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Abstract— We consider jointly distributed random vari- problem involving an auxiliary random variable.

ables X and Y. After describing the Gacs-Korner common One of the interpretations of this quantity is as
information between the random variables from the view- the minimum rate at which external randomness

point of the capacity region of the Gray-Wyner system, . .
we propose a new notion of common information between must be supplied to physically separated agents,

the random variables that is dual to the Gacs-Korner each responsible for one of the marginals, so that
common information from this viewpoint in a well-defined they are able to closely reproduce the given joint
sense. We characterize this quantity explicitly in terms of distribution, in an asymptotic formulation.

two auxiliary quantities that are asymmetric in nature, rpo gescriptions above show that these two quantities
and illustrate the operational significance of these new

quantities by characterizing a comer point of the solution Ca@n be roughly thought of as duals of each other in an
to a problem of source coding with side-information in Operational sense. It is also well-known taf.X; Y) <
terms of them. We also contrast this new concept of [(X;Y) < C(X;Y), where both the inequalities hold
common information.for a pqir of random variables with  with equality if and only if any one of the inequalities
the Wyner common information of the random variables, ¢ \ith equality if and only if the joint distribution
which is also a kind of dual to the Gacs-Kdrner common . o
information. admits a decomposition of the fordd = (X', U),Y =
(Y',U) with X' 1L Y'|U.
There has been a lot of interesting work on problems
. INTRODUCTION of common information extending the above notions to
In information theory, mutual information is the mosimore general scenarios. [4] develops a generalization
frequently used notion of common information betweegf the Gacs-Korner common information with appli-
two jointly distributed random variables. Mutual infor-cations to security. [5] and [6] look at the space of
mation correctly captures the information given by onpint distributions that can be generated by nodes in a
of the random variables about the other in a wide rang@twork under communication constraints. [7] considers
of asymptotic formulations of important communicationhe problem of simulating a channel given different
problems of interest. However, there are other notiongtes of common randomness. [8] and [9] consider the
of common information that arise naturally in certaifproblem of information-theoretically secure secret key
problem formulations. Two such notions of common inagreement between nodes in a network in scenarios
formation between a pair of random variables, now welkxploiting common randomness.
known as the Gcs-Korner common information and the  The Gray-Wyner source coding system was introduced
Wyner common information, were defined respectivelyy [10] and its capacity region was determined via

in [1] and [2]. an auxiliary random variable. The Gray-Wyner system
Suppose we are given a pair of jointly distributeds a two-source source coding problem, and there are
random variable¢X,Y’). three rates of interest: a common rate, and two private

o The Ghcs-Kdrner common informatior (X;Y’), rates. Our contribution in this paper is as follows. We
roughly speaking, measures the amount of commerew the mutual information, the &s-korner common
randomness that can be separately extracted franformation, and the Wyner common information from
either marginal of the two jointly distributed ran-the perspective of the capacity region of the Gray-Wyner
dom variables, in an asymptotic formulation. Thisystem. Specifically, these quantities correspond to cer-
was defined and characterized in [1]. Witsenhausé¢ain values of the common rate where the capacity region
strengthened the results of [1] in [3]. of the Gray-Wyner system bears a natural relationship

« The Wyner common informatiorC(X;Y) was to the elementary outer bound to this region defined by
defined in two alternate ways in [2]. It was showrbasic information-theoretic considerations. We present
that the two definitions are equivalent and the quasm formula expressing the &s-kKorner common infor-
tity was characterized in terms of an optimizatiomation as the supremum of an information-theoretic



quantity over a set defined using one auxiliary random l]E[dH(Y", (S, 82))] < e,

variable, that has a similar flavor to the well-known n

formula for the Wyner common information [2]. We therivhered; (-, -) is the Hamming distortion metric.

define a new concept of common information associatedAn €lementary outer bound to the set of achievable
with a pair of jointly distributed random variables that igate triples in the Gray-Wyner system, coming from basic
motivated by the relation between the capacity region gfformation-theoretic considerations, is given in Thm. 2
the Gray-Wyner system and its elementary outer bour@f, [10]; the following inequalities must hold:

and, from this viewpoint, can be perceived as a dual to

the Gacs-Korner corrr)1mon informart)ion. We characterize Bo+ By = H(X), @)
this quantity in terms of two auxiliary asymmetric quan- Ro + Ry H(Y), @)
tities, and show that these newly defined quantities have Ry + R1 + Ra H(X,Y). 3
operational significance in the context of charactenzmlget L= {(Ro,R1, Rs) : Ro, Ry, Ry > 0,Ro + Ry >

i s s o PO SR 2 . T 2 HOCY)
' and letR be the set of achievable rate triples. Clearly,
R C £ and, in general, the inclusion is strict [10].
Il. SETUP AND DEFINITIONS Let P be the family of probability distributions
Let (X,Y) be jointly distributed random variablesp(z,y, w) with = € X,y € Y,w € W, where W
taking values in finite setst and Y respectively with is a finite set and which satisfy_ ., p(z,y,w) =
the joint distribution Q(z,y). [1] defines a quantity, Q(z,y), and P, the subset of? where W has
nowadays called the &&s-Korner common information cardinality bounded aswW| < |X|.|Y| + 2. For

2
2

K(X;Y) of (X,Y), and establishes it to be equal to the(z,y,w) € P, define R = {(Ro, Ri,R>)
supremum offf (V) over all random variable¥, taking Ro > I(X,Y;W) Ry > HX|W), Ry >
values in some finite sé?, that can be written as H(Y|W) for ()((,)Y, W) ~ p(x,va%}; and define
Rp = UpepR'¥P andpr = Upep, R\,
V=FX)=g) Theorem2.1: R = cl(Rp) = Rp,, wherecl (-)

for some functionsf : X +— V andg : Y — V. Since denotes closure of a set.

H(V) = I(V;V) = I(f(X);9(Y)) < I(X;Y), we Pproof : [10] establishes the first equality, where one
have K'(X;Y) < I(X;Y). An alternative approach is does not have the cardinality bound . The second

to define this quantity using the Gray-Wyner system agjuality can be obtained once one gets the cardinality

described below. bound by the Cara#fodory-Fenchel theorem as follows.
Given  (Ro, Ry, Rs)  satisfying Ry >
A. Gray-Wyner system I(X,Y;W),Ry > H(X|W) and R, > H(Y|W)

fosr some(X,Y, W) ~ p(z,y,w) without a cardinality
fdund onw and where(X,Y) has the law of the
]sourceQ(x,y), fix p(z, y|lw) and consider the equations

The Gray-Wyner system is a source coding system
shown in Figure 1. The problem formulation from [10
is as follows. Let{(X;,Y;)}2, be a sequence of i.i.d.

random variable pairs drawn from the s&tx ) with .
the marginal distributioiX,Y") ~ Q(z,y). A code with pr(w)p(x’ ylw) = Qlz, )
parameters$n, My, My, M) is comprised of an encoder, we
i.e. a mapping which give |X|.|Y| — 1 equality constraints since
one of them is implied by the others, and the three
[t X" x Y™ [Mo] x [My] x [Ma], inequalities
where[M] denotes the s€ftl, 2,..., M}, and a decoder,
i.e. a pair of mappings X;Vp(w)H(p(z|w)) < H(X|W),
we
(X) n
2| M| x M| — X"
5 (Mol x (M) 3 p(w)Hiplylw) < H(Y[W),
(DJ/) : [M()] X [MQ] — yn weWw
Let fg(X™ Y™) = (Sp,S1,5,). We say that a triple > p(w)H (p(z, ylw)) < H(X,Y[W).
of rates(Ry, R1, R2) is achievable if for arbitrary > weW

0, there exists, for sufficiently large, a code with  This system of linear equations and inequalities for
parameters(n, Mo, My, Ms) with Llog M; < R; +¢€ (p(w) : w € W) is feasible in the simplex given by
fori=0,1,2 and p(w) > 0,Yw € Wand}_ ., pw) = 1, so it must

1 o ) have a solution in this simplex witlip(w),w € W)
~Eldr (X", fp7 (5, 51))] < being non-zero on a subset of size at m@st|.|y| —
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Fig. 1. The Gray-Wyner source coding system

1)+3 = |X|.]Y|+2, which proves the desired cardinality rate triples allowed by inequalities (1), (2) and (3)
bound. |} are achievable.

The mutual information, the &s-Korner common  We will provide a characterization df (X;Y’) and
information, and the Wyner common information of &liSCUSS its connections with a problem of source coding
pair of random variables can be understood in terms With side information, introduced in Section IV.
the relation between the regidR in Theorem 2.1 and

the elementary outer bound to this region, as defined I1l. RESULTS AND PROOFS
by the inequalities (1), (2), (3). To see this, we observe kirst we prove the equivalence of the two notions of
the following. the Gacs-Korner common information, namely:

1) Mutual informationI (X;Y") is the value ofR, at
the intersection of the three planes constituting the *
boundary of the outer bound, i.e. the inequalities
). 2. 3).

2) Gacs-Korner common informatiod (X;Y) is the V=Ff(X)=9gY);
supremum ofR, over all achievable rate triples
that satisfy inequalities (1) and (2) with equality.
This is different from the original definition in R<I(X;Y),{Ro = R}f‘ LC R}

[1]. It is proved in Theorem 3.1 below that the Theorem3.1l: K(X;Y) = K(X;Y).
two notions are equivalent. Note thAt(X:Y) < p.oof - FEirst note that for0 < R < I(X:Y), we
I(X;Y). _ _ _ _ have{R, = R\ N L C R if and only if (R, H(X) —

3) Wyner common informatiorC'(X;Y) is the in-  p H(Y)-R) € R.

fimum of R, over all achievable rate triples that ’Start with anyV = f(X) = g¢(Y). Setting R =

satisfy the inequality (3) with equality. [2] H(V),R, = H(X|V) and R; — H(Y|V) we can
One may thus think of the Wyner common in1‘ormatior\1,er”=y thatR < I(X;Y),R; = H(X) — R and R, =
as a dual to the &cs-Korner common information also H(Y) - R. With W’ :’V we get that(R, H(X) —

3

in the above sense. However, we may also think of the H(Y) - R) € R. This givesk (X;Y) > K(X;Y).
Gacs-Korner common information in a different way i '£or the converse SUPPOSE® H()’() R H(i/) ~

the context of the relation between the regiinand p) ¢ % From Theorem 2.13W defined byp(w|z. y)
its elementary outer bound, which then suggests aaying values in the finite sety, so that e

different dual to the Gcs-Korner common information.

K(X;Y) is the supremum of{ (V') over all ran-
dom variablesV, taking values in some finite set
V, that can be written as

« The alternative definition is<(X;Y) = sup{R :

4) Gacs-Korner common informatiod (X;Y') is the R = I(X,Y;W)+ po;
supremum ofR, such thatkR, < I(X;Y) and HX)-R = H(X|W)+pi;
for which Ry, all non-negative rate triples allowed HY)-R = H(Y|W)+ps

by inequalities (1), (2) and (3) are achievable. It

is straightforward to see that this description ifor p; > 0 for i = 0,1, 2.

equivalent to the one given in item 2) above. Adding the first and second equality gives+ p1 +
5) DefineU(X;Y) as the infimum ofR, such that I(Y;W|X) = 0. Adding the first and the third gives

Ry > I(X;Y') and for whichR,, all non-negative py + p2 + I(X;W]Y) = 0. These yieldpy = p1 =



p2 = IY;W|X) = I(X;W|Y) = 0. Thus, the Proof : From Theorem 3.1,

joint distribution of (X, Y, W) must respect the Markov ] o ) . B

chainstV — X — ¥ and X — Y — W, K(X;Y) = sup{R:R<I(X;Y),{Rp=R}NLCR}
We may assume without loss of generality that) > = sup{R: (R,H(X)-R,H(Y)— R) € R}.

0 forall z € & andp(y) > 0 for all y € Y. Let For any W with a joint distribution p(z,y,w)

A:={(z,y) € X xY : p(x,y) >0} . satisfying W — X — Y and X — Y — W, we

_ have from Theorem 2.1 that/(X,Y; W), H(X) —
Consider(z,y) € A. Then, for anyw € W such that I(X,Y;W),H(Y) — I(X,Y;W)) € R because

p(wlz,y) >0, we have H(X|W) = H(X) — I(X,Y;W) and H(Y|W) =
p(w,z,y) = plw|z,y)Q(z,y) = p(w|z)Q(z,y) HY)-I(X,Y;W). ltis also straightforward to check

) that I(X,Y; W) < I(X;Y). This gives K(X;Y) >

from the Markov chaifid — X — Y, and SUPW —x—y x—y —w L(X, Y3 W).

plw, z,y) = plw|z, y)Q(z,y) = plw|y)Q(z, y) For the converse, from Theorem 2.1,(R, H(X) —

. R,H(Y) — R) € R, then 3p(z,y,w) € P such that
from the Markov chainV —Y — X. Let@&’y) denote p > I(X,Y;W),H(X) — R > H(X|W),H(Y) —
the function fromA to P()V) (the simplex of probability r - r(y|w). Adding the first and second inequal-
distributions onV), taking (z, y) to the conditional law jiies gives usiW — X — Y and equalities for both.
of W given {X = 2,V = y}, i.e. to the law(w —  Adding the first and third inequalities gives u§ —
p(wlz,y)). Similarly, let % denote the function from y _ 11/ and equaliies for both. SoK(X;Y) <
A to P(W) taking = to the conditional law ofV given g, O (X VW),

{X = z} i.e. to the law(w — p(w|z)), and let®} T _ _ . .
denote the function fromy to P(W) taking y to the ~ The Wyner common information was dgflned as |n.3)
conditional law of W given {Y = y} i.e. to the law and characterized in [2]. We now state this characteriza-

(w — p(wly)). The preceding two calculations tell ustion and provide a proof for completeness.

that for (z,y) € A we have Theorem 3.3: (Wyner [2])
Oy (2,y) = X (2) = 2V (y) - C(X;Y)= _inf I(X.Y;W).

Next, consider the bipartite graph with left vertex sét Proof : If some triple(Ry, R1, Ry) € R satisfiesR +
and right vertex sel, where the edgéz,y) exists iff R, + R, = H(X,Y), then by Theorem 2.1 we must
(z,y) € A. Consider the decomposition of this grapthave for somdV that

into connected components. By the above, on every

connected component each edge maps to the same law Ry = I(X,Y; W)+ po;
on W under the ma@}@’(’ye{ It follows that there must Ry = H(X|W)+ p1;
be a random variabl&yy that is constant on the edges Ry = H(Y|W)+ po,

of any connected component, taking values in a finite set

V (one can think of this as just the index of the connectd@f pi > 0 fori=0,1,2. _

component) and another finite random varialevhich ~ Adding the three equalities gives?(X,Y) =
is independent of X, Y), taking values in the finite set #(X,Y) + I(X;Y|W) + po + p1 + p2 which implies
U, such that¥ can be written as a deterministic function’X —W —Y and also thap, = p; = p2 = 0 so thatRy =
W = t(U,Vxy) (hereU is just used to construct thel(X,Y;W). So,C(X;Y) > infx_w_y I(X,Y;W).
law of W once one knows the index of the connected Conversely, for any W,

component). We will call’yy the block index random (I(X,Y; W), H(X|W),H(Y|W)) € R and if W
variable of the paifX,Y). happens to satisfyX — W — Y, then we have

C(X,Y) < ian,W,yI(X,Y;W). I

Ry=I(X,Y;W)=I(X,Y;t(U,V < H(Vxy) ,
’ ( ) ( (U Vav)) (Vacy) Let us define the following.

where the first equality is becaugg = 0, and the last

inequality is becaus# is independent of X,Y). This Definiion G(Y — — — X) = nf{R
gives i (R, H(X|Y),H(Y) - R) € R}
K(X,Y) < K(X,Y) Definiion G(X — Y) := inf{R : (R,H(X) —
and concludes the proof. Jj R, H(Y]X)) € R}.
Corollary 3.2: GY — X) (respectiverG(X — Y)) is the _infimum
of Ry over all achievable rate triples that satisfy (2) and
K(X;Y)= sup I(X,Y;W). (3) (respectively (1) and (3)) of the outer bound with

y_w equality.



We characterize the above defined quantities
U(X;Y) in the following theorem.

Theorem 3.4:

GY - X)= inf I(X,Y;W);
X-Y-W
X-W-Y

GX—-Y)= inf IX)Y;W);
W-X-Y
X-W-Y

UX;Y) =max{G(Y - X),G(X = Y)}.
Proof :  We begin with G(Y — X). For any

finite set W, and p(w|z,y) with p(z,y,w)
Q(z,y)p(w|x,y) € P, we have from Theorem 2.1
that (I(X,Y; W), H(X|W),HY|W)) € R. If W
satisfies, in addition, the Markov conditiods—Y — W
and X — W —Y, we get/(X,Y; W) + H(Y|W)
H(Y) and I(X,Y;W) + H(X|W) + H(Y|W)
H(X,Y). This immediately givesG(Y — X)
iIle,y,WJ(,W,Y I(X7Y,W)

For the converse, suppose for sontg we have
(R,H(X|Y),H(Y) — R) € R. From Theorem 2.1, it
follows that 3p(z,y, w) € P such that

IA

R I(X,Y; W) + po,
H(X|Y) = H(X|W)+pi,
H(Y)-R H(Y|W) + pa.

Adding the first and third equalities above gives

H(Y)=HY)+I(X;W|Y)+po+p2. Adding all three
givesH(X,Y) = HX,Y)+I(X;Y|W)+po+p1+p2.
It follows that pPo = p1 = pP2 = I(X,W|Y) =
[(X;Y|W) = 0. Thus,X —Y —W andX — W —Y hold
and SO,G(Y — X) > iIle,y,W’X,W,Y I(X, Y; W)

Similarly, we can prove the claimed formula for

G(X — Y). It is easy to verify that/(X;Y) <
C(X;Y) < GY — X) < H(Y). The first inequality
is from the characterization @f(X;Y’) in Theorem 4.1,

the second inequality is from the characterization in this
theorem and because the infimum is over a smaller set

of joint distributions, and the third inequality follows
from the characterization in this theorem willi =
Similarly, I(X;Y) < C(X3Y) < G(X — Y) <
H(X).

Now, we turn our attention to the main quantity

UX;Y) =inf{R: R > I(X;Y),{Ry = R}NL C
R}. Assume without loss of generality thadf (X) <

H(Y).

andNote that forR > I(X;Y),

{Ro=R}NL
= {(RRi,R):Ri>HX)-RT ", R >(H(Y)-R)T,
Ri+ Ry > (H(X,Y)-R)"}
{(R,Rl,Rz)ZRle( ) RRQ_ (Y) ,
Ri+ Ry > H(X,Y)—R}, if I(X;Y)<R< H(X)
{(R,Ri,R2): Ry > 0,Ry > H(Y) — R,
Ri+ Ry > H(X,Y)—R}, if HX)< H(Y)

{(R, Rl,Rg) : R1 Z O,RQ Z 07
Ri+ Ry > H(X,Y) — R},
{(R,R1,R2): R1 > 0,R2 >0,

Ri+ Ry >0}, if R>H(X,Y).

if HY)<R< H(X,Y)

Suppose that for somB > I(X;Y) we have{Ry =
RINnL C R.If R < H(X), then (R, H(X) —
R,H(Y|X)) is achievable, saR > G(X — Y). If
R > H(X), then of courseR > G(X — Y). Thus,
U(X;Y)>G(X —Y). Similarly, if R < H(Y), then
(R,H(X|Y),H(Y)—R) is achievable, s® > G(Y —

X). If R > H(Y), then of courseR > G(Y — X).
Thus,U(X;Y) > G(X — Y). This givesU(X;Y) >
max{G(Y — X),G(X = Y)}.

Now, choose alR > max{G(Y — X),G(X — Y)}.

We will show that{ Ry = R}NL C R. As argued above,
{Ro = R}NL as a subset of Ry = R} is the polyhedral
region of rate pairs that pointwise dominate a convex
combination of two (possibly identical) distinguished
rate pairs. We will show that the rate triples defined
by these rate pairs, which we call corner points, are
achievable.

This follows from the achievability of the points

. (H(X,Y),0,0),

« (H(Y),H(X]Y),0),

« (H(X),0, H(Y]X)),

« (GY = X),H(X|Y),H(Y) - GY — X)),
« (GX —Y),H(X)-GX —Y),HYI|X)),

all of which can be easily verified. The details are below:
o Case IR> H(X,Y).
Here, {RO R} n L {(R,Rl,Rg)
R, > 0,R; > 0}. This is achievable since
(H(X,Y),0,0) € R.
Case ILH(X,Y)>R>H(Y)> H(X).
Here,{Ry = R} N L = {(R,R1,Rs) : Ry >
(X,Y) — R}. The
— R) is achievable

0,Ry > O,Ri + Ry, > H
corner point (R,0, H(X,Y)

because itis a convex combination of the achievable
points (H(X,Y),0,0) and (H(X),0, H(Y|X)).
Similarly, the corner point(R, H(X,Y) — R,0)

is achievable because it is a convex combi-
nation of achievable point§H(X,Y"),0,0) and
(H(Y),H(X|Y),0).

Case llLH(Y) > R > H(X).

Now, {Ro = R} NnL = {(R,Rl,Rg)
0,Ry >H(Y)-R,Ri+R.> H(X,Y)—

t Ry >
R}. The



corner point(R,0, H(X,Y)—R)isaconvexcom- X —Y —V and X —V — Y give &¥(v) =
bination of the achievable point§H(X,Y),0,0) @ (y) V(y,v) € A, i.e. ®¥ = &¥ as random variables.
and (H(X),0,H(Y|X)). The other corner point Thus, H(®:X|V) = 0.

(R,H(X|Y),H(Y)— R) is a convex combination So, we havel(X,Y;V) = I(X,Y;V,®¥) >
of the achievable point$H (Y), H(X|Y),0) and I(X,Y;®s). Note that by definition®:¥ itself satisfies

(GY - X),HX|Y),HY) -G — X)). X —Y — & It also satisfies\ — ¥ — Y which can
o Case IV:H(X) >R > I(X;Y). be checked by writing for al(z, y) with p(z,y) > 0,
Now, {RO = R} nL = {(R, Rl, RQ)

R, > H(X) — R,Ry > H(Y) — R R, + T(y) ::p(X:SC|Y:y):p(X:I|Y:y,‘I)§/(:T)

Ry > H(X,Y) — R}. The corner point if ®(y) =7, where the second equality holds because
(R,H(X|Y),H(Y) — R) is a convex combination ®:% is a deterministic function o¥". But this equation

of the achievable point¢H (Y), H(X|Y),0) and verifies that the conditional law ok given Y and &%
(GY — X),HX|Y),HY) - GY — X)). depends only orbs\, i.e. X — &5 — Y, as claimed.

The other corner pointR, H(X) — R, H(Y|X)) Thus, & achieves the infimum in the definition of
is a convex combination of the achievable point&(Y — X). Therefore,G(Y — X) = H(®3¥). |

gfg(Xl(;;?;IY(gQ)?nd (GX = ¥), HX) - Similarly, we haveG(X — Y) H(®Y) and
’ ' U(X;Y) can be computed easily from the joint distribu-

;*)“}JS W; havel/ (X;Y) = max{G(Y — X),G(X — o of (X,Y) asU(X;Y) = max{H(®¥), H(®¥)}.

Example : Let X = {a,b,c} andY = {a,3,7,0}.

A Bxplicit characterization of G(Y — X), G(X — Y) Consider the joint distribution o/’ x ) defined by the

and U(X:Y) following 0 0 o
37

Assume without loss of generality thaty) > 0 Vy € 0 2 3727 3%

Y. Let & denote the function fron) to P(X) (the 0 % = =

simplex of probability distributions orit’) taking y to
the conditional law ofX giveny. We also think of it as
a random variable. Le¥’xy be the block index random
variable of the joint distribution op(x, y), as defined in 33
the proof of Theorem 3.1. % _ApT T X B 3 41 _
Some results of general interest are collected belo ')?Y(a) n fl 09 ’q;‘]’ (B) = 10 % 7] =

: . $(8), 05 (v) = [0 2]. Thus, @3 takes three
Lemma 35: 1) If, for any random variableV, oot values with probabiiities,/37, 28,/37 and5/37,

where the rows are indexed by elementsidfand the
columns indexed by elements dfin the specified order.

The Gacs-Korner common information is given by
K(X;Y) zh(i 33).

(Wl

(SIS

we have H(VIX) = HVIY) = 0. hen ooy o X) = H@OY) = h (&, 2, Z) < H(Y).
H(V|Vxy) =0. Similarly, ®%(a) = [1 0 0 0],0%(b) =
2) Vxy has the largest entropy among all randon'[l0 9 2 ;] Y (c) = [0 12 3 i} Here
; e _ _ 4 14 14l 19 19 19)°
variablesy’ satisfying (V| X) = H(VIY') = 0. gy takes distinct values with probabilities/37, 14/37
3) If, for any random variabl®, we haveH (V|Y) = and 19/37, so G(X — Y) = H(®Y) =
0andX — V - Y, then H(®¥|V) = 0. B 119y Z p(x) "
377 377 37 :

4) ®¥ has the smallest entropy among all random
variablesV satisfyingX —V —Y andH(V|Y) = Remark : For ageneric joint probability distribution on
0. the product of finite set’ x ), we haveK(X;Y) =
5) For any random variabl® satisfyingX -V -Y 0 and GY — X) = H({Y), GX — Y) =
andX —Y -V, we haveH (& |V) = 0,s0®5 has H(X), U(X;Y) = max{H(X), H(Y)}.
the smallest entropy among all random variables
V satisfyingX —V —Y and X —Y — V. Thus, |V. CONNECTION TO A SIDEINFORMATION PROBLEM

G(Y — X) = H(D3). The side-information problem of interest is the fol-
Proof : The first four items are easy to prove. wdowing. ,
provide a proof for the last item. A source X is observed by encoder 1 and a correlated
Let V taking values in/ satisfy X —V — Y and X — source Y is observed by encoder 2. The samples of the

Y —V. Consistent with the earlier introduced notation, |pall source are ""d'_ over time. Encodemqs a rate-
o¥ and ‘I%/y) denote the conditional law ok given limited link of capacity R; to a decoder D; = 1,2.

V and (V,Y) respectively. Without loss of generality,A ratetpalJ:}gRl.,tﬁg) IS a::htl'evrls:ble 'f.t?f decogeL'lc.:fn
assumep(v) > 0 V v € V. reconstructX with asymptotically vanishing probability

Let us define of error i_n the usual block-basec_l source coding_ prpblem
formulation. The closure of achievable rate pairs is the
A:={(y,v) e Y xV : p(y,v) >0}. capacity region denoted i
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