh h cosh kh− k−1 sinh kh
−(kh cosh kh + sinh kh) −h sinh kh

)
[K+(k)]−1[K−(0)]−1

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1460 D. ABRAHAMS, A. DAVIS, AND S. LLEWELLYN SMITH

It is a straightforward matter to verify that this solution satisfies the biharmonic
equation and the boundary and jump conditions (2.4), (2.5), (2.7). From this the
downstream velocity field is determined from (2.3).

Formulas (4.7), (4.8) are suitable for evaluating ψ̄, given by (4.6), in the x < 0
channels by completing the contour in the upper half-plane. Consistent with (2.3),
there is no contribution from the pole at k = 0 to (4.6), which consists of Papkovich–
Fadle strip eigenfunctions, generated by residues at the zeros of sinh2 k − k2 or
sinh2 kh − k2h2. These infinite sums describe how, in each channel, the flow differs
from its far downstream profile u∞

± .
However, the evaluation of ψ̄ in the upstream (x > 0) channel is achieved by com-

pleting the contour in the lower half-plane. When [K+(k)]−1 is replaced, according
to (3.1), by adjK(k)K−(k)/|K(k)|, the substitution of (2.19), (2.24) into (4.7) yields

Ψ(k, y)(4.9)

=
i

k2[sinh2 k(h + 1) − k2(h + 1)2]

(
(1 + y) sinh[k(1 + y)]

(1 + y) cosh[k(1 + y)] − k−1 sinh[k(1 + y)]

)T

× V(k)

(
1 0
0 −k

)
K−(k)[K−(0)]−1

(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
,

in which the elements of V(k) are concisely defined by

V11 + V22 = kh(h + 1) sinh k, V11 − V22 = − sinh kh sinh k(h + 1),

V21 + V12 = k−1 sinh kh sinh k(h + 1) − kh(h + 1) cosh k,

V21 − V12 = sinh kh cosh k(h + 1) − h sinh k.

The residue at the pole k = 0 yields the upstream behavior (x → ∞)

ψ̄ ∼ h

( (
1+y
h+1

)2 (
1+y
h+1

)3
)(

−h
2 1 − h

2
h
6 (h + 3) −1

)
(4.10)

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])

in −1 < y < 0, which, when substituted into (2.3), gives the net upstream flow form.
That is, the y-derivative of (4.10) is verified, with use of (1.5), to equal u∞(y)−u∞

− (y),
given by (1.1), (1.3). A similar calculation, based on (4.8), verifies that u∞(y)−u∞

+ (y)
is obtained in (0, h). Identical series of Papkovich–Fadle eigenfunctions arise in (4.6)
from residues associated with the zeros of [sinh2 k(h + 1) − k2(h + 1)2]. This infinite
sum describes how the flow differs from its far upstream profile u∞ in −1 < y < h.

5. Numerical computation. The calculations are performed with MATLAB,
except for the evaluation of the Padé approximants d2m by means of Maple. The
resulting fractions are then converted to floating points (16 digit accuracy) and re-
turned to MATLAB. Accuracy is low unless N = 2M with M even to take account of
symmetries about both axes. Maximum accuracy occurs at about N = 2, M = 16 and
could be increased by means of variable precision arithmetic. The poles ipm,−iqm
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Fig. 5.1. Stream function plots for the downstream shear case with U = 1 for (left) h = 1.5 and
(right) h = 3 (note the different y-scale). The difference in stream function values (volume flux)
between contours is 0.2.

and coefficients αm, βm in (3.67) are then readily determined, followed by JN (k) and
R+

N (k). Evaluation of r+
N (k), θ+

N (k) yields T+
N (k) and hence Q+

N (k), given by (3.48).
The scalar Wiener–Hopf decomposition of r and θ is achieved by using standard
MATLAB numerical integration. The default relative accuracy of 10−6 easily suffices
because higher accuracy is actually obtained, as in many contour integrals of analytic
functions. Finally, K+

N (k) is constructed. The stream function, ψ(x, y), is evaluated
in either of the x < 0 channels as a sum of the residues of (4.7) or (4.8) at the re-
spective first 50 poles in the upper half-plane. Note that knowledge of the two sets
of residues allows the inverse Fourier transform (4.6) to be computed for any x(< 0)
at essentially zero marginal cost. The companion matrix function K−

N (k), needed in
(4.9) for x > 0, is constructed similarly.

The numerical evaluation of the approximation [K+
N (k)]−1 to [K+(k)]−1 in (4.7),

(4.8) depends on the accurate determination of the coefficients a+(ipm), . . . in (3.79)–
(3.82). These are given by (3.75), (3.76), in which Δ(k) appears analytically, but
branch cuts may arise from the presence θ±(k) in the sinh functions. By factoring
Δ(ζ) from the numerator of the fraction in (3.35), it is evident that the branch cuts
created by the approximate factorization arise solely from the square root in the
definition (3.16) of L(k).

Very high accuracy would require variable precision arithmetic and a large number
of terms in the residue sum, especially when computing the stream function values
near the entrance to the downstream channels.

Figure 5.1 displays streamlines for h = 1.5 and h = 3 in the downstream shear
case (G+ = 0 = G−). For the same values of h, Figure 5.2 shows streamlines when
the walls are stationary (U = 0) with respective flux ratios Λ = 1,−0.5,−2, which
typify the physically distinct ranges, Λ > 0, −1 < Λ < 0, Λ < −1. The curves have
an imperceptible defect at x = 0; the values of ψ(0, y) computed using (4.7) and (4.9)
are not exactly the same in the Padé approximant technique but would be identical
for the exact matrix K. This discrepancy provides an estimate of the error, which is
found to decrease with N until at least N = 12, which is the value used in the figures.
While the qualitative behavior in the pressure-driven case depends only on Λ, plots
require a normalization of G− and G+: for convenience, G− = 12μ was taken.
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Fig. 5.2. Stream function plots for the pressure-driven case. Left-hand panels: h = 1.5; right-
hand panels: h = 3. Top row: Λ = 1, middle row: Λ = −0.5, bottom row: Λ = −2. The difference
in stream function values (volume flux) between contours is 0.2. The jagged contour for h = 3,
Λ = −0.5 is a contouring artifact.

6. Conclusion. The Padé approximant technique for matrix Wiener–Hopf equa-
tions yields accurate numerical results for a classic Stokes flow problem for all channel
width ratios. The theory is complicated by the need for successive modifications L,
T of the kernel and M, M−1 of the matrix factors Q−, Q+ in order to establish the
required analyticity of K− and K+. The numerical implementation is not difficult
conceptually but demands the usual careful attention to the analyticity properties of
the functions involved. The technique provides a constructive scheme to obtain the
physical solution without the major difficulties encountered in matching the three sets
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of biorthogonal Papkovich–Fadle eigenfunctions.
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