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Abstract— We consider jointly distributed random vari-
ablesX and Y. After describing the Gács-Körner common
information between the random variables from the view-
point of the capacity region of the Gray-Wyner system,
we propose a new notion of common information between
the random variables that is dual to the Ǵacs-Körner
common information from this viewpoint in a well-defined
sense. We characterize this quantity explicitly in terms of
two auxiliary quantities that are asymmetric in nature,
and illustrate the operational significance of these new
quantities by characterizing a corner point of the solution
to a problem of source coding with side-information in
terms of them. We also contrast this new concept of
common information for a pair of random variables with
the Wyner common information of the random variables,
which is also a kind of dual to the Ǵacs-Körner common
information.

I. I NTRODUCTION

In information theory, mutual information is the most
frequently used notion of common information between
two jointly distributed random variables. Mutual infor-
mation correctly captures the information given by one
of the random variables about the other in a wide range
of asymptotic formulations of important communication
problems of interest. However, there are other notions
of common information that arise naturally in certain
problem formulations. Two such notions of common in-
formation between a pair of random variables, now well-
known as the Ǵacs-K̈orner common information and the
Wyner common information, were defined respectively
in [1] and [2].

Suppose we are given a pair of jointly distributed
random variables(X,Y ).

• The Ǵacs-K̈orner common informationK(X;Y ),
roughly speaking, measures the amount of common
randomness that can be separately extracted from
either marginal of the two jointly distributed ran-
dom variables, in an asymptotic formulation. This
was defined and characterized in [1]. Witsenhausen
strengthened the results of [1] in [3].

• The Wyner common informationC(X;Y ) was
defined in two alternate ways in [2]. It was shown
that the two definitions are equivalent and the quan-
tity was characterized in terms of an optimization

problem involving an auxiliary random variable.
One of the interpretations of this quantity is as
the minimum rate at which external randomness
must be supplied to physically separated agents,
each responsible for one of the marginals, so that
they are able to closely reproduce the given joint
distribution, in an asymptotic formulation.

The descriptions above show that these two quantities
can be roughly thought of as duals of each other in an
operational sense. It is also well-known thatK(X;Y ) ≤
I(X;Y ) ≤ C(X;Y ), where both the inequalities hold
with equality if and only if any one of the inequalities
holds with equality if and only if the joint distribution
admits a decomposition of the formX = (X ′, U), Y =
(Y ′, U) with X ′ ⊥⊥ Y ′|U.

There has been a lot of interesting work on problems
of common information extending the above notions to
more general scenarios. [4] develops a generalization
of the Ǵacs-K̈orner common information with appli-
cations to security. [5] and [6] look at the space of
joint distributions that can be generated by nodes in a
network under communication constraints. [7] considers
the problem of simulating a channel given different
rates of common randomness. [8] and [9] consider the
problem of information-theoretically secure secret key
agreement between nodes in a network in scenarios
exploiting common randomness.

The Gray-Wyner source coding system was introduced
in [10] and its capacity region was determined via
an auxiliary random variable. The Gray-Wyner system
is a two-source source coding problem, and there are
three rates of interest: a common rate, and two private
rates. Our contribution in this paper is as follows. We
view the mutual information, the Ǵacs-K̈orner common
information, and the Wyner common information from
the perspective of the capacity region of the Gray-Wyner
system. Specifically, these quantities correspond to cer-
tain values of the common rate where the capacity region
of the Gray-Wyner system bears a natural relationship
to the elementary outer bound to this region defined by
basic information-theoretic considerations. We present
a formula expressing the Gács-K̈orner common infor-
mation as the supremum of an information-theoretic



quantity over a set defined using one auxiliary random
variable, that has a similar flavor to the well-known
formula for the Wyner common information [2]. We then
define a new concept of common information associated
with a pair of jointly distributed random variables that is
motivated by the relation between the capacity region of
the Gray-Wyner system and its elementary outer bound,
and, from this viewpoint, can be perceived as a dual to
the Ǵacs-K̈orner common information. We characterize
this quantity in terms of two auxiliary asymmetric quan-
tities, and show that these newly defined quantities have
operational significance in the context of characterizing
a corner point of the problem of source coding with side
information that was defined in [11].

II. SETUP AND DEFINITIONS

Let (X,Y ) be jointly distributed random variables
taking values in finite setsX and Y respectively with
the joint distribution Q(x, y). [1] defines a quantity,
nowadays called the Ǵacs-K̈orner common information
K(X;Y ) of (X,Y ), and establishes it to be equal to the
supremum ofH(V ) over all random variablesV , taking
values in some finite setV, that can be written as

V = f(X) = g(Y )

for some functionsf : X 7→ V and g : Y 7→ V. Since
H(V ) = I(V ;V ) = I(f(X); g(Y )) ≤ I(X;Y ), we
haveK(X;Y ) ≤ I(X;Y ). An alternative approach is
to define this quantity using the Gray-Wyner system as
described below.

A. Gray-Wyner system

The Gray-Wyner system is a source coding system as
shown in Figure 1. The problem formulation from [10]
is as follows. Let{(Xi, Yi)}

∞
i=1 be a sequence of i.i.d.

random variable pairs drawn from the setX × Y with
the marginal distribution(X,Y ) ∼ Q(x, y). A code with
parameters(n,M0,M1,M2) is comprised of an encoder,
i.e. a mapping

fE : Xn × Yn 7→ [M0] × [M1] × [M2],

where[M ] denotes the set{1, 2, . . . ,M}, and a decoder,
i.e. a pair of mappings

f
(X )
D : [M0] × [M1] 7→ Xn;

f
(Y)
D : [M0] × [M2] 7→ Yn.

Let fE(Xn, Y n) = (S0, S1, S2). We say that a triple
of rates(R0, R1, R2) is achievable if for arbitraryǫ >
0, there exists, for sufficiently largen, a code with
parameters(n,M0,M1,M2) with 1

n
log Mi ≤ Ri + ǫ

for i = 0, 1, 2 and

1

n
E[dH(Xn, f

(X )
D (S0, S1))] ≤ ǫ;

1

n
E[dH(Y n, f

(Y)
D (S0, S2))] ≤ ǫ,

wheredH(·, ·) is the Hamming distortion metric.
An elementary outer bound to the set of achievable

rate triples in the Gray-Wyner system, coming from basic
information-theoretic considerations, is given in Thm. 2
of [10]; the following inequalities must hold:

R0 + R1 ≥ H(X), (1)

R0 + R2 ≥ H(Y ), (2)

R0 + R1 + R2 ≥ H(X,Y ). (3)

Let L := {(R0, R1, R2) : R0, R1, R2 ≥ 0, R0 + R1 ≥
H(X), R0 + R2 ≥ H(Y ), R0 + R1 + R2 ≥ H(X,Y )},
and letR be the set of achievable rate triples. Clearly,
R ⊆ L and, in general, the inclusion is strict [10].

Let P be the family of probability distributions
p(x, y, w) with x ∈ X , y ∈ Y, w ∈ W, where W
is a finite set and which satisfy

∑

w∈W p(x, y, w) =
Q(x, y), and Pb the subset ofP where W has
cardinality bounded as|W| ≤ |X |.|Y| + 2. For
p(x, y, w) ∈ P, define R(p) := {(R0, R1, R2) :
R0 ≥ I(X,Y ;W ), R1 ≥ H(X|W ), R2 ≥
H(Y |W ) for (X,Y,W ) ∼ p(x, y, w)}, and define
RP := ∪p∈PR

(p) andRPb
:= ∪p∈Pb

R(p).
Theorem 2.1: R = cl (RP) = RPb

, where cl (·)
denotes closure of a set.

Proof : [10] establishes the first equality, where one
does not have the cardinality bound onW. The second
equality can be obtained once one gets the cardinality
bound by the Carath̀eodory-Fenchel theorem as follows.

Given (R0, R1, R2) satisfying R0 ≥
I(X,Y ;W ), R1 ≥ H(X|W ) and R2 ≥ H(Y |W )
for some(X,Y,W ) ∼ p(x, y, w) without a cardinality
bound onW and where(X,Y ) has the law of the
sourceQ(x, y), fix p(x, y|w) and consider the equations

∑

w∈W

p(w)p(x, y|w) = Q(x, y)

which give |X |.|Y| − 1 equality constraints since
one of them is implied by the others, and the three
inequalities

∑

w∈W

p(w)H(p(x|w)) ≤ H(X|W ),

∑

w∈W

p(w)H(p(y|w)) ≤ H(Y |W ),

∑

w∈W

p(w)H(p(x, y|w)) ≤ H(X,Y |W ).

This system of linear equations and inequalities for
(p(w) : w ∈ W) is feasible in the simplex given by
p(w) ≥ 0,∀w ∈ W and

∑

w∈W p(w) = 1, so it must
have a solution in this simplex with(p(w), w ∈ W)
being non-zero on a subset of size at most(|X |.|Y| −



Fig. 1. The Gray-Wyner source coding system

1)+3 = |X |.|Y|+2, which proves the desired cardinality
bound.

The mutual information, the Ǵacs-K̈orner common
information, and the Wyner common information of a
pair of random variables can be understood in terms of
the relation between the regionR in Theorem 2.1 and
the elementary outer boundL to this region, as defined
by the inequalities (1), (2), (3). To see this, we observe
the following.

1) Mutual informationI(X;Y ) is the value ofR0 at
the intersection of the three planes constituting the
boundary of the outer boundL, i.e. the inequalities
(1), (2), (3).

2) Gács-K̈orner common informationK(X;Y ) is the
supremum ofR0 over all achievable rate triples
that satisfy inequalities (1) and (2) with equality.
This is different from the original definition in
[1]. It is proved in Theorem 3.1 below that the
two notions are equivalent. Note thatK(X;Y ) ≤
I(X;Y ).

3) Wyner common informationC(X;Y ) is the in-
fimum of R0 over all achievable rate triples that
satisfy the inequality (3) with equality. [2]

One may thus think of the Wyner common information
as a dual to the Ǵacs-K̈orner common information also
in the above sense. However, we may also think of the
Gács-K̈orner common information in a different way in
the context of the relation between the regionR and
its elementary outer boundL, which then suggests a
different dual to the Ǵacs-K̈orner common information.

4) Gács-K̈orner common informationK(X;Y ) is the
supremum ofR0 such thatR0 ≤ I(X;Y ) and
for which R0, all non-negative rate triples allowed
by inequalities (1), (2) and (3) are achievable. It
is straightforward to see that this description is
equivalent to the one given in item 2) above.

5) DefineU(X;Y ) as the infimum ofR0 such that
R0 ≥ I(X;Y ) and for whichR0, all non-negative

rate triples allowed by inequalities (1), (2) and (3)
are achievable.

We will provide a characterization ofU(X;Y ) and
discuss its connections with a problem of source coding
with side information, introduced in Section IV.

III. R ESULTS AND PROOFS

First, we prove the equivalence of the two notions of
the Ǵacs-K̈orner common information, namely:

• K(X;Y ) is the supremum ofH(V ) over all ran-
dom variablesV , taking values in some finite set
V, that can be written as

V = f(X) = g(Y );

• The alternative definition is̃K(X;Y ) = sup{R :
R ≤ I(X;Y ), {R0 = R} ∩ L ⊆ R}.

Theorem 3.1: K(X;Y ) = K̃(X;Y ) .

Proof : First note that for0 ≤ R ≤ I(X;Y ), we
have{R0 = R} ∩ L ⊆ R if and only if (R,H(X) −
R,H(Y ) − R) ∈ R.

Start with anyV = f(X) = g(Y ). Setting R =
H(V ), R1 = H(X|V ) and R2 = H(Y |V ) we can
verify that R ≤ I(X;Y ), R1 = H(X) − R and R2 =
H(Y ) − R. With W = V, we get that(R,H(X) −
R,H(Y ) − R) ∈ R. This givesK̃(X;Y ) ≥ K(X;Y ).

For the converse, suppose(R,H(X) − R,H(Y ) −
R) ∈ R. From Theorem 2.1,∃W defined byp(w|x, y),
taking values in the finite setW, so that

R = I(X,Y ;W ) + ρ0;

H(X) − R = H(X|W ) + ρ1;

H(Y ) − R = H(Y |W ) + ρ2 ,

for ρi ≥ 0 for i = 0, 1, 2.
Adding the first and second equality givesρ0 + ρ1 +

I(Y ;W |X) = 0. Adding the first and the third gives
ρ0 + ρ2 + I(X;W |Y ) = 0. These yieldρ0 = ρ1 =



ρ2 = I(Y ;W |X) = I(X;W |Y ) = 0. Thus, the
joint distribution of(X,Y,W ) must respect the Markov
chainsW − X − Y andX − Y − W.

We may assume without loss of generality thatp(x) >
0 for all x ∈ X andp(y) > 0 for all y ∈ Y. Let

A := {(x, y) ∈ X × Y : p(x, y) > 0} .

Consider(x, y) ∈ A. Then, for anyw ∈ W such that
p(w|x, y) > 0, we have

p(w, x, y) = p(w|x, y)Q(x, y) = p(w|x)Q(x, y)

from the Markov chainW − X − Y , and

p(w, x, y) = p(w|x, y)Q(x, y) = p(w|y)Q(x, y)

from the Markov chainW −Y −X. Let ΦW
(X,Y ) denote

the function fromA to P(W) (the simplex of probability
distributions onW), taking (x, y) to the conditional law
of W given {X = x, Y = y}, i.e. to the law(w 7→
p(w|x, y)). Similarly, let ΦW

X denote the function from
X to P(W) taking x to the conditional law ofW given
{X = x} i.e. to the law(w 7→ p(w|x)), and letΦW

Y

denote the function fromY to P(W) taking y to the
conditional law ofW given {Y = y} i.e. to the law
(w 7→ p(w|y)). The preceding two calculations tell us
that for (x, y) ∈ A we have

ΦW
(X,Y )(x, y) = ΦW

X (x) = ΦW
Y (y) .

Next, consider the bipartite graph with left vertex setX
and right vertex setY, where the edge(x, y) exists iff
(x, y) ∈ A. Consider the decomposition of this graph
into connected components. By the above, on every
connected component each edge maps to the same law
on W under the mapΦW

(X,Y ). It follows that there must
be a random variableVXY that is constant on the edges
of any connected component, taking values in a finite set
V (one can think of this as just the index of the connected
component) and another finite random variableU , which
is independent of(X,Y ), taking values in the finite set
U , such thatW can be written as a deterministic function
W = t(U, VXY ) (hereU is just used to construct the
law of W once one knows the index of the connected
component). We will callVXY the block index random
variable of the pair(X,Y ).

We now have

R0 = I(X,Y ;W ) = I(X,Y ; t(U, VXY )) ≤ H(VXY ) ,

where the first equality is becauseρ0 = 0, and the last
inequality is becauseU is independent of(X,Y ). This
gives

K̃(X,Y ) ≤ K(X,Y )

and concludes the proof.

Corollary 3.2:

K(X;Y ) = sup
W−X−Y

X−Y −W

I(X,Y ;W ) .

Proof : From Theorem 3.1,

K(X;Y ) = sup{R : R ≤ I(X;Y ), {R0 = R} ∩ L ⊆ R}

= sup{R : (R,H(X) − R,H(Y ) − R) ∈ R}.

For any W with a joint distribution p(x, y, w)
satisfying W − X − Y and X − Y − W, we
have from Theorem 2.1 that(I(X,Y ;W ),H(X) −
I(X,Y ;W ),H(Y ) − I(X,Y ;W )) ∈ R because
H(X|W ) = H(X) − I(X,Y ;W ) and H(Y |W ) =
H(Y )− I(X,Y ;W ). It is also straightforward to check
that I(X,Y ;W ) ≤ I(X;Y ). This givesK(X;Y ) ≥
supW−X−Y,X−Y −W I(X,Y ;W ).

For the converse, from Theorem 2.1, if(R,H(X) −
R,H(Y ) − R) ∈ R, then ∃p(x, y, w) ∈ P such that
R ≥ I(X,Y ;W ),H(X) − R ≥ H(X|W ),H(Y ) −
R ≥ H(Y |W ). Adding the first and second inequal-
ities gives usW − X − Y and equalities for both.
Adding the first and third inequalities gives usX −
Y − W and equalities for both. So,K(X;Y ) ≤
supW−X−Y,X−Y −W I(X,Y ;W ).

The Wyner common information was defined as in 3)
and characterized in [2]. We now state this characteriza-
tion and provide a proof for completeness.

Theorem 3.3: (Wyner [2])

C(X;Y ) = inf
X−W−Y

I(X,Y ;W ) .

Proof : If some triple(R0, R1, R2) ∈ R satisfiesR0 +
R1 + R2 = H(X,Y ), then by Theorem 2.1 we must
have for someW that

R0 = I(X,Y ;W ) + ρ0;

R1 = H(X|W ) + ρ1;

R2 = H(Y |W ) + ρ2,

for ρi ≥ 0 for i = 0, 1, 2.
Adding the three equalities givesH(X,Y ) =

H(X,Y ) + I(X;Y |W ) + ρ0 + ρ1 + ρ2 which implies
X−W−Y and also thatρ0 = ρ1 = ρ2 = 0 so thatR0 =
I(X,Y ;W ). So, C(X;Y ) ≥ infX−W−Y I(X,Y ;W ).

Conversely, for any W,
(I(X,Y ;W ),H(X|W ),H(Y |W )) ∈ R and if W
happens to satisfyX − W − Y, then we have
I(X,Y ;W )+H(X|W )+H(Y |W ) = H(X,Y ). Thus,
C(X;Y ) ≤ infX−W−Y I(X,Y ;W ).

Let us define the following.

Definition G(Y → X) := inf{R :
(R,H(X|Y ),H(Y ) − R) ∈ R}.

Definition G(X → Y ) := inf{R : (R,H(X) −
R,H(Y |X)) ∈ R}.

G(Y → X) (respectivelyG(X → Y )) is the infimum
of R0 over all achievable rate triples that satisfy (2) and
(3) (respectively (1) and (3)) of the outer bound with
equality.



We characterize the above defined quantities and
U(X;Y ) in the following theorem.

Theorem 3.4:

G(Y → X) = inf
X−Y −W

X−W−Y

I(X,Y ;W );

G(X → Y ) = inf
W−X−Y

X−W−Y

I(X,Y ;W );

U(X;Y ) = max{G(Y → X), G(X → Y )}.

Proof : We begin with G(Y → X). For any
finite set W, and p(w|x, y) with p(x, y, w) =
Q(x, y)p(w|x, y) ∈ P, we have from Theorem 2.1
that (I(X,Y ;W ),H(X|W ),H(Y |W )) ∈ R. If W
satisfies, in addition, the Markov conditionsX−Y −W
and X − W − Y, we get I(X,Y ;W ) + H(Y |W ) =
H(Y ) and I(X,Y ;W ) + H(X|W ) + H(Y |W ) =
H(X,Y ). This immediately givesG(Y → X) ≤
infX−Y −W,X−W−Y I(X,Y ;W ).

For the converse, suppose for someR, we have
(R,H(X|Y ),H(Y ) − R) ∈ R. From Theorem 2.1, it
follows that∃p(x, y, w) ∈ P such that

R = I(X,Y ;W ) + ρ0,

H(X|Y ) = H(X|W ) + ρ1,

H(Y ) − R = H(Y |W ) + ρ2.

Adding the first and third equalities above gives
H(Y ) = H(Y )+I(X;W |Y )+ρ0+ρ2. Adding all three
givesH(X,Y ) = H(X,Y )+I(X;Y |W )+ρ0+ρ1+ρ2.
It follows that ρ0 = ρ1 = ρ2 = I(X;W |Y ) =
I(X;Y |W ) = 0. Thus,X−Y −W andX−W−Y hold
and so,G(Y → X) ≥ infX−Y −W,X−W−Y I(X,Y ;W ).

Similarly, we can prove the claimed formula for
G(X → Y ). It is easy to verify thatI(X;Y ) ≤
C(X;Y ) ≤ G(Y → X) ≤ H(Y ). The first inequality
is from the characterization ofC(X;Y ) in Theorem 4.1,
the second inequality is from the characterization in this
theorem and because the infimum is over a smaller set
of joint distributions, and the third inequality follows
from the characterization in this theorem withW = Y.
Similarly, I(X;Y ) ≤ C(X;Y ) ≤ G(X → Y ) ≤
H(X).

Now, we turn our attention to the main quantity
U(X;Y ) = inf{R : R ≥ I(X;Y ), {R0 = R} ∩ L ⊆
R}. Assume without loss of generality thatH(X) ≤
H(Y ).

Note that forR ≥ I(X;Y ),

{R0 = R} ∩ L

= {(R, R1, R2) : R1 ≥ (H(X) − R)+, R2 ≥ (H(Y ) − R)+,

R1 + R2 ≥ (H(X, Y ) − R)+}

=
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>

>

>

>

<

>

>
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:

{(R, R1, R2) : R1 ≥ H(X) − R, R2 ≥ H(Y ) − R,

R1 + R2 ≥ H(X, Y ) − R}, if I(X; Y ) ≤ R < H(X)

{(R, R1, R2) : R1 ≥ 0, R2 ≥ H(Y ) − R,

R1 + R2 ≥ H(X, Y ) − R}, if H(X) ≤ R < H(Y )

{(R, R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 + R2 ≥ H(X, Y ) − R}, if H(Y ) ≤ R < H(X, Y )

{(R, R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 + R2 ≥ 0}, if R ≥ H(X, Y ).

Suppose that for someR ≥ I(X;Y ) we have{R0 =
R} ∩ L ⊆ R. If R < H(X), then (R,H(X) −
R,H(Y |X)) is achievable, soR ≥ G(X → Y ). If
R ≥ H(X), then of course,R ≥ G(X → Y ). Thus,
U(X;Y ) ≥ G(X → Y ). Similarly, if R < H(Y ), then
(R,H(X|Y ),H(Y )−R) is achievable, soR ≥ G(Y →
X). If R ≥ H(Y ), then of course,R ≥ G(Y → X).
Thus,U(X;Y ) ≥ G(X → Y ). This givesU(X;Y ) ≥
max{G(Y → X), G(X → Y )}.

Now, choose anR ≥ max{G(Y → X), G(X → Y )}.
We will show that{R0 = R}∩L ⊆ R. As argued above,
{R0 = R}∩L as a subset of{R0 = R} is the polyhedral
region of rate pairs that pointwise dominate a convex
combination of two (possibly identical) distinguished
rate pairs. We will show that the rate triples defined
by these rate pairs, which we call corner points, are
achievable.

This follows from the achievability of the points

• (H(X,Y ), 0, 0),
• (H(Y ),H(X|Y ), 0),
• (H(X), 0,H(Y |X)),
• (G(Y → X),H(X|Y ),H(Y ) − G(Y → X)),
• (G(X → Y ),H(X) − G(X → Y ),H(Y |X)),

all of which can be easily verified. The details are below:

• Case I:R ≥ H(X,Y ).
Here, {R0 = R} ∩ L = {(R,R1, R2) :
R1 ≥ 0, R2 ≥ 0}. This is achievable since
(H(X,Y ), 0, 0) ∈ R.

• Case II:H(X,Y ) > R ≥ H(Y ) ≥ H(X).
Here, {R0 = R} ∩ L = {(R,R1, R2) : R1 ≥
0, R2 ≥ 0, R1 + R2 ≥ H(X,Y ) − R}. The
corner point (R, 0,H(X,Y ) − R) is achievable
because it is a convex combination of the achievable
points (H(X,Y ), 0, 0) and (H(X), 0,H(Y |X)).
Similarly, the corner point(R,H(X,Y ) − R, 0)
is achievable because it is a convex combi-
nation of achievable points(H(X,Y ), 0, 0) and
(H(Y ),H(X|Y ), 0).

• Case III:H(Y ) > R ≥ H(X).
Now, {R0 = R} ∩ L = {(R,R1, R2) : R1 ≥
0, R2 ≥ H(Y )−R,R1+R2 ≥ H(X,Y )−R}. The



corner point(R, 0,H(X,Y )−R) is a convex com-
bination of the achievable points(H(X,Y ), 0, 0)
and (H(X), 0,H(Y |X)). The other corner point
(R,H(X|Y ),H(Y ) − R) is a convex combination
of the achievable points(H(Y ),H(X|Y ), 0) and
(G(Y → X),H(X|Y ),H(Y ) − G(Y → X)).

• Case IV:H(X) > R ≥ I(X;Y ).
Now, {R0 = R} ∩ L = {(R,R1, R2) :
R1 ≥ H(X) − R,R2 ≥ H(Y ) − R,R1 +
R2 ≥ H(X,Y ) − R}. The corner point
(R,H(X|Y ),H(Y ) − R) is a convex combination
of the achievable points(H(Y ),H(X|Y ), 0) and
(G(Y → X),H(X|Y ),H(Y ) − G(Y → X)).
The other corner point(R,H(X) − R,H(Y |X))
is a convex combination of the achievable points
(H(X), 0,H(Y |X)) and (G(X → Y ),H(X) −
G(X → Y ),H(Y |X)).

Thus, we haveU(X;Y ) = max{G(Y → X), G(X →
Y )}.

A. Explicit characterization of G(Y → X), G(X → Y )
and U(X;Y )

Assume without loss of generality thatp(y) > 0 ∀y ∈
Y. Let ΦX

Y denote the function fromY to P(X ) (the
simplex of probability distributions onX ) taking y to
the conditional law ofX given y. We also think of it as
a random variable. LetVXY be the block index random
variable of the joint distribution ofp(x, y), as defined in
the proof of Theorem 3.1.

Some results of general interest are collected below:
Lemma 3.5: 1) If, for any random variableV,

we have H(V |X) = H(V |Y ) = 0, then
H(V |VXY ) = 0.

2) VXY has the largest entropy among all random
variablesV satisfyingH(V |X) = H(V |Y ) = 0.

3) If, for any random variableV, we haveH(V |Y ) =
0 andX − V − Y, thenH(ΦX

Y |V ) = 0.
4) ΦX

Y has the smallest entropy among all random
variablesV satisfyingX −V −Y andH(V |Y ) =
0.

5) For any random variableV satisfyingX −V −Y
andX−Y −V, we haveH(ΦX

Y |V ) = 0, soΦX
Y has

the smallest entropy among all random variables
V satisfyingX − V − Y andX − Y − V. Thus,
G(Y → X) = H(ΦX

Y ).

Proof : The first four items are easy to prove. We
provide a proof for the last item.

Let V taking values inV satisfyX −V −Y andX −
Y −V. Consistent with the earlier introduced notation, let
ΦX

V and ΦX
(V,Y ) denote the conditional law ofX given

V and (V, Y ) respectively. Without loss of generality,
assumep(v) > 0 ∀ v ∈ V.

Let us define

A := {(y, v) ∈ Y × V : p(y, v) > 0} .

X − Y − V and X − V − Y give ΦX
V (v) =

ΦX
Y (y) ∀(y, v) ∈ A, i.e. ΦX

V = ΦX
Y as random variables.

Thus,H(ΦX
Y |V ) = 0.

So, we haveI(X,Y ;V ) = I(X,Y ;V,ΦX
Y ) ≥

I(X,Y ; ΦX
Y ). Note that by definition,ΦX

Y itself satisfies
X − Y − ΦX

Y . It also satisfiesX − ΦX
Y − Y which can

be checked by writing for all(x, y) with p(x, y) > 0,

τ(y) := p(X = x|Y = y) = p(X = x|Y = y,ΦX
Y = τ)

if ΦX
Y (y) = τ, where the second equality holds because

ΦX
Y is a deterministic function ofY. But this equation

verifies that the conditional law ofX given Y andΦX
Y

depends only onΦX
Y , i.e. X − ΦX

Y − Y, as claimed.
Thus, ΦX

Y achieves the infimum in the definition of
G(Y → X). Therefore,G(Y → X) = H(ΦX

Y ).

Similarly, we haveG(X → Y ) = H(ΦY
X) and

U(X;Y ) can be computed easily from the joint distribu-
tion of (X,Y ) asU(X;Y ) = max{H(ΦX

Y ),H(ΦY
X)}.

Example : Let X = {a, b, c} and Y = {α, β, γ, δ}.
Consider the joint distribution onX ×Y defined by the
following





4
37 0 0 0
0 9

37
2
37

3
37

0 12
37

3
37

4
37





where the rows are indexed by elements ofX and the
columns indexed by elements ofY in the specified order.

The Ǵacs-K̈orner common information is given by
K(X;Y ) = h

(

4
37 , 33

37

)

.
ΦX

Y (α) =
[

1 0 0
]

,ΦX
Y (β) =

[

0 3
7

4
7

]

=
ΦX

Y (δ),ΦX
Y (γ) =

[

0 2
5

3
5

]

. Thus, ΦX
Y takes three

distinct values with probabilities4/37, 28/37 and5/37,
so G(Y → X) = H(ΦX

Y ) = h
(

4
37 , 28

37 , 5
37

)

< H(Y ).
Similarly, ΦY

X(a) =
[

1 0 0 0
]

,ΦY
X(b) =

[

0 9
14

2
14

3
14

]

,ΦY
X(c) =

[

0 12
19

3
19

4
19

]

. Here
ΦY

X takes distinct values with probabilities4/37, 14/37
and 19/37, so G(X → Y ) = H(ΦY

X) =
h

(

4
37 , 14

37 , 19
37

)

= H(X).

Remark : For ageneric joint probability distribution on
the product of finite setsX × Y, we haveK(X;Y ) =
0 and G(Y → X) = H(Y ), G(X → Y ) =
H(X), U(X;Y ) = max{H(X),H(Y )}.

IV. CONNECTION TO A SIDE-INFORMATION PROBLEM

The side-information problem of interest is the fol-
lowing.

A source X is observed by encoder 1 and a correlated
source Y is observed by encoder 2. The samples of the
pair source are i.i.d. over time. Encoderi has a rate-
limited link of capacityRi to a decoder D,i = 1, 2.
A rate pair (R1, R2) is achievable if the decoder can
reconstructX with asymptotically vanishing probability
of error in the usual block-based source coding problem
formulation. The closure of achievable rate pairs is the
capacity region denoted byRsi.



The capacity region for this problem, i.e. the closure
of achievable rate pairs, is given below.

Theorem 4.1: (Wyner [11])
Rsi = ∪p(w|y){(R1, R2) : R1 ≥ H(X|W ), R2 ≥

I(Y ;W )} where the union is taken over random vari-
ablesW satisfyingX − Y − W .

The cardinality of the auxiliary variable in the preced-
ing theorem can be bounded as|W| ≤ |Y|+1. We know
that

• If R2 is set to 0, then the minimumR1 required is
H(X).

• If R2 is set toH(Y ) or higher, then the minimum
R1 required isH(X|Y ).

But if R1 is required to be the lowest possible, that is,
H(X|Y ), do we needR2 to beH(Y ) or can we make
do with a smaller value ofR2? What is the minimum
R2 required? We answer this question in the following
theorem.

Theorem 4.2:

inf{R : (H(X|Y ), R) ∈ Rsi} = G(Y → X) = H(ΦX
Y ) .

Proof :
If (H(X|Y ), R) ∈ Rsi, then by Theorem 4.1,

we must have some random variableW jointly dis-
tributed with (X,Y ) satisfying X − Y − W, such
that H(X|Y ) ≥ H(X|W ) and R ≥ I(Y ;W ).
X − Y − W implies H(X|Y ) ≤ H(X|W ) by the
data processing inequality. This givesH(X|W ) =
H(X|Y ). So, inf{R : (H(X|Y ), R) ∈ Rsi} ≥
infX−Y −W,H(X|W )=H(X|Y ) I(Y ;W ).

Conversely, for anyW satisfying X − Y − W
and H(X|W ) = H(X|Y ), Theorem 4.1 asserts
that (H(X|W ), I(Y ;W )) is an achievable rate pair.
Therefore, inf{R : (H(X|Y ), R) ∈ Rsi} ≤
infX−Y −W,H(X|W )=H(X|Y ) I(Y ;W ).

This gives inf{R : (H(X|Y ), R) ∈ Rsi} =
infX−Y −W,H(X|W )=H(X|Y ) I(Y ;W ).

Now, note that{X − Y − W,X − W − Y } ⇐⇒
{X − Y − W,H(X|W ) = H(X|Y )}. To see this,
first supposeX − Y − W and X − W − Y. X −
Y − W gives H(X|Y ) ≤ H(X|W ) and X − W − Y
gives H(X|Y ) ≥ H(X|W ). Now, supposeX − Y −
W and H(X|W ) = H(X|Y ). Then, I(X;Y |W ) =
H(X|W ) − H(X|W,Y ) = H(X|Y ) − H(X|W,Y ) =
I(X;W |Y ) = 0, so X − W − Y.

Thus, we have

inf{R : (H(X|Y ), R) ∈ Rsi}
= infX−Y −W,H(X|W )=H(X|Y ) I(Y ;W )
= infX−Y −W,X−W−Y I(Y ;W )
= infX−Y −W,X−W−Y I(X,Y ;W ),

where the last step follows becauseX − Y − W
implies I(Y ;W ) = I(X,Y ;W ). This gives usinf{R :
(H(X|Y ), R) ∈ Rsi} = G(Y → X) = H(ΦX

Y ) and
concludes the proof.
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