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Abstract—We consider sum-rate edge-cut bounds on network
coding rates for the multiple unicast problem. We first show that
the Generalized Network Sharing (GNS) bound is equivalent to
a functional dependence bound in the literature. After defining
a notion of profile of an edge-cut, we show that the only
profiles for which, every edge-cut with the said profile leads to
a fundamental bound on network coding rates, are the so-called
GNS profiles and further, we quantify with a tight constant factor,
the amount by which network coding can potentially beat edge-
cuts associated with other profiles. Finally, we show that the
problem of computing the GNS bound is NP-complete, even for
two-unicast networks.

I. INTRODUCTION

Network Coding deals with the study of capacity regions
of the simplest class of networks - wireline networks - where
links between nodes of the network are noise-free and orthog-
onal. Rather than routing information as a commodity, having
nodes perform coding operations has significant potential to
improve rates [1], [2], [3]. However, recent results suggest
that characterizing capacity of a network is a hard problem -
so-called Non-Shannon inequalities are important for charac-
terizing capacity [4] and linear coding schemes do not achieve
capacity in general [5].

Nonetheless, it may often be useful to give guarantees on
how far the performance of some coding scheme is from
capacity. For this purpose, it is useful to develop outer bounds
on the capacity region. The simplest and oldest such bound is
the cutset bound [6], [7]. This bound however, is often quite
loose. The tightest known explicit bound is the so-called LP
bound [8] that harnesses the full power of the basic or so-
called Shannon inequalities. It is however, computationally
intractable since the linear program has size exponential in
that of the network.

The literature also has bounds derived from the graph-
theoretic structure of the network. These edge-cut bounds
have conventionally served as outer bounds to commodity flow
problems. Indeed, such commodity flow bounds derived from
edge-cuts are not in general, fundamental, i.e. they can poten-
tially be beaten by network coding [9]. It is of interest to study
these edge-cut bounds because they tend to be simpler and
more intuitive than the LP bound while also being tighter than
the cutset bound. Different works have studied what makes
edge-cuts fundamental. [10] proposed the Network Sharing
bound which was subsequently improved to the Generalized
Network Sharing (GNS) bound in [11]. [9], [12] study bounds

derived from functional dependence graphs and [3] studies
bounds derived from information dominance. Recently, there
has also been some progress in studying weighted sum-rate
edge-cut bounds. [13] exhibits such bounds for multimessage
multicast problems while [14] produces bounds for multiple
unicast problems based on a class of Shannon inequalities and
a knowledge of some graph structure.

In this paper, we focus on sum-rate edge-cut bounds for
multiple-unicast networks. We show that for multiple unicast
networks, the GNS bound is equivalent to the more sophis-
ticated functional dependence bound derived from functional
dependence graphs [12]. Next, we study edge-cut bounds on
network coding capacity based purely on what we define as the
‘profile’ of the edge-cut, which is simply the knowledge of the
residual connectivity between sources and destinations after a
set of edges have been removed from the graph. We show that
the only edge-cut profiles for which, every edge-cut with the
said profile always leads to a fundamental bound on network
coding rates, are the profiles of GNS-cuts. Furthermore, we
provide the tight constant associated with every edge-cut
profile upto which network coding may potentially outperform
the associated edge-cut. Finally, we consider the problem of
computation of the GNS bound. We show that this problem is
NP-complete, even for two-unicast networks.

The rest of the paper is organized as follows. We describe
notation and preliminaries in Section II. We show the equiva-
lence between the GNS bound and the functional dependence
bound of [12] in Section III. We study bounds from edge-cuts
based purely on source-destination connectivity in Section IV.
We prove the NP-completeness of the GNS-cut in Section V.
Finally, we conclude with some future directions in Section VI.

II. PRELIMINARIES

We briefly describe some notation that will be used through-
out the rest of the paper.

Definition 1: A k-unicast uncapacitated network G is a
directed graph with vertex set V(G), edge set E(G) and
containing source-destination pairs {(si; di)}ki=1. For each
i ∈ {1, 2, . . . , k}, si has independent information to be
communicated to di at rate Ri.

Definition 2: The uncapacitated network G can be converted
to a capacitated network by assigning non-negative capacities
CG := (Ce : e ∈ E(G)) ∈ R|E(G)|≥0 to the edges of G.



Definition 3: Given an uncapacitated network G and a fixed
assignment of capacities CG , the set of rate tuples achievable
by routing solutions is called the commodity flow region
denoted by F(G,CG) and the closure of the set of rate tuples
achievable (upto vanishing error) by network coding is called
the capacity region denoted by C(G,CG).

Edge-cut bounds have traditionally been studied in context
of commodity flow problems since they are simple outer
bounds on the commodity flow region. To define edge-cut
bounds, fix a k-unicast uncapacitated network G, and an
edge set E ⊆ E(G). Define the disconnectivity of the edge-
cut derived from E, denoted DG,E , to be the subset of
{1, 2, . . . , k} where index j ∈ DG,E if and only if there is
no path from sj to dj in G \E. Consider Statements 1 and 2
below.

Statement 1: For any assignment of capacities CG ∈ R|E(G)|≥0 ,
and any rate tuple (R1, R2, . . . , Rk) ∈ F(G,CG),∑

j∈DG,E

Rj ≤
∑
e∈E

Ce. (1)

Statement 2: For any assignment of capacities CG ∈ R|E(G)|≥0 ,
and any rate tuple (R1, R2, . . . , Rk) ∈ C(G,CG),∑

j∈DG,E

Rj ≤
∑
e∈E

Ce. (2)

Inequality (1) is the edge-cut bound derived from E.
Statement 1 can be seen to be obviously true. However,
Statement 2 is not true in general, as evidenced by the butterfly
counterexample in Fig. 1.
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Fig. 1. (a) shows a butterfly network example with all edges having unit
capacity. E = {e} yields edge-cut bound R1 + R2 ≤ 1 which is violated
by R1 = R2 = 1 achieved by coding scheme in (b).

We say that the edge-cut derived from E is fundamental if
Statement 2 holds, i.e. if Inequality (2) holds for all capacity
assignments and all rate tuples in the corresponding capacity
region. We shall be interested in what kinds of edge-cuts
are fundamental. We define the Generalized Network Sharing
(GNS) bound here since it is the focus of this paper.

Definition 4: Given a k-unicast uncapacitated network G,
an edge-cut derived from E ⊆ E(G) is called a GNS-
cut for the k-unicast network if there exists a permutation

π : {1, 2, . . . , k} 7→ {1, 2, . . . , k} such that for any i, j there
are no paths from si to dj in G \ E whenever π(i) ≥ π(j).

Note that for k = 1, GNS-cuts are just vertex bipartition
cuts that feature in the cutset bound. The usefulness of GNS-
cuts arises from the following theorem.

Theorem 1: (from [11]) GNS-cuts are fundamental.
Given a k-unicast uncapacitated network G, one can set

out to build a collection of fundamental edge-cut bounds as
follows:
• Fix a non-empty subset D ⊆ {1, 2, . . . , k} and consider

the |D|-unicast network where for each j ∈ D, sj
communicates to dj at rate Rj .

• For every edge cut derived from a set of edges E ⊆ E(G)
that forms a GNS-cut for the |D|-unicast problem, we
include the edge-cut bound

∑
j∈D Rj ≤

∑
e∈E Ce. (It’s

easy to see that these are also going to be fundamental
bounds for the original k-unicast problem.)

• Repeat for all choices of non-empty subsets D.
This collection of fundamental edge-cut bounds will be

called the GNS edge-cut bound collection for G.
Through most of this paper, we shall only consider complete

edge-cuts, namely edge-cuts which disconnect all sources from
their respective destinations so that DG,E = {1, 2, . . . , k}.
This is without loss of generality, since if we have a non-
complete but fundamental edge-cut, one only needs to prove
the necessary bound by considering a complete edge-cut for a
suitable |D|-unicast problem with D = DG,E ⊂ {1, 2, . . . , k}.

III. EQUIVALENCE TO THE FUNCTIONAL DEPENDENCE
BOUND

The problem of identifying edge-cut bounds that are funda-
mental has been approached using different techniques. These
include the following:
• PdE bound [9]
• Information Dominance bound [3]
• Functional Dependence bound [12]
We show that the GNS bound is equivalent to the functional

dependence bound [12]. Connection of the GNS bound to the
PdE bound [9] and the information dominance bound [3] will
be explored in a future work.

Theorem 2: For multiple-unicast networks, the GNS edge-
cut bound collection is equivalent to the functional dependence
bound [12].

Proof: It is easy to check that the GNS bound is a special
case of the functional dependence bound [12]. Now, given a
k-unicast uncapacitated network G, the functional dependence
bound [12] says that the inequality

k∑
i=1

Ri ≤
∑
e∈E

Ce (3)

holds for all capacity assignments CG and all
(R1, R2, . . . , Rk) ∈ C(G,CG), for a set of edges E that
correspond to a so-called maximal irreducible set (defined
below). We will show that such a set of edges always yields
a GNS-cut and that will complete the proof.



We describe the construction from [12] of the functional
dependence graph (FDG) denoted by Z . Corresponding to
the information message of source si, introduce a (so-called)
pseudo-variable Yi and corresponding to each edge e, intro-
duce a pseudo-variable Ue. For each e, draw incoming edges
in to Ue from each of the pseudo-variables associated with
all incoming sources and edges incident on the tail of e. For
each destination di, draw incoming edges in to Yi from each
of the pseudo-variables associated with all incoming edges
and sources incident on di. This completes the construction
of Z. In the network G, each source si must have at least one
path to its own destination di. So, we have that the FDG Z
is cyclic (in notation of [12]). A maximal irreducible set is
a subset of vertices A of the FDG Z with the property that
after one removes all edges outgoing from vertices in A and
successively removes all vertices and edges with no incoming
edges and vertices respectively, then no vertex in Z remains. It
must also be that no proper subset of A has the same property
but we will not need this latter condition.

We start with a maximal irreducible set A that has none
of the source variables Yi, say A = {Ue : e ∈ E}. Consider
vertices and edges being removed by this procedure one at a
time. Since the process ends with all the Yi’s removed, let the
order in which they get removed be given by a permutation
π, i.e. let the order be Yπ(1), Yπ(2), . . . , Yπ(k). Then, none
of the sources s1, s2, . . . , sk have a path to dπ(1) in G \ E.
Further, none of the sources with the possible exception of
sπ(1) can have a path to dπ(2) in G \E. Continuing this chain
of reasoning, we find that the edge-cut derived from E is a
GNS-cut for the network G with permutation π.

IV. EDGE-CUT BOUNDS BASED ONLY ON
SOURCE-DESTINATION CONNECTIVITY

Fundamentality of an edge-cut bound is a purely graph-
theoretic property. A simple way to classify different edge-
cuts is to look at connectivity from all sources to all des-
tinations. For a k-unicast uncapacitated network G, and a
subset of edges E ⊆ E(G) which yield a complete edge-
cut, we define the profile of the edge-cut derived from E,
denoted PG,E , to be a directed graph with nodes having labels
s1, s2, . . . , sk, d1, d2, . . . , dk with si’s having only outgoing
edges, di’s having only incoming edges and an edge from si
to dj if and only if there is a path from si to dj in G \ E. If
the edge-cut derived from E is a GNS-cut, then we call the
corresponding profile a GNS profile. Fig. 2 shows all possible
profiles of complete edge-cuts for a 2-unicast network.

From Theorem 1, all edge-cuts with a GNS profile result
in fundamental bounds. A natural question to ask is whether
there are other edge-cut profiles for which it is also true that
all edge-cuts with that profile result in fundamental bounds.
Furthermore, it is of interest to provide some bounds in
the case of an edge-cut profile that does not necessarily
give fundamental bounds for all networks. Both these issues
are addressed by Theorem 3. As an example, the profile in
Fig. 2(d) is a non-GNS profile and this profile happens to
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Fig. 2. Four possible profiles of edge-cuts for 2-unicast networks. (a), (b),
(c) are GNS profiles while (d) is not.

not give fundamental bounds in all networks as seen by the
example in Fig. 1.

To state the main result of this section, we need one more
definition. Given a profile P of a complete edge-cut for a k-
unicast network, we define a specific capacitated network -
its canonical network N (P) - an index coding instance, as
follows. Take the directed graph represented by the profile
P and add two nodes u and v. Add edges from all the si’s
to u, from v to all the di’s and from u to v. All edges
have infinite capacity except the edge from u to v which has
capacity 1 unit. For each i, si has independent information to
be communicated to di. Let the sum-capacity of this network
be denoted by ρ(P). Fig. 3 shows two examples of profiles
of edge-cuts and their corresponding canonical networks.

Theorem 3: Fix an edge-cut profile P. For any k-unicast
uncapacitated network G, and any complete edge-cut derived
from edge set E ⊆ E(G) with PG,E = P , we have the
inequality

k∑
j=1

Rj ≤ ρ(P)
∑
e∈E

Ce, (4)

for any assignment of capacities CG ∈ R|E(G)|≥0 , and any rate
tuple within capacity, (R1, R2, . . . , Rk) ∈ C(G,CG). More-
over, the constant ρ(P) in Inequality (4) cannot be improved
upon and satisfies ρ(P) ≥ 1, with equality if and only if P is
a GNS-profile.

Proof: Suppose we have a k-unicast capacitated network
(G,CG), and a complete edge-cut derived from edge set E,
whose profile is P. We will perform modifications to the
network and its capacities which can only enhance its capacity
region.
• For each directed edge (x, y) in E, add an edge from each

of the sources to x and from y to each of the destinations.
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Fig. 3. It can be shown that ρ(P1) =
3
2

and ρ(P2) = 3.

• Now, assign infinite capacities to all edges of this network
that do not belong to E.

Now all source messages can be assumed to be present in
their entirety at the tails of each edge in E and all destinations
are connected with an infinite capacity path to the heads of
each edge in E, and therefore, any coding scheme operating
on this network can be translated to a coding scheme on a(∑

e∈E Ce
)
-scaled copy of N (P) and vice versa. Therefore,

the sum capacity of this enhanced network is ρ(P)∑e∈E Ce
and so, for any rate tuple (R1, R2, . . . , Rk) ∈ C(G,CG), we
have the desired Inequality (4). The constant ρ(P) cannot be
improved upon since N (P) is an example of a network with
edge-cut derived from E = {(u, v)} having the desired profile
P and for which Inequality (4) is tight by the definition of
ρ(P).
ρ(P) ≥ 1 is obvious from the definition since commodity

flow can achieve a sum-rate of 1 in N (P). For a GNS profile
P, Theorem 1 gives ρ(P) ≤ 1. We only need to show that
ρ(P) > 1 for any non-GNS profile P. It is easy to show that
for any non-GNS profile P, one can find a sequence of t ≥ 2
distinct indices i1, i2, . . . , it ∈ {1, 2, . . . , k} such that in the
directed graph represented by P, we have that sir has an edge
to dir+1

for r = 1, 2, . . . , t−1 and sit has an edge to di1 . (For
example, Fig. 3(a), (b) are both 3-unicast non-GNS profiles for
which one can set i1 = 1, i2 = 2, i3 = 3.) We now propose a
coding scheme for N (P) which achieves a sum-rate of t

t−1
thus showing ρ(P) ≥ t

t−1 > 1.
Assume that only the sources siα , α = 1, 2, . . . , t wish to

deliver one message symbol from a finite field F to their
respective destinations and that the edge (u, v) can carry one
finite symbol per time slot. We will accomplish this task in
t− 1 time slots. Node u receives all the t finite field message
symbols, say X1, X2, . . . , Xt. It sends out t−1 random linear
combinations of these symbols on the edge (u, v), where

the co-efficients are uniformly chosen from F independent
across the different symbols and across time. Each destination
diα , α = 1, 2, . . . , t receives all of these t − 1 symbols and
also has one message symbol of side information from the
source directly connected to it. Standard calculations similar
to those in [2] can then be used to show that each destination
can recover its intended message with high probability as the
size of the finite field F goes to infinity. Thus, there exists
some coding scheme that delivers the desired performance.

Remark 1: We note that ρ(P) may be quite hard to compute,
especially for large k. However, once computed for a profile
for a specific k, it gives useful bounds for all k-unicast
networks with no restrictions on the size of such networks.
Recent work in [15] provides inner bounds on the entire
capacity region for the index coding problem. In particular,
their bounds are tight for upto five-node networks which would
allow us to evaluate the sum-capacity ρ(P) exactly for all
canonical networks N (P) with k ≤ 5.

V. NP-COMPLETENESS OF MINIMUM GNS-CUT

The works of [3], [9], [12] provide algorithms to check
if their approach can deduce the fundamentality of a given
edge-cut. However, the number of edge-cuts is exponential in
the size of the network and so listing all of them and check-
ing if they provide fundamental bounds is computationally
intractable. For a single-unicast problem, we know that Ford-
Fulkerson’s algorithm reveals the mincut efficiently inspite of
there being exponentially many edge-cuts. Given a capacitated
k-unicast network, can we have any algorithm that efficiently
finds, among all complete edge-cuts E that are GNS-cuts, the
one that has the smallest value of

∑
e∈E Ce? Theorem 4 will

show unfortunately that we cannot, even for k = 2, unless
P=NP. Let us define the following decision problem.

MIN 2-GNS-CUT

Instance: A two-unicast uncapacitated network G and an
assignment of non-negative capacities CG to the edges.

Question: Is there a set of edges E ⊆ E(G) with∑
e∈E Ce ≤ K such that the edge-cut derived from E is a

GNS-cut?
Theorem 4: MIN 2-GNS-CUT is NP-complete.

Proof: It is clear that MIN 2-GNS-CUT is in NP. We
give a polynomial transformation from the multiterminal cut
problem for three terminals which is known to be NP-complete
[16]. In the multiterminal cut problem, we are given a number
K and an unweighted undirected graph H with three special
vertices or “terminals” x, y, z. We are asked whether there is
a subset of edges F of the graph H with |F | ≤ K such that
H\F has no paths between any two of x, y, z. Given (H,K),
we construct a corresponding instance of MIN 2-GNS-CUT as
follows. Let the number of edges of H be N with K ≤ N.

The two-unicast capacitated network G is obtained by
replacing each undirected edge (u, v) of H with a gadget
as shown in Fig. 4. The gadget introduces two new vertices
w,w′ and constitutes five edges, the one central edge having



unit capacity and four flank edges each having capacity N+1
units. Finally, s1 is identified with terminal x, d2 with terminal
y and both s2 and d1 with terminal z.
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Fig. 4. (a) shows an undirected edge and (b) the corresponding gadget

We show that G has a GNS-cut derived from a set of edges
E with

∑
e∈E Ce ≤ K if and only if H has a set of edges F

forming a multiterminal cut with |F | ≤ K.
Suppose that in the undirected graph H, there is a multiter-

minal cut F with at most K edges. Then, picking the central
edge of the gadgets corresponding to the edges in F gives a
GNS-cut in G with edge set E such that

∑
e∈E Ce = |E| ≤ K.

Conversely, suppose there is a GNS-cut in G derived from
an edge set E which satisfies

∑
e∈E Ce ≤ K. As s2 and d1 are

identified, the GNS-cut must have the profile shown in Fig. 2
(c). Moreover, as K ≤ N, the edge set E cannot contain any
flank edge and must consist exclusively of central edges of
gadgets. Choosing the undirected edges of H corresponding
to the gadgets whose central edges lie in E gives an edge set
F of H that has at most K edges and is a multiterminal cut
in H.

VI. DISCUSSION

Theorem 3 does not say that an edge-cut with a non-GNS
profile must necessarily not be fundamental. Consider the
example in Fig. 5(a). The edge-cut derived from E = {e1, e2}
is not a GNS-cut for the two-unicast network shown, yet
R1 + R2 ≤ Ce1 + Ce2 is a fundamental edge-cut bound.
The reason of course, is that R1 ≤ Ce2 and R2 ≤ Ce1
follow from the cutset bound. Fig. 5(b) shows each edge
assigned unit capacity and a specific coding scheme. This
coding scheme makes it clear why functional dependence or
information dominance do not capture this bound for the 2-
unicast problem: The information flowing on {e1, e2} does not
dominate all the source messages.

Although this example is somewhat daft, the general ques-
tion is not. Is there a fundamental sum-rate edge-cut bound for
a k-unicast network that is not implied by the GNS edge-cut
bound collection? The answer is No for k = 1 (by Max-Flow-
Min-Cut theorem) and was shown to also be No for k = 2 in
Theorem 5 of [11]. The question is open for k ≥ 3.

It is also of interest to explore weighted sum-rate edge-cut
bounds as studied in [14]. It would be useful to determine
other classes of Shannon (or non-Shannon) inequalities and
other information about the graph structure of the network
that can help in deriving such bounds.

s1 s2

d1
d2

e1 e2

(a)

s1 s2

d1
d2

1

1 1

1 1
1

a
� b a�

b
a

b

a b

a b

(b)

Fig. 5. (a) shows a two-unicast uncapacitated network. (b) shows a specific
coding scheme on the capacitated network with all edges having unit capacity.
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