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Abstract— We describe a simple improvement over the
Network Sharing outer bound [1] for the multiple unicast
problem. We call this the Generalized Network Sharing
(GNS) outer bound. We note two properties of this bound
with regard to the two-unicast problem: a) it is the tightest
bound that can be realized using only edge-cut bounds and
b) it is tight in the special case when all edges except those
from a so-called minimal GNS set have sufficiently large
capacities. Finally, we present an example showing that the
GNS outer bound is not tight for the two-unicast problem.

Keywords: Two-unicast problem, Edge-cut bounds, Gen-
eralized Network Sharing outer bound, GNS set

I. INTRODUCTION

Recent results in network coding due to Dougherty,
Freiling, Zeger suggest that characterizing the capacity
region of a general multi-source multi-sink network is
hard: scalar-linear solvability of a general network is
equivalent to the solvability of a general polynomial
collection [2]; linear coding is insufficient to achieve
capacity [3]; non-Shannon information inequalities can
strictly improve outer bounds on the capacity region of
a network obtained by Shannon information inequalities
alone [4]. Further, Chan and Grant show in [5] that the
problem of determining the achievable rate pairs (R0, R1)
in a network with two messages with collocated sources
but many destinations, each requesting either the common
message or both messages, is equivalent to the problem
of characterizing the set of all almost entropic functions,
Γ̄∗. The networks presented as “counterexamples” in
these works have three or more sources or three or
more destinations. A natural question to ask is whether
having fewer sources and destinations will lead to a more
amenable problem.

We are led to study the problem of two sources and two
destinations - each source with an independent message
for its own destination - i.e. the two-unicast problem,
as a possible fruitful direction. The only network coding
results in the literature dealing exclusively with the two-
unicast networks are [6] and [7] which provide necessary
and sufficient conditions for achieiving (1, 1) in a two-
unicast network with all links having integer capacities.
This result unfortunately, relies heavily on the assumption
of integer link capacities, and hence cannot give us
necessary and sufficient conditions for achieving other
points such as (2, 2) or (3, 3) by scaling of link capacities.
Characterizing the capacity region of a given two-unicast

network seems like an interesting direction, which is the
motivation for this work.

We provide an outer bound for the multiple unicast
problem that is a simple improvement over the Network
Sharing outer bound [1], which we call the Generalized
Network Sharing (GNS) outer bound. We observe two
interesting properties of this bound related to the two-
unicast problem - properties that suggest that the bound
may be tight for all two-unicast networks. Unfortunately,
we find that this is not the case and conclude the paper
with a two-unicast “counterexample”.

II. NETWORK MODEL

A network N consists of a directed acyclic graph G =
(V, E) along with a link-capacity vector C = (Ce)e∈E(G)
with Ce ∈ R≥0∪{∞} ∀e ∈ E(G). An n-unicast network
(n ≥ 1) has n distinguished vertices s1, s2, . . . , sn

called sources and n distinguished vertices t1, t2, . . . , tn
called destinations, where each source si has independent
information to be communicated to destination ti.

For edge e = (v, v′) ∈ E(G), define tail(e) := v and
head(e) := v′, the edge being directed from the tail to
the head. For v ∈ V(G), let In(v) and Out(v) denote the
edges entering into and leaving v respectively.

For S ⊆ E(G), define C(S) :=
∑

e∈S Ce. For disjoint
non-empty A,B ⊆ V(G), we say S ⊆ E(G) is an A−B
cut if there is no directed path from any vertex in A to any
vertex in B in the graph G \S. Define the mincut from A
to B by c(A;B) := min {C(S) : S is an A−B cut} .

We say that the rate tuple (R1, R2, . . . , Rn) is achiev-
able for the n-unicast network N = (G,C), if there exists
a positive integer N (called block length), a finite alphabet
A and encoding functions:
• For e ∈ Out(si), fe : AdNRie 7→ AbNCec, 1 ≤ i ≤
n,

• For e ∈ Out(v), v 6= si, 1 ≤ i ≤ n, fe :
Πe′∈In(v)AbNCe′c 7→ AbNCec,

and decoding functions fti
: Πe′∈In(ti)AbNCe′c 7→

AdNRie, 1 ≤ i ≤ n, so that ∀(m1,m2, . . . ,mn) ∈
Πn

j=1AdNRje, we have gti(m1,m2, . . . ,mn) =
mi, ∀i, 1 ≤ i ≤ n where gti : Πn

j=1AdNRje 7→ AdNRie

are functions induced inductively by {fe : e ∈ E(G)}
and fti

, 1 ≤ i ≤ n.
The capacity region for an n-unicast network N ,

denoted C(N ) = C(G,C), is defined as the closure of



the set of achievable rate tuples. The closure of the set of
achievable rate tuples over choice of A as any finite field
and all functions being linear operations on vector spaces
over the finite field, is called the vector linear coding
capacity region Cvector. If we further have N = 1, then
the convex closure of achievable rate tuples is called the
scalar linear coding capacity region Cscalar. We consider
only two-unicast networks in this paper.

III. GENERALIZED NETWORK SHARING OUTER
BOUND

We first describe the Network Sharing outer bound and
the Generalized Network Sharing (GNS) outer bound for
the case of a two-unicast network.

Theorem 1: (Network Sharing outer bound [1]) Fix
(i, j) = (1, 2) or (2, 1). For a two-unicast network
N = (G,C), if T ⊆ E(G) is an s1, s2 − t1, t2 cut and if
S ⊆ T is such that for each edge e ∈ T \ S, we have
that tail(e) is reachable from si but not from sj in G
and head(e) can reach tj but not ti in G, then we have
R1 +R2 ≤ C(S) ∀(R1, R2) ∈ C(N ).

We define a set S ⊆ E(G) to be a GNS set if
• G \S has no paths from s1 to t1, s2 to t2 and s2 to
t1 OR

• G \S has no paths from s1 to t1, s2 to t2 and s1 to
t2.

Theorem 2: (GNS outer bound) For a two-unicast net-
work N = (G,C) and a GNS set S ⊆ E(G), we have
R1 +R2 ≤ C(S) ∀ (R1, R2) ∈ C(N ).

Note that Theorem 2 implies Theorem 1.

Proof: Consider a scheme of block length N achieving
the rate pair (R1, R2) over alphabet A. Let W1,W2 be in-
dependent and distributed uniformly over the sets AdNR1e

and AdNR2e respectively. For each edge e, define Xe as
the concatenated evaluation of the functions specified by
the scheme for edge e.

Let XS := (Xe)e∈S . Then, H(W1,W2|XS) =
H(W1|XS) + H(W2|W1, XS). But, H(W1|XS) = 0
because G \ S has no paths from s1 or s2 to t1. And
H(W2|W1, XS) = 0 because G \S has no paths from s2
to t2. Thus, H(W1,W2|XS) = 0. So, N · log |A| · (R1 +
R2) ≤ H(W1) + H(W2) = H(W1,W2) ≤ H(XS) ≤
N · log |A| · C(S).

As the inequality holds for every achievable rate pair,
it also holds for every point in the closure of the set of
achievable rate pairs.

For a two-unicast network N , let the GNS
sum-rate bound cgns(s1, s2; t1, t2) be defined
as cgns(s1, s2; t1, t2) := min{C(S) : S ⊆
E(G) is a GNS set}. The GNS outer bound is defined
as the region {(R1, R2) : R1 ≤ c(s1; t1), R2 ≤
c(s2; t2), R1 + R2 ≤ cgns(s1, s2; t1, t2)}. For a given
two-unicast network, the GNS sum-rate bound is a
number while the GNS outer bound is a region. The
following generalization of Theorem 2 may be proved
similarly.

Theorem 3: Consider an n-unicast network N =
(G,C). For non-empty I ⊆ {1, 2, . . . , n} and S ⊆ E(G),
suppose there exists a bijection π : I 7→ {1, 2, . . . , |I|}
such that ∀ i, j ∈ I, G \ S has no paths from source si

to destination tj whenever π(i) ≥ π(j). Then,
∑

i∈I

Ri ≤ C(S) ∀(R1, R2, . . . , Rn) ∈ C(N ).

The GNS outer bound is a special case of the edge-
cut bounds in [8]. However, it is simpler and much more
explicit. Moreover, we will show in Theorem 5 that it is
the tightest possible outer bound resulting from edge-cut
bounds for two-unicast networks and is thus, equivalent
to the bound in [8] for two-unicast networks. The GNS
outer bound is also a special case of the LP bound in
[9], which is the tighest outer bound obtainable using
Shannon information inequalities. In Section IV-C, we
will show that the LP bound is in general tighter than the
GNS outer bound for two-unicast networks. However, the
GNS outer bound can be strictly better than the Network
Sharing outer bound [1] as shown in Fig. 1.
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(a) Grail with variable
capacities. e1, e2 have
unit capacity and all
other edges have ca-
pacity 2 units.
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Fig. 1. The GNS outer bound can be strictly better than the Network
Sharing outer bound. {e1, e2} is a GNS set.

IV. PROPERTIES OF THE GNS OUTER BOUND FOR
TWO-UNICAST NETWORKS

A. Tightest outer bound resulting from edge-cut bounds
For an uncapacitated two-unicast network G, an in-

equality of the form α1R1 + α2R2 ≤ C(S), with
α1, α2 ∈ {0, 1}, S ⊆ E(G) is called an edge-cut bound
if the inequality holds for all (R1, R2) ∈ C(G,C), for
each choice of C. The cutset outer bound, the Network
Sharing outer bound and the GNS outer bound are all
outer bounds resulting from edge-cut bounds. Further, the
Network Sharing outer bound is an improvement over the
cutset bound and the GNS outer bound is an improvement
over the Network Sharing outer bound. In Theorem 5, we
show that it is impossible to improve on the GNS outer
bound using edge-cut bounds for two-unicast networks.
First, we will state and prove a useful result.

Theorem 4: (Two-Multicast Theorem) For a two-
multicast network N = (G,C) with sources s1 and s2



multicasting independent messages at rates R1 and R2

respectively to both the destinations t1 and t2, (R1, R2)
is an achievable rate pair if and only if

R1 ≤ min{c(s1; t1), c(s1; t2)},
R2 ≤ min{c(s2; t1), c(s2; t2)},

R1 +R2 ≤ min{c(s1, s2; t1), c(s1, s2; t2)}.

Proof: The necessity of these conditions is obvious. For
proving sufficiency, fix a rate pair (R1, R2) that satisfies
these conditions and consider a new network Ñ obtained
by adding a super-source s with two outgoing edges to s1
and s2 with link capacities R1 and R2 respectively. We
use the single source multicast result ([10], [11]) on Ñ to
infer the existence of a scheme for s multicasting at rate
R1 +R2 to the destinations t1 and t2. This allows us to
construct a two-multicast scheme in the original network
N achieving the desired rate pair.

Theorem 5: Let G be an uncapacitated two-unicast
network, and let S ⊆ E(G) such that R1 + R2 ≤ C(S)
is an edge-cut bound. If S is not a GNS set, then
c(s1; t1) + c(s2; t2) ≤ C(S) for all choices of C.

Remark: The cutset bounds provide all possible edge-
cut bounds on the individual rates. Theorem 5 says
that the GNS sets together provide all possible edge-cut
bounds on the sum rate that are not already implied by
the individual rate cutset bounds.

Proof: Suppose R1 + R2 ≤ C(S) holds for all
(R1, R2) ∈ C(G,C) for all choices of C. Then, it must
be that S is an si − ti cut for i = 1, 2, so that G \ S has
no paths from s1 to t1 or s2 to t2. If G \ S has no paths
from s1 to t2 also, then S is a GNS set and the outer
bound follows from Theorem 2. Likewise if G \S has no
paths from s2 to t1.

So, suppose that G \ S has no paths from s1 to t1 or
s2 to t2 but it has paths from s1 to t2 and s2 to t1.
Define Ci(S) := min{C(T ) : T ⊆ S, T is an si −
ti cut} for i = 1, 2. Fix any choice of non-negative
reals {ce : e ∈ S}. Consider the following choice
of link capacities: Ce = ce ∀e ∈ S and Ce =
∞ ∀e /∈ S. Note that for this choice of link capacities,
c(si; ti) = Ci(S), i = 1, 2. By Theorem 4, (R1, R2)
is achievable for two-multicast from s1, s2 to t1, t2 if
and only if R1 ≤ C1(S) and R2 ≤ C2(S), since
c(s1, s2; t1) ≥ c(s2; t1) = ∞, c(s1, s2; t2) ≥ c(s1; t2) =
∞. Thus, (C1(S), C2(S)) is achievable for two-multicast
and hence, also for two-unicast. Since R1 +R2 ≤ C(S)
holds for all (R1, R2) ∈ C(G,C), we must have C1(S) +
C2(S) ≤ C(S) ∀{Ce : e ∈ S}. This is a purely graph
theoretic property about the structure of the set of edges
S relative to the uncapacitated network G. Now, for an
arbitrary assignment of link capacities C, we have by
definition, c(s1; t1) ≤ C1(S) and c(s2; t2) ≤ C2(S).
Thus, we have c(s1; t1) + c(s2; t2) ≤ C(S).

B. Tightness in special cases

The next theorem shows that any minimal GNS set,
i.e. a GNS set with no proper GNS subset, provides an
outer bound that is not “obviously loose”.

Theorem 6: For a given two-unicast graph G, let S ⊆
E(G) be a minimal GNS set. Choose an arbitrary col-
lection of non-negative reals {ce : e ∈ S}. Consider
the following link-capacity-vector C : Ce = ce ∀e ∈
S, Ce =∞ ∀e /∈ S. Then, for the two-unicast network
(G,C), the GNS outer bound is identical to the capacity
region C(G,C), i.e. the GNS outer bound is tight.

Remark: Theorem 6 does not say that a sum rate of
cgns(s1, s2; t1, t2) = C(S) is achievable, only that all rate
pairs in {(R1, R2) : R1 ≤ c(s1; t1), R2 ≤ c(s2; t2), R1 +
R2 ≤ cgns(s1, s2; t1, t2)} are achievable. A sum rate
of C(S) is achievable only when C(S) ≤ c(s1; t1) +
c(s2; t2) for the choice of capacities.

Proof: Define Ci(S) := min{C(T ) : T ⊆
S, T is an si − ti cut} for i = 1, 2 as before. As S is
a minimal GNS set, the GNS outer bound for (G,C) is
given by

R1 ≤ C1(S), R2 ≤ C2(S), R1 +R2 ≤ C(S). (1)

We will assume that ce is an integer for each e ∈ S
and describe scalar linear coding schemes over the binary
field F2 with block length N = 1 achieving the GNS
outer bound. Having done this, it is easy to see that
the theorem would also hold for choice of non-negative
rational and thus, also non-negative real choice of ce, e ∈
S. Henceforth, we will imagine a link of capacity ce as
having ce unit capacity edges connected in parallel. This
change could be made in the graph and in this proof,
we will use G to denote the graph with all edges having
unit capacity, possibly having multiple edges in parallel
connecting two vertices.

Note that a given GNS set S is minimal if and only if
S \ e is not a GNS set for each e ∈ S. This allows us to
partition the edges in S by their connectivity in G\{S\e}
as S1

1 ∪S2
1 ∪S12

1 ∪S1
2 ∪S2

2 ∪S12
2 ∪S1

12∪S2
12∪S12

12 where
e ∈ S lies in Sy

x if, in the graph G \ {S \ e}, tail(e)
is reachable only from source indices x and head(e) is
capable of reaching only destination indices y. Eg. S2

12

contains edge e in S if and only if in G \ {S \ e}, we
have that tail(e) is reachable from s1, s2 and head(e) can
reach t2, but cannot reach t1.

Define Ŝ1 := S1
1 ∪ S12

1 ∪ S1
12 ∪ S12

12 and Ŝ2 := S2
2 ∪

S12
2 ∪S2

12∪S12
12 . Thus, Ŝi, for i = 1, 2 is the set of edges

in S which have their tails reachable from si and their
heads reaching ti by paths of infinite capacity. We will
show Ci(S) = C(Ŝi) + cG\Ŝi

(si; ti), for i = 1, 2. By the
Max Flow Min Cut Theorem, there exists a flow of value
Ci(S) from si to ti in G. At most C(Ŝi) of the flow goes
through edges in Ŝi. Thus, there exists a flow of value
at least Ci(S) − C(Ŝi) in G \ Ŝi. So, cG\Ŝi

(si; ti) ≥
Ci(S) − C(Ŝi). Now, consider Ti ⊆ S in G such that
Ti is an si − ti cut and C(Ti) = Ci(S). Then, since



Ŝi ⊆ Ti, we have that Ti \ Ŝi is an si − ti cut in G \ Ŝi.
Thus, cG\Ŝi

(si; ti) ≤ C(Ti \ Ŝi) = C(Ti) − C(Ŝi) =
Ci(S)− C(Ŝi).

Case I: S is a minimal GNS set such that G \ S
has no paths from either of s1, s2 to t1, t2. In this case,
S2

1 , S
1
2 = ∅ by minimality of S. Thus, C1(S) +C2(S) ≥

C(Ŝ1) + C(Ŝ2) = C(S) + C(S12
12) ≥ C(S). So, in this

case, the GNS outer bound (1) is a pentagonal region and
we have to show achievability of the two corner points
(C1(S), C(S)− C1(S)) and (C(S)− C2(S), C2(S)).

Consider the following scheme. Edges in
S1

1 , S
12
1 , S1

12, S
12
12 forward s1’s message bits to t1

and edges in S2
2 , S

2
12, S

12
2 forward s2’s message bits to

t2. This achieves

R1 = C(Ŝ1) = C(S1
1) + C(S12

1 ) + C(S1
12) + C(S12

12),

R2 = C(S2
2) + C(S2

12) + C(S12
2 ).

Note that we have R1 + R2 = C(S) for this rate pair.
Now, we will increase R1 up to C1(S) while preserving
this sum rate. Construct cG\Ŝ1

(s1; t1) unit capacity edge-
disjoint paths from s1 to t1 in G \ Ŝ1. This gives us
cG\Ŝ1

(s1; t1) paths in G such that none of them use
any edge in Ŝ1. Any such path encounters a first finite
capacity edge from S2

12 and a last finite capacity edge
from S12

2 . The intermediate finite capacity edges may be
assumed to lie in S2

2 only. If intermediate finite capacity
edges lie in S2

12 or S12
2 , we can modify the path so that

this is not the case, while preserving the edge-disjointness
property. Now, a simple XOR coding scheme as shown in
Fig. 2(a) improves R1 by one bit and reduces R2 by one
bit as s2 has to set b1⊕b2⊕b3 = 0 to allow t1 to decode
a. In the general case, we have an arbitrary number of
finite capacity edges from S2

2 along the path, for which
we perform a similar XOR scheme. Because the paths are
edge-disjoint, the finite capacity edges on those paths are
all distinct, so the imposed constraints can all be met by
reducing R2 by one bit for each such path. When this is
carried out for each of the cG\Ŝ1

(s1; t1) paths, we have
a scheme achieving (C1(S), C(S) − C1(S)). Similarly,
(C(S)−C2(S), C2(S)) may be shown to be achievable.

Case II: S is a minimal GNS set such that G \ S
has no paths from s1 to t1, s2 to t2, or s2 to t1 but
it has paths from s1 to t2. As S is a minimal GNS
set, we have S2

1 = ∅. In this case, the GNS outer
bound (1) is not necessarily a pentagonal region. We first
show achievability of the rate pair R1 = C1(S), R2 =
min{C2(S), C(S)− C1(S)}.

Stage I - Basic Scheme: It is easy to see that we can
achieve the rate pair given by

R1 = C(Ŝ1) = C(S1
1) + C(S1

12) + C(S12
1 ) + C(S12

12),

R2 = C(S2
2) + C(S12

2 ) + C(S2
12) + min{C(S1

2), C(S12
12)},

by a routing + butterfly coding approach as follows.

• Edges in S1
1 , S

12
1 , S1

12 forward s1’s message bits to
t1 and edges in S2

2 , S
12
2 , S2

12 forward s2’s message
bits to t2.

• Edges in S12
12 and S1

2 along with an infinite capacity
path from s1 to t2 perform “preferential routing for
s1 with butterfly coding for s2,” i.e.

– if C(S1
2) < C(S12

12), then an amount of
C(S12

12)−C(S1
2) of the capacity of edges in S12

12

is used for routing s1’s message bits, while the
rest is used for butterfly coding, i.e. an XOR
operation is performed over C(S1

2) bits from
source s1 with C(S1

2) bits from source s2 to be
transmitted over the edges in S12

12 . Edges in S1
2

provide C(S1
2) bits of side-information from s2

to t1, while the infinite capacity path from s1
to t2 provides side-information to t2.

– if C(S1
2) ≥ C(S12

12), then all of the capacity of
edges in S12

12 is used for butterfly coding.
Stage II - Improving R1 up to C1(S): We know

cG\Ŝ1
(s1; t1) = C1(S) − C(Ŝ1). Find cG\Ŝ1

(s1; t1) unit
capacity edge-disjoint paths from s1 to t1 in G such that
none of them use any edge in Ŝ1. Each such unit capacity
path from s1 to t1 in G starts with a first finite capacity
edge in S2

12, ends with the last finite capacity edge in S12
2

or S1
2 and with all intermediate edges lying, without loss

of generality, in S2
2 . Whenever the capacity of all edges in

S1
2 is used up, we would have reached a sum rate of C(S),

as all edges are carrying independent linear combinations
of message bits. In that case, we will increase R1 by one
bit and reduce R2 by one bit. Else, we will increase R1

by one bit while not altering R2.

• If the last finite capacity edge lies in S12
2 , perform

coding as in Fig. 2(a). If the capacity of S1
2 edges is

not fully used, use free unit capacity of some edge
e ∈ S1

2 to relay the XOR value of b1⊕ b2⊕ b3 from
s2 to t1. Use the infinite capacity path from s1 to t2
to send the symbol a. If there is no free edge in S1

2 ,
then s2 sets b1 ⊕ b2 ⊕ b3 = 0. This increases R1 by
one bit and reduces R2 by one bit.

s1 s2

t1 t2

e1

e2

e3

a
b1

b2

b3

a⊕ b1

a⊕ b1 ⊕ b2

a⊕
b
1

a⊕
b
1 ⊕

b
2

a⊕
b
1 ⊕

b
2 ⊕

b
3a⊕

b 1
⊕ b 2

⊕ b 3

a⊕ b1 ⊕ b2 ⊕ b3

(a) Coding
Performed in Case
I. Also used in
Case II, Stage II -
Last finite capacity
edge in S12

2

s1 s2

t1 t2

e1

e2

e3

a
b1

b2

a

a

a⊕ b1

a⊕ b1 ⊕ b2

a⊕
b
1

a⊕
b
1 ⊕

b
2

b
1 ⊕

b
2

(b) Case II, Stage II
- Last finite capac-
ity edge in S1

2

Fig. 2. Improving R1 up to C1(S)



• Suppose the last finite capacity edge, call it e3, lies
in S1

2 . Suppose there is a free edge e ∈ S1
2 . If e3

is being used, it must be used as a conduit for side-
information to t1, as part of the butterfly coding.
Use e to relay that side-information to t1. So, we
can assume e3 is free. Now, perform coding as in
Fig. 2(b). Use the infinite capacity path from s1 to
t2 to relay the symbol a. This improves R1 by one
bit while R2 remains unchanged. If there is no free
edge in S1

2 , then we must have achieved a sum rate
of C(S). Edge e3 now relays a to t1 improving R1

by one bit. However, the edge e3 must have been
assisting in butterfly coding using some edge in S12

12

and the infinite capacity s1− t2 path. Now, the edge
e3 can no longer provide side-information to t1. So,
the corresponding unit capacity in some edge in S12

12

now performs routing of s1’s message bit as opposed
to XOR mixing of one bit of s1’s message and one
bit of s2’s message. This reduces R2 by one bit.

This can be carried out for the cG\Ŝ1
(s1; t1) edge-

disjoint paths sequentially.
Stage III - Improving R2 up to min{C(S) −

C1(S), C2(S)}: If the capacity of S1
2 edges is all used up,

we have achieved a sum rate of R1 +R2 = C(S) and so,
R2 = C(S)−C1(S). If not, we have R1 = C1(S), R2 =
C(Ŝ2). We have C2(S) = C(Ŝ2) + cG\Ŝ2

(s2; t2). Simi-
lar to before, we find cG\Ŝ2

(s2; t2) unit capacity edge-
disjoint paths from s2 to t2 in G such that the paths
don’t use any edge in Ŝ2. Each such unit capacity path
encounters a first finite capacity edge from S1

12 or S1
2 and

a last finite capacity edge from S12
1 while all intermediate

finite capacity edges may be assumed to lie in S1
1 . Note

that edges in S1
1 , S

12
1 , S1

12 are all performing pure routing
of s1’s message. At any point, if the capacity of S1

2

edges is fully used, we have reached R1 = C1(S), R2 =
C(S)−C1(S). If the capacity is not fully used, perform
the modification as described below.
• If the first finite capacity edge lies in S1

12, perform
coding as in Fig. 3(a). Use unit capacity of a free
edge in S1

2 to relay symbol b from s2 to t1 and use
the s1 to t2 infinite capacity path to send the XOR
value of a1⊕a2⊕a3 to t2. This leaves R1 unaffected
and improves R2 by one bit.

• Suppose the first finite capacity edge, call it e1, lies
in S1

2 . If e1 is not being used, perform coding as
in Fig. 3(b). Use unit capacity of edge e1 ∈ S1

2 to
send a symbol b from s2 to t1. The infinite capacity
s1 to t2 path is used to send a1 ⊕ a2 from s1 to
t2. This allows t2 to decode b and improves R2 by
one bit while leaving R1 unaffected. If e1 is being
used for sending side-information to t1 (as part of
the butterfly coding or in Stage II), then pick some
free edge e ∈ S1

2 for the transfer of side-information
freeing up e1 and allowing us to use the coding
described in Fig. 3(b). If e1 is being used but not for
sending side-information, it must have gotten used in
Stage II as the last finite capacity edge on an s1− t1
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t1 t2
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b
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a 2
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b

a
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a
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a
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⊕ a2

⊕ a3
⊕ b

(a) Case II, Stage
III - First finite ca-
pacity edge in S1

12
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b

a 1
⊕ a 2

⊕ b

b

b

a
1 ⊕

a
2 ⊕

b

(b) Case II, Stage
III - First finite ca-
pacity edge in S1

2

Fig. 3. Improving R2 up to min{C(S)− C1(S), C2(S)}
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(a) Case II, Stage III - e′, e′′, e1

are being used in Stage II. e2, e3

serve to route s1’s bits to t1.
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b 1
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a 1
⊕ a 2

⊕ a 3
⊕ b 3

a
1 ⊕

a
2 ⊕

a
3 ⊕

b
3

a 1
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a 1
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a 2
⊕

b 3
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a 1
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b 3

a1 ⊕ a2 ⊕ a3
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⊕ a2
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(b) Case II, Stage III - Chosen
s2-t2 path uses edges e1, e2, e3.
Modified scheme uses some free
edge e ∈ S1

2 .

Fig. 4. Improving R2 up to min{C(S)−C1(S), C2(S)} in the case
when e1 was already being used in Stage II.

path. In this case, we use some free edge e ∈ S1
2

and superimpose scheme shown in Fig. 3(b) with
already existing scheme Fig. 2(b). This modification
is shown via Fig. 4(a) and Fig. 4(b). This improves
R2 by one bit while R1 remains unchanged.

This stage terminates achieving R1 = C1(S), R2 =
min{C2(S), C(S) − C1(S)}. Because the GNS set is
not symmetric in indices 1 and 2, we also have to show
achievability of the rate pair R1 = min{C1(S), C(S) −
C2(S)}, R2 = C2(S). This can be shown similarly.

Case III: S is a minimal GNS set such that G \ S has
no paths from s1 to t1, s2 to t2, or s1 to t2 but it has
paths from s2 to t1. This case is identical to Case II.



C. GNS outer bound is not tight

We now provide an example of a two-unicast network
in Fig. 5(a) showing that:
• the GNS outer bound is not tight, so edge-cut bounds

do not suffice to characterize the capacity region;
• the trade-off between rates on the boundary of the

capacity region need not be 1:1;
• the capacity region may have a non-integral corner

point even if all links have integer capacity and thus;
• scalar linear coding is not sufficient to achieve

capacity.
Fig. 5(b) shows a two time step vector linear coding

scheme over F2 that achieves (1, 1.5).
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e1 e2
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(a) GNS counterex-
ample: all links have
unit capacity
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(b) Vector linear scheme over F2

achieving (1,1.5)
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2
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Capacity Region

GNS Outer Bound

2

(c) Capacity region

Fig. 5. Counterexample to tightness of the GNS outer bound

We will prove the inequality R1 + 2R2 ≤ 4 for any
rate pair (R1, R2) in the capacity region of this network.
Consider a scheme of block length N over alphabet A
achieving the rate pair (R1, R2). Let W1,W2 be inde-
pendent and distributed uniformly over the sets AdNR1e

and AdNR2e respectively. For edge e = e1, e2, e3, e4,
define Xe as the concatenated evaluation of the functions
specified by the scheme for edge e.

H(W1)

= I(Xe1 , Xe2 , Xe4 ; W1) + H(W1|Xe1 , Xe2 , Xe4 ) (2)

= I(Xe1 , Xe2 ; W1) + I(Xe4 ; W1|Xe1 , Xe2 ) + 0 (3)

I(Xe1 , Xe2 ; W1)

= I(Xe1 , Xe2 ; W1, W2)− I(Xe1 , Xe2 ; W2|W1) (4)

= H(Xe1 , Xe2 )−H(W2|W1) + H(W2|W1, Xe1 , Xe2 ) (5)

= H(Xe1 , Xe2 )−H(W2) + 0 (6)

I(Xe4 ; W1|Xe1 , Xe2 )

= I(Xe4 ; W1, Xe1 , Xe2 )− I(Xe4 ; Xe1 , Xe2 ) (7)

≤ H(Xe4 )− I(Xe4 ; W2) (8)

= H(Xe4 )− I(Xe3 , Xe4 ; W2) + I(Xe3 ; W2|Xe4 ) (9)

≤ H(Xe4 )−H(W2) + H(Xe3 |Xe4 ) (10)

= H(Xe3 , Xe4 )−H(W2) (11)

(3) follows from {e1, e2, e4} being an s1, s2− t1 cut, (6)
follows from {e1, e2} being an s2 − t2 cut.

Thus, we have N · log |A| · (R1 + 2R2) ≤ H(W1) +
2H(W2) ≤ H(Xe1 , Xe2) +H(Xe3 , Xe4) ≤ 4N · log |A|,
i.e. R1 + 2R2 ≤ 4. Thus, the network has a capacity
region as shown in Fig. 5(c).

V. DISCUSSION

Let CLP denote the LP bound in [9] and CGNS denote
the GNS outer bound for the n-unicast problem that can
be obtained from Theorem 3. We have

Cscalar ⊆ Cvector ⊆ C ⊆ CLP ⊆ CGNS.

[3] shows that Cvector ( C and [4] shows C ( CLP for
general n-unicast networks. The network in Fig. 5(a)
shows that for two-unicast networks, Cscalar ( Cvector and
CLP ( CGNS in general. It would be interesting to know
whether or not
• Cvector ( C
• C ( CLP

for a general two-unicast network.
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