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An efficient, flexible and accurate numerical scheme for treating scattering problems
involving clamped finite elastic plates is developed. Such problems are of particular
interest in structural acoustics and have relevance to scattering by panels in underwater
acoustics and aerodynamic noise. The scheme is applied to a single plate in a rigid baffle
and also to a periodic array of elastic plates.

Considerable effort has been expended in the past to develop asymptotic methods for
treating these problems in various limits such as ‘heavy’ or ‘light’ fluid loading or for
wide strips. To validate the numerical scheme and also to demonstrate the ranges of
validity of these approximations, comparisons between numerical and asymptotic solu-
tions are made. The asymptotic methods are developed in some detail and some useful
approximate formulae are identified.

1. Introduction

In structural acoustics vibrational energy is often carried by flexural plate waves which
are only weakly coupled to the fluid in the absence of defects. It is only the presence
of inhomogeneities and material discontinuities in the plate that allows significant ra-
diation of energy into the fluid. Thus it is important to understand the mechanisms
involved, as well as the relative influences of structural inertia, stiffness and fluid inertia,
pressure and compressibility for specific model problems and ranges of material param-
eters. Considerable efforts have been spent over several decades analysing scattering
by model defects; see for instance [1,2]. In various limits, the resulting solutions often
demonstrate interesting and physically important effects, such as beam formation and
resonance phenomena.

There are several problems that allow an exact solution. For instance scattering by
isolated point defects, such as ribs, multiple ribs, cracked plates, and so on lead to exact
solutions in terms of Fourier integrals; see for instance [3,4]. Another revealing class of
problems is that concerned with joints between semi-infinite plates of differing material
properties; these illustrate the importance of the edge conditions at the joint on the
scattered field and the effect of the joint itself on the scattered field. A large variety of
such problems, treated using the Wiener—Hopf technique, appears within the literature
[5-7]. These model structural attachments, reinforcing ribs and baffled plates.

In reality of course, one is often interested in finite elastic plates and in the interaction
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between the edges and perhaps also with other discontinuities that may be close to the
edge. There are a variety of asymptotic approaches taking advantage of heavy or light
fluid loading limits [8,9]. These isolate resonant phenomena in both heavy and light
fluid loading limits and the beaming associated with leaky waves, amongst other effects.
Similar approaches will be employed later in the text.

There are also numerical approaches using the modified Wiener—-Hopf technique as
in [10]; these are perhaps less flexible than the numerical method described later. In
addition there are papers dealing with the situation when the plate is simply supported,
that is, when n = 7" = 0 at the plate edge (1 is the plate displacement). In this case a
simple modal expansion can be taken. However the simply supported case is arguably
not the correct physical edge condition in many situations, as discussed by [11], and a
more realistic situation is that of clamped edge conditions for which the simple modal
method does not work. Analytical studies such as that of [5] show that the effect of the
edge condition upon the scattered acoustic response is often significant, and thus it is
important to model the edge behaviour accurately.

Our aim in this paper is to introduce and develop a fast, efficient, flexible and accurate
numerical scheme to deal with finite elastic plate problems. To provide confidence in
the numerical scheme, and to encourage further use in three-dimensional and other more
complicated geometries, we validate the model in situations where one might expect errors
to occur. That is, we concentrate upon providing asymptotic solutions near resonances.
Other regimes where analytic inroads are possible, such as heavy and light fluid loading,
are also investigated to show how the method performs. The method will work over a
wide range of frequencies, for the clamped edge conditions, and also allows compliant
loading effects to be analysed. It will be particularly useful in the regimes not amenable
to asymptotic analyses and convenient for quite general incident fields. In general the
scheme is also applicable to other geometries and boundary conditions [12], and to related
problems, such as those incorporating fluid flow. In this paper we aim to verify the
numerical scheme thoroughly against existing analytic work; this in turn highlights the
range of applicability of the asymptotic methods, and some useful approximate solutions.

In view of the large amount of pre-existing analytic work, some of which has been
mentioned above, we take maximal advantage of previous results by using integral equa-
tion and Green’s function approaches. There are some interesting facets to the resulting
numerical approach, such as explicitly building in the correct edge behaviour, and reduc-
ing the kernel of the integral equation to a form suitable for rapid numerical evaluation.
The approach is detailed for a finite elastic plate in a rigid baffle. The conditions at
the joint between the baffle and plate will be taken to be clamped edge conditions, that
is, both the plate displacement n and its gradient n’ are zero across the joint. We then
examine the approach in several differing limits which provides considerable confidence
in its accuracy. To demonstrate the utility of this approach we also briefly consider a
periodic array of elastic plates. In addition reciprocity and power balance results are also
utilised as consistency checks on the numerics.

We consider time harmonic vibrations of frequency w and all physical variables are
assumed to have an et dependence. This is considered understood and is henceforth
suppressed. Two dimensional problems are considered with an inviscid, compressible
fluid lying in x3 > 0 and —o0 < 1 < 00. The fluid pressure p(z1, x3) satisfies

(V2 + k3)p(z1,23) = f(21,23), (1.1)

where f(z1,z3) corresponds to a distribution of fluid sources, and ky, the acoustic
wavenumber, is related to the sound speed ¢ via ko = w/cp. In what follows the source
distribution is zero except for Green’s functions. The displacement in the z3-direction
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within the fluid, n(z1,x3), is related to the fluid pressure via

ap(l']_ ’ :L'B)
6.1‘3
The plane z3 = 0 is taken in section 2 to consist of a thin elastic plate in the finite

region |z1| < a and of a rigid plate elsewhere. When treating elastic plates the classical
thin plate equation

pwin(ay, x3) = : (1.2)
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is adopted [2]. The plate is assumed to separate fluid in the region z3 > 0 from a vacuum
in x3 < 0. The geometry is depicted in figure 1. Apart from a membrane, this is the
simplest model for a realistic wavebearing structure. Crucially it neglects transverse
shear and rotary inertia effects, leading to a loss of accuracy for frequencies near to and
above the coincidence frequency, at which the in vacuo and fluid wavespeeds are equal.
Nomnetheless the thin plate equation is widely used and often gives useful insights into
the phenomena associated with scattering by elastic plates. Plane wave incidence, source
irradiation and local excitation forcing can all be considered. The second case corresponds
to a point source located in the fluid. In the last case, either a term Fyo((z1 — L)/a) or
God'((z1 — L) /a) is required on the right hand side of (1.3), corresponding to a line force

or line moment respectively offset a distance L (|L| < a) from the centre of the plate.
The parameters B and m are the bending stiffness and mass per unit area of the
plate respectively. Here we model mechanical attenuation by taking B to contain a small
imaginary part and set B = Bie ', with B; real. In practice viscoelastic materials may
be used to dissipate energy carried by plate waves and thus reduce the radiated sound:
[13] gives a typical value of § as 0.2. These parameters are related to the properties
of the elastic plate via By = Eh3/12(1 — v?) and m = psh, with E, h, v, and ps
the Young’s modulus, plate thickness, Poisson ratio and mass density of the elastic
material respectively. In order to minimise the number of parameters that occur later,
we introduce the in vacuo flexural wavenumber k, = (w?m/ B)%. Thus incorporating a
small loss factor ¢ will lead to attenuation of the plate waves. Following [8] we introduce
the non-dimensional quantities M and e. The ‘Mach’ number M is defined to be the ratio
of the fluid sound speed to that of the in vacuo plate waves, M = ko/|kp|. A frequency-

—mw’n(z1,0) = —p(z1,0) (1.3)

independent measure of fluid loading is provided by the parameter ¢ = (Byp?/m?c2)z
For later convenience, we also define the complex quantity e, = (Bp?/m3c2)z = e 10/2¢,
In essence, when the system is lossless, there are three parameters that can be varied:
M, € and kga, the last of these being the ratio of a typical lengthscale associated with
the fluid disturbance to a typical lengthscale associated with the finite defect. Typically
€ is small; for example € =~ 0.134 for steel plates in water, while M, which is frequency
dependent, can range through all values. The fluid-loading will, as in [8], be termed ‘light’
when M ~ O(1) but is not in the immediate neighbourhood of M = 1, and ‘heavy’ when
M < e. In both cases € is taken to be small, i.e. ¢ < 1. To model coated plates the
parameter 0 may be varied.

In addition various edge conditions may be adopted at the end points of the elastic
plates. In this paper we will take the clamped conditions 7(+a,0) = 1'(£a,0) = 0 to
hold: these are the more relevant conditions for the attachment of a plate to a rigid
baffle. However, other edge conditions such as a free joint (”(£a,0) = """(£a,0) = 0)
could be taken, which would alter some of the numerical aspects. The edge conditions
in conjunction with the plate equations give the local behaviour of n(z1,0) as x; — *a.
In the integral equation formulation adopted within the text the plate displacement,
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n(x1,0), is unknown along the finite region |z;| < a. In related problems in elasticity
and scalar wave diffraction, the local plate edge behaviour of the analogous functions is
typically O(a:l:a:l)% or O(a:l:a:l)’% as r1 — Fa. There are many examples of numerical
approaches using Chebyshev polynomials or collocation methods in water waves and
acoustics, for instance [14], and in elasticity, for instance [15,16]. A novel aspect of the
elastic plate problems is that the edge conditions in the clamped case force the local
behaviour to be O(a? — z%)? as z; — =a, which therefore requires a slightly different
approach to be developed. It is envisaged that developing an accurate and fast numerical
scheme will encourage further numerical studies in this area.

2. Formulation

The starting point is Green’s theorem for two independent states p(x) and p*(x) in a
volume V' bounded by a surface S:

/ [(V?p+ kip)p™ — (V2p* + kgp*)pldV = /S (p*pi — pp’)n;dS, (2.1)
1%

where n; is the outward-pointing normal to the surface. The starred field will be taken
to be the Green’s state

V2% (x;q) + k§p© (x;q) = —5(x — q), (2.2)

where x = (x1,x3) is the variable in the gradient operator, and q = (g1, ¢3) is the position
of the forcing function. A number of different conditions may be taken for p©(x;q) or
n%(x;q) on z3 = 0, depending on the precise problem. The unstarred field in (2.1) will
be taken to be the scattered component of the total pressure. For the half-space 3 > 0,
Green’s formula reduces to

p*‘(a) = pw2/[nG(w1,0;q)p“(w1,0) =™ (a1,0)p% (1,05 @)] dz1, (2.3)
s
where S is simply the z3-axis. An integral equation for the displacement on the plate
may be obtained by operating on (2.3) appropriately.
For the elastic plate set in a rigid baffle, we take the Green’s state with 7% (x;q) = 0
on x3 = 0. In this case, the appropriate Green’s function is simply

pG(X;q) — ﬁ/ ,yi |:ei’70\$3*qa| +eiV0($3+qa) eik($1*q1)dk, (2.4)
Cc )0

which also has a representation in terms of Hankel functions. The function vy = (kg—k2)%
has positive imaginary part (it is not yet necessary to specify its branch cuts beyond this;
see however Appendix A). The boundary condition on z3 = 0 for |z1| > a is n(x1,0) = 0,
so the scattered pressure becomes

P(q) = —pu / 7% (1, 0)p (21, 0; @) da. (2.5)

The plate displacement n°¢(x1,0) is unknown in (2.5) and our aim is to identify this
function in the most efficient manner. Once this is achieved (2.5) gives the scattered
field everywhere. Using the expression D, (corresponding to the plate equation) defined
by

D, = Baf;l — mw?, (2.6)
where the notation 0,, = 0/0g¢; has been adopted, and applying the operator [1 +
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(w?p)~1Dy0y,] to (2.5) on g3 = 0, leads to
P*(q1,0) + Dyn**(q1,0)

= [ @ 0 + Dy (e, 050:,0) oy (2.7)
B ¢ sc /oo |: 4 mw2 iw2p ik —

=_— z1,0)dzy x Kt — — 20| eiklm—a) gk 2.8
2m _a’7 (w1, 0) dzy e B B (2.8)

for |¢1] < a. The integral on the right-hand side of (2.8) is formally divergent, but can
be interpreted in the context of generalised functions. One could also arrive at (2.8)
by applying transforms directly to the governing equation and boundary conditions.
However in some circumstances, for instance cavity-backed finite elastic plates set into
a baffle, the integral equation approach is more versatile: the Green’s function contains
a large amount of information regarding the problem geometry. With this in mind we
have pursued the integral equation approach in more detail.

Two types of forcing are considered here: incident plane waves and local plate exci-
tation. In the case of wave incidence, the left-hand side in the above equation is equal
o —(p™ + Dyn'™). For line forcing at the centre of the plate the left-hand side becomes

00(q1/a), and for line moment forcing it becomes G0'(¢1/a). For plane wave incidence,
the incident pressure wave is taken as

P (qu, q3) = AelFart08s) 4 eilkar—00s)] (2.9)
where
k= ko sin 0@' (210)

is the incoming wavenumber. This corresponds to the field produced by a pressure wave
incident upon a defect-free rigid plate and its reflection from the plate. The corresponding
displacement field therefore vanishes on the elastic plate, leading to

~[p™ + D™ (q1,0) = —2AelFn (2.11)

for g1 < a.

Each applied incident field is split into two subproblems, one that is even in x and one
that is odd in . The unknown displacement along the plate is expanded as a series in a set
of functions that automatically satisfy the clamped conditions 7(+a,0) = n'(+a,0) = 0.
The appropriate expression, in which the factor 4a*/B is inserted merely for convenience,
is

1 (21,0) = B Z I (1 fa) + a9 (21 /a)), (2.12)

where the expansion functions ¢n> in the even case, are

D) () = cos[ncos™t (1 — z%)?) for n odd,
n &)= (1 —2?)cos[(n — 1) cos™! (1 — 2?)?] for n even.

in 0 <z < 1. For negative x these are extended as even functions of z. In the odd case

(2.13)

0 (z) = { isin[(n + 1) cos™t (1 — 22)? for n odd, (2.14)

i(1 —2?)sin[ncos™! (1 —2?)?]  for n even.

in 0 < z < 1. These are extended as odd functions of x for negative . The terms
for n odd in these expansion functions are effectively Chebyshev polynomials. Crucially,
they contain the correct edge behaviour in their argument and they are relatively easily
generalised to account for more general edge conditions such as those suggested by [11].
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The even terms in n are also similar to Chebyshev polynomials; their inclusion is vital as
they contain the edge behaviour O(1—22)3 as x — +1 that is omitted from the odd terms.
This combination of expansion functions that contain the edge behaviour explicitly and
are related to Chebyshev polynomials leads to very rapid numerical convergence. The
expansion functions chosen here form a complete set (see Appendix B) and are designed
to solve elastic plate problems involving the clamped edge conditions.

The integral equation (2.8) is split into even and odd subproblems. The even subprob-
lem is solved by multiplying (2.8) by 1/17(5) (¢1/a) and integrating from —a to a, as well as
expanding the scattered displacement on the plate. For an incoming wave of the form
(2.11), this leads to

—7rA/ cos(kagq) ) (q1) dg; = ia / / / i (@) v (z1) %
n=1

i(aky)%e.
ako|(ako)? — 12]3
The procedure for the odd subproblem is identical. The odd and even subproblems
are completely separate. An alternative approach might be to substitute the expansion
(2.12) directly into the plate equation, but one then has to incorporate the pressure
term correctly, which is most directly achieved using transforms. In many circumstances
the integral equation approach, although apparently unwieldy, incorporates a Green’s
function for the model geometry thereby building in a large amount of subsidiary details.

The square root in the integral has the same branch cut as 7 previously. For centred
line force excitation, only the even expansion functions are required and the left-hand side
becomes wFy/2. For centred line moment excitation, only the odd expansion functions
are required, and the left hand side is just —mic,,,Go where ¢,;, = m when m is even and
m + 1 when m is odd. One advantage of the present approach is the simplicity with
which different incident fields or localised excitations are incorporated: they just alter
the left-hand side of (2.15) and its counterpart for the odd subproblem.

Integral equations involving square root singular edge behaviour can be solved using
expansion functions that lead naturally to Bessel functions. These arise from the inner
integrals with respect to z; and ¢; that can be done exactly [16,17]. The slowly conver-
gent portions of the remaining [-integral are evaluated explicitly, thus leading to a fast
numerical scheme. Adopting a similar approach here requires calculating triple integrals,
a somewhat inefficient and tedious numerical procedure. Hence an alternative approach
is adopted that utilises the properties of the dispersion relation, Fourier transforms and
generalised functions to simplify the integrals. We temporarily drop the superscript (e)
as similar calculations hold for the odd subproblem. To ease the notation we consider
each term in the square brackets in succession and evaluate the integral with respect to
l. For the first term, this integral is

xell(zi—a) [14 — (ak,)* — ] daydg,dl (2.15)

/ l4eil($1*lh) dl = 271—6(4) (351 — CZ1), (216)

that is the fourth derivative of the delta function. Hence the corresponding part of the
triple integral is simply

= 271'/ o (x1) Y (x1) day (2.17)

where we have integrated by parts twice and used the edge condition. This integral is



Scattering by finite elastic plates 7

very easy to calculate numerically. The second integral leads to

I = 27r/ Vo (21) P (1) day (2.18)

which is, if anything, even simpler. The third Fourier integral is

[es) 1 )
/ (l2 12)1 ell($1*£11) dl = 7TH0(1)(10|$1 _ Q1|), (219)
—oo (g — 2

where the Hankel function is determined by the branch cut that has been taken. Thus

1 1
I®) = / / HY (koale, — 1)t (@) n (1) day das. (2.20)
—1J-1

In addition, temporarily replacing |z1 — q1| by |1 — g1 + | (which will be required later),
this last integral may be rewritten as

2
16 = g/ [HY (koals + 1]) + HSY (koals — 1])] ds x

mn
0

2—s
<[ vml- e+ )t (221)
—2+s
For the [ = 0 case considered here, the two Hankel functions have the same argument.
Isolating the Hankel functions leads to a more efficient numerical procedure. All the
integrals have now been transformed to single or double integrals over finite ranges.
This procedure will work whenever the integrand has the factors k and (k2 — k2)z
corresponding to differentiation with respect to x or y in the boundary condition on the
plate. The former will naturally introduce delta functions and the latter will introduce
Hankel functions.
The governing equation (2.15) may be rewritten as an infinite set of linear equations

o0
b\ (ka) =Y K()al?, (2.22)
n=1
form =1,...,00, where the left-hand side terms, which depend on the incident wavenum-
ber, are given by
1
bsﬁ) (ka) = —7TA/ cos(kaql)gb?(ﬁ) (q1)dgy (2.23)
-1

for incident plane waves, by a similar integral for point irradiation, by wFy/2 for line
force and by —wic,, Gy for moment forcing. The right-hand side factors are given by

() = (o0 o)z _ 1akp) e o))
K% =LV — (akp YAl aky (2.24)
Truncating this set of equations, and its counterpart for the odd subproblem, at some
finite order N will give an approximate, but arbitrarily accurate (depending on the order
of the truncation) solution to the original problem. Noting the symmetry with respect to
m and n means that even for relatively large N, one need not evaluate an undue number
of the K,,,. Typically, even for rather large koa, we did not require N > 15.
Our primary objective is to identify the far-field behaviour of the scattered field. This
is obtained by expanding the double integral in (2.5) for large |q|. Taking the far-field
variable as

q = r(—sin ¢, cos ¢), (2.25)
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and using a steepest-descents approach gives

2
71'7°k0

pe(n) ~ )%G(qs)ei“w—%) (2.26)

for kor > 1. The far-field directivity G(¢) is given by

pw2 ¢ sc ikoz1 sin ¢
G(¢) = o n*(z,0)eoe day, (2.27)

—a

which reduces in the even subproblem to

. 6 oo 1
—Mec Z al®) / Y€ (z1) cos(akoz, sin @) dz; . (2.28)
~1

n=1

G(¢) =

koa

together with a similar expression for the odd subproblem (replacing the cosine with
a sine). The total directivity G(¢) the sum of the even and odd expressions. The

coeflicients a(ne) depend on the type of forcing adopted and are the solutions of (2.22).

3. Results

The primary applications of the approach taken above are to scattering problems in
underwater acoustics. As described in the introduction for lossless plates we have three
parameters at our disposal: ¢, M and kga. For steel plates immersed in water, ¢ = 0.134,
while for aluminium plates in water, € = 0.4. The Mach number M will take the values
0.8 and 1.5 in the figures. The remaining parameter koa is a ratio of the lengthscale of
the incident irradiating field to that of the finite plate; for the results presented here we
take koa between .01 and 20. The amplitude of the incoming plane wave, A, is taken to
be unity.

3.1. ‘Light’ fluid loading

In this section, we are interested in the limit M = O(1), but not very close to 1. The
fluid loading is hence light. For M > 1 we expect beam formation along the critical Mach
angles defined by ¢™ = £sin™! (M ~1). In this limit the elastic plate is excited by an
incident wave that generates flexural plate waves. If the fluid were absent, these would
propagate along the plate with the in vacuo wave speed associated with k,. Crucially
the effect of adding a small amount of fluid loading is to introduce a small imaginary
component to the wavenumber k,; thus the wave ‘leaks’ energy into the fluid. Moreover
this energy is directed along the Mach angles. The leaky waves generated by interaction
with the edge only attain their fully developed form when koa ~ O(1/€). Hence, provided
the plates are long enough, the dominant acoustic directivity is along the rays along the
Mach angles. When O(e) < M < 1, the plate waves are subsonic and beaming does not
occur. If M is very close to 1, or M = O(e), fluid loading effects are significant and the
asymptotic approaches used here are not valid.

It is perhaps worth noting that one can adopt the useful approximation of solving
the elastic plate problem in isolation from the fluid loading as in [18]. In terms of the

)

numerical procedure adopted here, this drops the term L(qfn from the kernel function
(2.24). The elastic plate solution is then used to drive the resulting fluid problem and
this leads to highly accurate results away from resonances. Indeed following the approach
of [9] allows analytical results to be found and these are now used to verify our numerical
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approach. Away from resonance we solve

84 sc )
6774 _ mw2nsc — _pzn; (31)
Ly

that is, for € < 1 and when fluid loading is insignificant, the coupling term to the fluid
pressure is dropped. For an incident plane wave the resulting plate deformation is

B

24 ” hk
n°¢(z1,0) = W e + (ka cos kyasin ka — k,asin k,a cos ka) %
k
— (ka cosh kpasin ka + kpa sinh k,a cos ka) %
+ (kacoskasink,a — kyasin ka cosk G)M
p b P kpaF (kpa)
i sin
+(kpasin ka cosh kya — ka cos ka sinh kpa)% (3.2)

This somewhat lengthy formula contains terms in the denominator that can, for some
values of k,a, be zero; this corresponds to a resonance. Resonance occurs at the zeros of
D(kpa) = cosh kyasin k,a + sinh kpa cos kpa (3.3)
and of
F(kpa) = sinh kpa cos kya — cosh kyasin kpa. (3.4)

Figure 2 shows the plate displacement, n*¢(z,0), for M = 1.5 and kpa = 10 for both
the numerical and analytical solutions; z = x/a in the figures. For ¢ = .134 the real part
is virtually indistinguishable from (3.2). For relatively large values of koa, such as 10,
one might expect that the numerical procedure would require many expansion functions
and become inefficient. However, the choice of expansion functions that has been made
here leads to an efficient procedure: for kga = 10 the truncation value N was perhaps
conservatively taken to be 10. The relative difference between the power calculated for
N =10 and N =15is 0.01%.

The truncation value N = 10 was used for all the calculations in §3. The far field
directivity |G(¢)|? for normal incidence is shown in figure 3 and demonstrates beaming
along the Mach angles shown by the straight lines in the figure. Note that the beams
are displaced slightly from the Mach angles due to the effect of the main lobe. The

directivity G(¢) driven by the in vacuo solution may be evaluated explicitly using (3.2)
and (2.27). For kpa > 1 this is

_ 2iec(kpa)® [ sin(koasin @)
koa koa sin ¢

B 1 sin(kpa + koasing)  sin(kpa + koasin ¢) (3.5)
2(coskpa + sinkpa) | kpa + koasin¢ kpa + koasin ¢ '

G(9) ~

For brevity we give only the expression for normal incidence (k = 0). For the parameters
taken in figure 3, this expression, with € = 0.134, is almost indistinguishable from the full
line curve. The first term is simply the well-known solution for a rigid plate with wave
forcing for n(z,0) along a finite region (that is ignoring the edges and the elasticity of the
plate). This generates the dominant lobe along ¢ = 0. The two smaller beams close to
the Mach angles are driven by the other terms and are generated by plate waves that are
driven by the wave interaction with the edges. There are other smaller terms that can be
incorporated; the resulting directivity for € < 1 is indistinguishable from that generated
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numerically. These formulae also hold for viscoelastic plates with similar accuracy: the
effect of introducing ¢ is to reduce 7 and the magnitude of the acoustic response, so in
some regards the extra damping induced is equivalent to increasing the fluid loading.
For non-normal incidence, one would expect a lobe driven by the plate in the absence of
edge effects together with two lobes due to the leaky waves. However the main lobe and
one of the leaky beams almost invariably interfere with each other tending to create a
single beam that is not predominantly in one or the other of the above directions. For
6; = w/12, the directivity is shown in figure 4 for M = 1.5,e¢ = 0.134, 6 = 0 together
with the directivity generated by the in vacuo solution. This can of course be checked
using a minor generalisation of (3.5).

The figures above have M > 1; in these cases the in vacuo results provide surprisingly
accurate results even for relatively large e. For M < 1 this is not the case, and the in
vacuo results are only accurate for € < 1. Figure 5 show the directivities for kpa =
10, M = 0.8 for §; = n/4, e = 0.134 and § = 0,0.2. The in vacuo case is also shown and
is given by a generalisation of (3.2). The main response is now along ¢ = —x/4. There
are several small peaks whose positions are picked out by the in vacuo solution, but the
magnitude of the peaks is not accurately found. The inaccuracy of the in vacuo solution
is to be expected as M decreases: the factor eckg /ko multiplies the fluid loading term
and for fixed ko, the effect of decreasing M is to increase k, and thus the magnitude of
the ekg /ko factor also increases. The picture for point source irradiation is very similar.

The values used in the figures in this section are not close to resonance. If, however, we
approach a resonance, near say koa = 8.2467, (3.2) needs to be corrected. As it happens,
resonance in this light loading limit is a relatively frequent occurrence. For instance, for
M = 1.5, there are 9 resonant frequencies in the range 0 < kpa < 21.

3.2. Asymptotic results for wide plates

One might naturally wonder how a numerical scheme such as the one proposed in this
paper fares near the resonance values that were explicitly avoided in the previous section.
Indeed this provides a reasonably good test of the proposed scheme. Thus the purpose of
this section is to derive the asymptotic acoustic response and plate displacement near to
resonance, and to compare these with the numerical results. In addition a useful analytic
approximation is derived.

We consider the useful asymptotic limit of a wide strip, for which the ratio of a typical
wavenumber to the width of the plate is large, i.e. kga > 1 for light fluid loading,
and Ka > 1 for heavy loading. In this limit one can initially treat each plate edge
independently and then look at the effect of the diffracted waves generated by one edge
upon the other and vice-versa. Thus one can separate the original problem into a sequence
of semi-infinite problems that can each be solved explicitly using Fourier transforms and
the Wiener—Hopf technique. This can be continued and used as the basis of a numerical
method, as in [10]. We shall adopt an ad hoc procedure here which could be formalised as
in [19], where the equivalent membrane problem is solved and also used to treat normal
incidence. More general forcings, however, lead to considerable analysis involving sum
splits; for such loadings the numerical method described in this paper is particularly
useful.

We consider lossless plates (e, = €) and normal incidence, in which case the incident
field is

P (w1, 3) = e 0T, (3.6)

and the total field is split into reflected and scattered pieces. For convenience the reflected
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field is chosen to make the plate unforced. Hence
ptotal — e—ikomg + Reikoxg _I_psc, (37)

where R is
iko + €k? [k
R Kot cky/ko. (3.8)
lko — Ekg/ko
Thus insofar as the scattered field is concerned (dropping the sc superscript henceforth),
the boundary conditions on z3 = 0 are

2

n(z1,0) = — — (3.9)
BE}(1 + iek2/k3)
for |z1] > a and
84
B <—5 T~ k§> n(1,0) +p(1,0) =0 (3.10)
Ty

for |z1]| < a. Defining the plate edges as new coordinate origins, we take z = 1 —a
and =’ = x1 + a we shall only use the z, x3 coordinate system and utilise symmetry with
respect to z;. Close to this origin the plate is, apparently, unaware of the other edge and
we use the boundary conditions (3.9) and (3.10) (with z replacing 1) for © > 0, and
x < 0 respectively. The edge conditions that n and 7’ are continuous across z = 0 on
x3 = 0 are also used. This is a standard Wiener—Hopf problem and we define half range
transforms in the usual manner as

0= [ w0 dn, w09= [ (25 k) nw0) +ote,0n]

—0o0

(3.11)
where the subscripts £ denote that these functions are analytic in the upper and lower
complex k-planes. The functional equation

T (k) — E(k) 2Py (0) _ 2Py (k) — Py (0)
P_(k) _Bk3(1+£k;/k3)ik7 = P+(k)n+(k)_ka,(InLiekf,/;g)ik, =0 (3.12)

is deduced, where the edge conditions have been used. The function E(k) is a fourth
order polynomial whose precise form is immaterial for what follows, and the functions
Py (k) are described in Appendix A.

3.2.1. Light fluid loading

In the case of light fluid loading, the plate displacement is dominated by leaky waves
with wavenumber k;. This is a perturbation of the in vacuo plate waves incorporating
a small imaginary component. There are also unattenuated subsonic flexural waves
propagating with wavenumber K, and evanescent modes with wave number p. The
latter are a perturbation of the in vacuo exponential response ik,. We can use (3.12) to
deduce that the plate displacement in x < 0 is

2P, (0) < (ki — ko)e~ e n (1 — ko)e )
BRI+ 1ek2/k8) \I_ (k) (ke — K)o — ke L () (a = K) (i — ke
(3.13)
together with terms that are of asymptotically smaller order since € < 1 (L_(k) is defined
in appendix A). The terms involving exp(—iuz) decay exponentially fast in z. However
their inclusion ensures the plate displacement is accurately modelled at the plate edge
o = 0. For convenience, the shorthand n(z,0) ~ —ce™*1% + be~1#* is used from now on.
It is important to realise that the plate displacement is of the same order as the

77(%0) ~
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incoming wave. There is thus an identical contribution from the other edge, except that
we replace = with —2’. The terms involving e, ¢##%" can be ignored when considering
the interaction between the edges due to their rapid decay so each edge is struck only
by an incident leaky wave. The reflected waves on the plate are once more of the same
order as the incident field and n(z,0) ~ ae *1® + e~ for z < 0. There is an identical
contribution from the other edge, except that we replace x with —z'. Clearly all of these
leaky plate waves induce extra contributions to # along |z1| > a so to assess the overall
solution we remove these extra contributions to leading order. Thus we need to solve the
boundary value problem

n(z,0) = (¢ — a)e™ @29 for & >0 (3.14)
together with
ot 4
B <@ - ’%) 1(,0) + p(z,0) =0 for z <O0. (3.15)

The edge conditions that n and 5’ are continuous across x = 0 on 23 = 0 are also required.
The Wiener—Hopf technique can be utilised once more to give n(z,0) for < 0. This
is used in conjunction with (3.13) above and the contributions from the other edge to
deduce that

(21, 0) 2 { 2P (0)

~ — 1+ -
BEL(1 + iek2/k2) 2k, + C Py (k))eZikie

M(m(u + ki) + (ki — H)CP+(7€1)62M'“)] } (3.16)

2C cos(kyzy)e*® + D
(i) (e + k)

where C and D are

C = (kO - kl) D= (l‘l‘ — kO) (317)

L (k) (K = k) (= Fa)” L_(u)(p — K) (1 — k1)
respectively. The relevant functions are evaluated in Appendix A.

A useful approximation is to perform the above steps assuming that n(z,0) can be
represented by Ae~ %1% + Be~#* for 2 < 0 and use this to solve the semi-infinite problems
and identify A and B. Physically one might expect this to be an accurate approximation
of the plate displacement. The crucial difference between this and the rigourous Wiener—
Hopf solutions is that the acoustic coupling is assumed to be completely captured within
the modified wavenumbers k;, u and thus that L_(k) ~ 1 + O(e?), with Py (k) simply
(k + ki)(k + p) in this light fluid loading limit. If this were the case, then (3.16) would
reduce to (3.18). This is not asymptotically correct, unfortunately, as one can show that
L_(k) is actually 1 + O(e). However the term multiplying e is typically very small. The
plate displacement deduced in this manner is

2 pcos kyry + 2ik; sin kja cos(ux )ette
BE}(1 + iek2/kj) pcos kja + ik sin kja '

n(z1,0) (3.18)
This is an accurate approximation requiring only the zeros of the dispersion relation
and can be generalised to point forcing, moments and general incident fields quite easily.
The full Wiener—Hopf solution, on the other hand, requires complicated sum splits. This
approximation is also excellent when the plate has complex bending stiffness.

The plate displacements given in (3.16), (3.18) are uniform approximations and hold
at the resonant values of k,a when D(k,a) = 0. They are also valid for plates with
complex bending stiffness; in this case the loss factor effectively reduces the magnitude
of the acoustic response at frequencies near resonance. In the near-resonance cases, as
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discussed in [9], the acoustic response calculated via (2.27) is no longer O(1) but is
now O(1/e); thus provided the plates are lossless one gets very large responses at these
resonant values. We shall consider the resonance at kga = 8.246, M = 1.5 for e = 0.134
and normally incident plane waves. The plate displacements, calculated using (3.18), for
this situation are shown in figure 6 versus the numerical solution and the directivity is in
figure 7. The agreement between the numerical results of 77 and its uniform approximation
given by (3.18), using the light loading limits for p and k; (see Appendix A), is most
impressive. The directivity is an order of magnitude larger than the directivities shown
in figures 3, and the predominant response is along the Mach angles. The loss factor acts
in a similar manner to increasing fluid loading; for § small the acoustic response near
resonance is no longer O(1) but is the minimum of O(1/e), (1/6).

To emphasise that the issue of edge conditions is not merely pedantic we digress to
briefly consider the simply supported edge conditions, that is, n = " = 0 at the edges.
One can perform similar analyses to look at the analytical in vacuo and wide strip
approximations. For comparative purposes we take the in vacuo solution for the plate
displacement with normally incident plane waves. For the simply supported case

24 _ coshkyzy  coskyay
Bk} 2coshkya  2coskpa /)’

n°“(z1,0) (3.19)
This is compared with the real part of 1®*¢(z1,0) for the clamped case near a resonant
frequency of D(kpa) at koa = 12.955, € = 0.134, M = 1.5 in figure 8. There is no common
feature, and as the resonances are at completely different frequencies, the solutions are
quite different.

3.2.2. Heavy fluid loading

So far the main emphasis has been upon light fluid loading for which substantial
progress can be made utilising either in vacuo or wide strip approximations. Significant
fluid loading effects occur when € < 1 and M = O(e). However there is no great analytic
simplification in that limit and one has to move to the heavy fluid loading limit where
M < e to make progress. The heavy fluid loading limit has been considered by several
authors, for instance [8,20,21], and resonances may also occur in this limit. Differing
scalings and definitions of heavy fluid loading have been adopted by different authors;
here the scalings considered by [21] are used. Consequently we define heavy loading as
the double limit when € < 1 and M < ¢, with structural inertia then vanishing to leading
order in €. This is equivalent to removing the term L(fT)L in our kernel function: one is left
with structural stiffness, fluid inertia and fluid pressure. In addition, this scaling renders
the fluid almost incompressible. One can either implement the numerics directly using
appropriate values of €, M and kga, or explicitly take the limits in advance, dropping
the term L(f% and taking the near incompressibility to mean that kyga must be small. To
compare with the results of [8] we take the latter course. In the analytical work 7o is
replaced by i|k|.

The wide strip approximation is similar to that adopted in section 3.2.1 except that
the dominant plate waves are now the subsonic plate waves with wavenumber K (which
in this limit is approximately k,(e/M)3). For point forcing, [8] describes the asymptotic
procedure in detail. The plate displacement is approximately

1 3
n(x1,0) ~ ~TBES {tan 17r_0 + cot (g + Ka)] cos Kxy. (3.20)

This plate displacement is shown in figure 9 for kga = .01,e = 0.134, M = 0.002,6 = 0,
for both numerical (with and without the structural inertia term) and asymptotic results;
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there is very good agreement. The discrepancy is due to the weak compressibility still
contained within the numerics. The contribution from the structural inertia term within
the full numerical evaluation was not negligible. However it has little effect upon the
outcome which is dominated by the balance between structural stiffness and fluid inertia.
The resonances and anti-resonances predicted by [8] are also detected. The far-field
directivity in this very low frequency limit is effectively that of a point source.

4. A periodic array of finite plates

In this paper we have introduced a numerical method and verified that it provides
an accurate and efficient solution method. Now, to demonstrate its utility, we briefly
consider the problem of an array of finite plates in a rigid baffle.

Many structures have periodic stiffeners or ribs attached to provide additional rigidity.
Such configurations are common in aircraft and marine structures, and hence scattering
geometries involving periodic arrays have been extensively studied. Often these are
taken to be point discontinuities and exact solutions can be found in terms of Fourier
transforms; see for instance [22-24]. We are unaware of any study involving arrays of
plates that explicitly takes into account the plate geometry. This is a canonical problem
that involves plate interactions and edge effects. Arrays of cracks and gratings have been
the subject of several studies in elastodynamics and in water-wave and acoustic theory;
see for instance [14,25,26]. In those cases the periodicity allows a single integral equation
to be deduced. Similar methods utilising periodicity are employed here. The crucial
difference is that the expansion functions derived in this paper are required to satisfy
the clamped edge conditions. In addition, the kernel function is rather more complicated
due to the plate equation. However it can be significantly simplified thanks to various
manipulations.

For brevity we shall consider normally incident plane waves. The extension to more
general forcing such as oblique incidence is straightforward. We take p'*(xy,73) =
Alei*®s + e~1k¥3] The geometry is shown in figure 10: the elastic plates lie along z3 = 0
for |z1 +jd| < a and the rigid plates along 3 = 0 for |z; +jd/2| < —a+d/2 where j = 0,
+1,£2, ... The centres of neighbouring plates are separated by a distance d. The elastic
plates satisfy equation (1.3) while the displacement 7 vanishes along the rigid baffle. The
edge conditions are taken as the clamped conditions. The periodicity in the geometry
implies periodicity in the scattered pressure and displacement fields, and so

psc(l.l +]d7 'T3) :psc('r17'r3)7 Usc(l"l +]d7 'T3) = USC(Ilal"B)- (41)

Without loss of generality we consider the strip |z;| < d/2, 0 < z3 < oo with the elastic
plate along |z1| < a for 3 = 0. The periodicity is built in by utilising the periodic

Green’s function
o0

s a) = > p (@ + jd, w55 q1,05) (4.2)
j=—00
where p“(x;q) is given by (2.4). This means that the periodic Green’s function is an
infinite sum of Hankel functions. Using the shift property of the delta function and the
Fourier transform representation of the Green’s function, an alternative representation
can be derived. Applying Green’s theorem within the strip yields the scattered pressure
as
a
P = [ e 07 e, 05) . (4.3)
—a

The plate displacement is an unknown and is expanded using the ¢¢(z1), as defined
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in (2.13) due to the even forcing. Thus we take 7°¢(z1,0) as the even part of (2.12)
and henceforth suppress the superscript e. An integral equation for the unknown plate
displacement follows from the manipulations described in section 2. This gives the si-
multaneous equations (2.22) once more, with a new kernel function

mn—%TE:(/ / ¢mQ1Wwﬁ)[ V@1 + jdfa—q1) — kyd(zy + jd/a— q1)

J=—00

_prHél) (k0a|x1 + ]d/a — q1|)] dxl dql. (44)
The integrals simplify in a similar fashion to §2 and the infinite sum only involves the last
term as only the 7 = 0 term contributes in the others. Physically the plate displacement
is coupled to that on the other plates via the fluid pressure term. The left-hand side of
the simultaneous equations is given by (2.23) as before.

The far field for gz > 1 allows a representation in terms of Floquet modes of the form

J

p(@) = Y Rjexp(ivo;gs —ia,q) (4.5)
j==J

where J is the largest integer (modes for j larger than J are evanescent) such that
J < kod/2m, a; = 27j/d, and vo; = (k3 — ) Thus the propagating wave modes are
in the directions § = +tan~*(a;/v0;). The R are given by

4ec kp a
o » 1o¢]az d 4.
Ry = = Z o / P z. (4.6)

In the case of the the incident field considered here, R_; = R;. The magnitude of the
leading mode |Rp| is shown in figure 11 versus kod for € = .134, d/a = 6, M = 1.5 and
0 = 0. The truncation N = 5 was sufficient to compute this figure. As one might expect,
it picks up the resonance at the zero of D(kpa) in the interval considered. This forces
the response there to be O(1/¢) greater than that elsewhere. This mode is considerably
different from those associated with acoustic gratings where the various |R;| have sharp
peaks and troughs associated with the cut-offs; for elastic plates these effects are masked
by the dominant elastic effects.

As in section 3, one can obtain asymptotic results that provide useful checks upon
the numerical results and provide simple analytic results. As noted above, each plate is
coupled to the others in the array only via fluid coupling. Thus for frequencies away from
resonance and for light fluid loading, the plates do not couple with one another and the
plate displacement is simply given by (3.2) (with 8; = 0) to leading order. The explicit
solutions for the R; are therefore

R ie.(kpa)? {sin(aja) sinh k,a [sin(aj +ky)a 4 sin(a; — kp)a
J= o

koadyo; a;a D(kpa) | kpa+ aja kya — aja
__sinkya [sinh(ia; + kp)a | sinh(ia; — ky)a
D(kpa) -

(4.7)

iaja + kya iaja — kya

In this light fluid loading limit this is a close approximation, although it clearly fails near
to resonance where similar corrections to those pursued in section 3.2.1 can be taken.
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5. Reciprocity and Power

It is important to utilise analytical results as checks upon the numerical procedure
wherever possible. For a single finite plate in a rigid baffle subjected to incident plane
waves, both reciprocity and power balance theorems are used, and are both satisfied to
a high degree of accuracy. The reciprocity relation states that

G(9,0:) = G(0:,9) (5.1)

where the second argument of G in this equation denotes the angle of the incident plane
wave. That is, the directivity evaluated along ¢ due to an incident plane wave from
0; is the same as the directivity evaluated along 6; due to an incident plane wave from
¢. This relates two independent scattering problems; a derivation is contained in [27]
together with earlier references. This is a necessary, but not sufficient, condition that
demonstrates the accuracy of our procedure. It is automatically satisfied, as is power
balance, by the numerical procedure of this paper and serves mainly as a consistency
check on the numerical procedure itself rather than of the physics; a discussion of this
aspect is contained in [17].

The power balance for lossless plates is given by

1 [/ ‘
o IG(#)* dp = —Re (G(~6:)). (5.2)
—m/2

This follows from utilising the reciprocal theorem with one state taken to be the complex
conjugate of the other. Taking the region over which the reciprocal theorem is applied
to enclose the obstacle, the total time averaged power flow is zero, thus one can relate an
integral involving the far field directivities to an integral along the plate which is easily
evaluated. This is a useful check as it relates the integral of the directivity to the specific
value along a ray. For the lossless plate, this condition is satisfied to an extremely high
order of accuracy in the present numerical algorithm (8 decimal digits). However, it is
not satisfied for viscoelastic plates due to the dissipation of energy within the plate.

For the periodic array we have considered, a power balance relation can be similarly
derived in the form

J
> 05| B * = —2ko Re (Ro). (5.3)
-J

The sum is taken over the propagating modes; once again this is satisfied to high accuracy.

6. Conclusion

A highly efficient and accurate numerical scheme has been developed to tackle wave
scattering problems in structural acoustics. It is valid over a wide range of frequencies and
parameter values. The scheme tackles finite problems via an integral equation approach.
The unknown within the integral equation is expanded using functions that are explicitly
designed to satisfy the edge conditions, and the numerical solution rapidly converges and
without Gibbs’ phenomenon to the solution (as may be checked when the asymptotic
solutions are known). In addition this representation leads to simple expressions for the
directivities and plate displacements. The idea of explicitly inserting the edge behaviour
within the argument of a Chebyshev-like polynomial is not entirely new; it has a long
history in elastodynamic scattering where expansions in T),(y/(1 — 22)) have consider-
able advantages. In those cases the Chebyshev polynomial terms are the eigenfunctions
for Laplace’s equation in the elliptic coordinates. However the advantages of using a
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similar idea to incorporate more general edge behaviour has not been generally adopted.
Such an approach has many virtues, not least the relative simplicity of the results and
rapid convergence with few expansion terms required, due in part to the properties of
Chebyshev approximation.

The aim here has been to thoroughly validate this numerical approach thoroughly us-
ing analytical results and to investigate both single and periodic arrangements of baffled
plates. In the process, a useful approximation (3.18) is identified near resonant frequen-
cies in the light fluid loading limit. Excellent agreement is obtained in both light and
heavy fluid loading limits. Future work could use this method to analyse compliant
coatings, plate interactions and other scattering configurations.

SGLS was funded at the Scripps Institution of Oceanography by a Lindemann Trust
Fellowship administered by the English Speaking Union. RVC acknowledges an EPSRC
Advanced Fellowship. Conversations with Prof. F. G. Leppington were helpful.

Appendix A. Factorisation

In the text a Wiener—-Hopf method is utilised to solve the integral equations in an
asymptotic manner for wide strips and lossless plates. The crux of this analysis is the
factorisation of the kernel function

_ 4 g4 ekp

P(k)=Fk" -k, + o0 (F) (A1)
into the product of functions analytic in the upper and lower complex k-planes respec-
tively, that is, P(k) = Py (k)P-(k). This particular function has been factorised by
many authors, either in full or via asymptotic factorisations taking advantage of various
limits [6-8]. Here an alternative factorisation is presented, which has the advantage of
not requiring the calculation of zeros of high order polynomials inside the integrals that
arise. It is also rather convenient when k, has an imaginary component.

This factorisation is based upon splitting a new function L(k) defined as

P(k) (K — k)

o= e - e =)

(A2)

into the product L4 (k)L_ (k). The function P(k) has, for M > 1, six zeros in the complex
k-plane cut from +ky to £kg +ioco. For lossless plates two are real with value + K where
K > ky; these give rise in the physical domain to plate waves that are subsonic relative to
the fluid wave speed. Two are at £k;; for € < 1, these are the leaky zeros corresponding
to the leaky waves in the physical domain which for € < 1 are in close proximity to the in
vacuo wavenumbers £k,. The final two are at £u; these are in the proximity of *ik, and
lead to rapidly decaying modes. The effect of the loss factor is to add a small imaginary
component to both K and k;. These six zeros are obtained with the branch cuts taken to
run from kg to kg + ico and from —kg to —ko — ico; different choices of cuts may lead to
various zeros moving onto different Riemann sheets or new zeros appearing; see [28]. For
instance when M < 1 with the choice of cuts taken above, the leaky zeros move through
the cuts and onto the lower Riemann sheet. When we later rotate the cuts onto kg to
+00 these zeros reappear on the principal Riemann sheet; for M < 1 the position of the
zeros tk; is evaluated with the branch cuts taken along the real axis. Thus L(k) has
no zeros; the apparent zeros introduced by the multiplicative factor k? — k2 are in fact
branch point singularities due to the factor 1/ in P(k). Moreover L(k) — 1 as |k| — o0
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and thus the factorisation

1 log L(2)

logLy(k)=t— [ ————=d A3
opla(k) =£50 | — = & (43)
is used. For lossless plates the factorisation is performed as follows: the path C runs
from —o0 to +o0 and is indented to pass below the branch point singularity that lies
on the positive real axis and above that on the negative real axis. We now rotate the
branch cut for ¢ so that it runs from kg to +00 and —ky to —oo. Wrapping the contour

integral for L_ (k) around the upper branch cut then gives

dz

. (A4
= k) (A4)

ko — k) ¥ 1
L_(k) = <I§—k> exp (—2—7“/}v log
v0

The presence of the apparent branch point singularities at =K is to be expected. The
zero at +K now lies on the branch cut, although its influence is implicitly diminished by
the choice of factors in L(k). The factorisation of a function with similar behaviour in
[29] leads to similar square root factors. The integral in (A 4) converges rapidly. Thus
P_(k) is found from

2t —ky — ekl [ko(2* — k3)
24 — kj 4 €k§ [ko (22 — k)

1
2
1
2

P_(k)(k = ko)
L_(k)= A5
W= Bk - mk—#) o
and by symmetry the function Ly (k) is L_(—k). The function P4 (0) is
o iekg z
P+(0)=1k'p 1+? . (A6)
0

It is perhaps not obvious that

_(K*-¢ : 2 2y(e2 12
P(f)—(m) (& — ) (& —kp) %

1 |t =k = ekS ko(22 — k3)E| 22dz
X exp (—2—71_1/]ﬂo lo 252 | (A7)

24— kA + ek ko (22 — k3) %
and this formula acts as a check upon the split proposed here. For plates with non-zero
loss factor the wavenumber K has a small imaginary part and no longer lies upon the
branch cut; a similar argument to that pursued above can be adopted to simplify (A 3).
For heavy fluid loading a useful limit is

1 ey \* 1 d sings
K:P (K)= |+~ (10)z€%7/%, (A8)
0
. ekS >
Py (0) = ¥/ <F> : (A9)
0

(see [21]), and this is used in section 3.2.2. To use these formulae, we need the zeros
K, k;, pof P(k): they are found using a trivial adaption of the argument principle, as in
[30]. Asymptotic formulae for the zeros are in [28]. In the light case, and with a minor
change in notation, they are

62
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€
~hy [1- —— ), All
H P (1 4M(M2+1)§> ( )
ie
b~k (14— ). A12
oty 4M(M2_1)§) (A12)

These results are naturally valid only for A > 1.

Appendix B. Completeness of the expansion functions

It is important to verify that the plate displacement can actually be represented by the
expansion functions, and that the latter are hence complete. The expansion functions
used in elasticity for crack problems by [16] and others may easily be shown to be
complete. These functions are (to within a normalisation factor)

by = { cos(nsin~tz)  for n odd, (B1)

sin (nsin~! z) for n even

on the interval (—1,1). The change of variable z = sin § maps the z-interval (—1,1) onto

(=%, %). On this interval, the expansion functions are

(B2)

b = cos nf for n odd,
"7 ] sinnd for n even.

This set of functions is complete on the interval (—7, %), since it corresponds to the
usual Fourier sine expansion.

The set given by (2.13)—(2.14) requires more care. Any function f on (—1,1) may be
decomposed into its odd and even parts f, and fe respectively, both defined on (0,1) and
with f/(0) = f,(0) = 0. The even expansion functions ¢, = cos[ncos™* (1 — 22)?] with n
odd map the interval (0,1) into (0, ). On this interval, the transformed even expansion
functions are again cosnf for n odd. This set of functions is not complete on this: a
complete set of cosines on this interval requires even n as well. However, picking the even
cosines as extra expansion functions would remove the correct edge condition in the orig-
inal variable z and hence introduce Gibbs’ effects that would undermine the whole aim
of the expansion functions. The additional functions ¢, = (1—xz?) cos [ncos™! (1 — z?)?],
which explicitly introduce terms of the form (1 — z?) near x = +1, satisfy the appro-
priate boundary conditions, and project onto all the cosine functions (including the odd
ones). This may be verified by calculating the integrals

w/2
/ Vcos @ cos né cosmb df (B3)
0

for n odd, using 7.346 of [31]. Hence the set of expansion functions for the even part of f
is complete. The issue of whether these expansion functions are orthogonal with respect
to a particular weight function is irrelevant since orthogonality properties are never used.

The argument for the odd part of f is analogous. Hence the set of expansion functions
(2.13)—(2.14) is complete, and in addition satisfies the appropriate clamped boundary
condition.
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FIGURE CAPTIONS

FI1GURE 1: Typical geometry, incident fields and forcing functions.

FIGURE 2: Real and imaginary parts of the plate displacement B1n*¢(z,0)/a* versus x
for kga =10, M =1.5,0; =0and e = 0., .01, .134, 4 and 6 = 0, and for e = .01, § = 0.2.
Of the two dot-dashed lines, the one with ¢ = 0.01 is closer to the solid line; in fact its
real part is indistinguishable from the € = 0 case.

F1GURE 3: The directivity |G(¢)|* for koa = 10, M = 1.5, 6; = 0 and € = 0.134. The
viscoelastic case with e = 0.134,0 = 0.2 is also shown as are the Mach angles.

FiGURE 4: The directivity |G(¢)|? for 0; = 7/12, koa = 10, M = 1.5, ¢ = 0.134 and
6 = 0. The directivity for fluid driven by the in vacuo solution is also shown, as are the
line ¢ = —7/12 and the Mach angles.

FiGURE 5: The directivities |G(¢)|? for koa = 10, M = 0.8, §; = w/4, ¢ = 0.134 and
6 = 0,0.2. The in vacuo case is also shown.

FIGURE 6: The real and imaginary parts of the plate displacement Byn*¢(z,0)/a* versus
x for kga = 8.246, M = 1.56; = 0, € = .134 and § = 0. Also shown are the real
and imaginary parts of the asymptotic result for a wide plate (3.18) which holds near
resonarnce.

FiGURE 7: The directivity |G(¢)|? for koa = 8.246, M = 1.5 for §; = 0, € = 0.134 and
6 = 0. The Mach angles are also shown.

FiGURE 8: The real parts of the plate displacement B17°¢(z,0)/a* versus z for koa =
12.955, M = 1.5 6; = 0 and € = .134, § = 0 for the simply supported and clamped edge
conditions.

FIGURE 9: The real part of the plate displacement Byn*¢(z,0)/a* versus z (in [0,1]) for
point force loading with kpa = 0.01, M = 0.002 and € = .134, § = 0. Also shown are the
plate displacement for I = 0 and the heavy loading asymptotic result (3.20).

FiGURE 10: Geometry for the periodic array of plates with a normally incident wave
field.

FIGURE 11: Modulus of the zero propagating wave mode |Rp| versus kod, for € = 0.134,
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d/a = 6, M = 1.5 and 6 = 0. The dotted lines correspond to cut-on values of the
periodicity. The dashed line is the first even resonance at kya ~ 3.5475.
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