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Abstract

Under an unoriginal title, this short write-up documents an informal account of how I stumbled
upon an interesting combinatorial identity.

A Fun Problem

During the summer of 2007, I was a lowly undergraduate intern at Stanford University working with
Prof. Balaji Prabhakar. Our meetings used to be a lot of fun and in one of them, he suggested to
me the following problem.

Let {Xi}∞i=1 be a sequence of i.i.d. random variables, distributed exponentially with
mean 1. Define Sm := 1

m

∑m
i=1 Xi and Zn := max1≤m≤n Sm. Show that

E[Zn] =
n∑

k=1

1
k2

.

Those were the days when I was full of that näıve eagerness of the undergraduate. Not yet fully
jaded, curiosity used to flow in the blood.

Brute Force

Let FZn(t) := Pr (Zn ≤ t) . Then,

FZn+1(t) = Pr (S1 ≤ t, S2 ≤ t, . . . , Sn+1 ≤ t)
= Pr (X1 ≤ t, X2 ≤ 2t−X1, . . . , Xn+1 ≤ (n + 1)t−X1 −X2 − . . .−Xn)

=
∫ t

0

∫ 2t−x1

0
. . .

∫ (n+1)t−
Pn

j=1 xj

0
e−(x1+x2+...+xn+xn+1) dxn+1 . . . dx2dx1

=
∫ t

0

∫ 2t−x1

0
. . .

∫ nt−
Pn−1

j=1 xj

0
e−(x1+x2+...+xn)

[
1− e−((n+1)t−

Pn
j=1 xj)

]
dxn . . . dx2dx1

= FZn(t)− e−(n+1)tVn(t)

where Vn(t) is the following volume integral:

Vn(t) :=
∫ t

0

∫ 2t−x1

0

∫ 3t−x1−x2

0
. . .

∫ nt−x1−x2−...−xn−1

0
dxndxn−1 . . . dx2dx1 .
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By a dimension argument, we have Vn(t) = cntn. Now,

E[Zn+1] =
∫ ∞

0

[
1− FZn+1(t)

]
dt

=
∫ ∞

0

[
1− FZn(t) + e−(n+1)tcntn

]
dt

= E[Zn] +
cnn!

(n + 1)n+1

As E[Z1] = E[X1] = 1, we only need to show that cnn!
(n+1)n+1 = 1

(n+1)2
, or that

cn =
(n + 1)n−1

n!
.

Generalize!

After a few unsuccessful hacks on to it, I recognized that sometimes it is easier to solve a more
general problem. I was thus, led to defining

Vn,r(t) :=
∫ t

0

∫ 2t−x1

0

∫ 3t−x1−x2

0
. . .

∫ nt−
Pn−1

j=1 xj

0
(x1 + x2 + . . . + xn)r dxndxn−1 . . . dx2dx1 ,

where Vn(t) = Vn,0(t). Again, by a dimension argument, Vn,r(t) = cn,rt
n+r with cn,0 = cn. By the

transformation yi =
∑i

j=1 xj for 1 ≤ i ≤ n, (which has Jacobian 1), we have

Vn,r(t) =
∫ t

0

∫ 2t

y1

∫ 3t

y2

. . .

∫ nt

yn−1

(yn)r dyndyn−1 . . . dy2dy1 .

A Mistake Well-Made

I proceeded ruthlessly with the integrals. Note: (1) to (2) is actually wrong! I didn’t notice it at the
time though.

Vn,r(t) =
∫ t

0

∫ 2t

y1

∫ 3t

y2

. . .

∫ nt

yn−1

(yn)r dyndyn−1 . . . dy2dy1 (1)

=
∫ t

0

∫ 2t

y1

∫ 3t

y2

. . .

∫ (n−1)t

yn−2

(nt− yn−1)r+1

r + 1
dyn−1 . . . dy2dy1 (2)

=
∫ t

0

∫ 2t

y1

∫ 3t

y2

. . .

∫ (n−2)t

yn−3

(nt− yn−2)r+2

(r + 1)(r + 2)
dyn−2 . . . dy2dy1 −

tr+2

(r + 1)(r + 2)
Vn−2(t)

=
∫ t

0

∫ 2t

y1

∫ 3t

y2

. . .

∫ (n−3)t

yn−4

(nt− yn−3)r+3

(r + 1)(r + 2)(r + 3)
dyn−3 . . . dy2dy1

− 2r+3tr+3Vn−3(t)
(r + 1)(r + 2)(r + 3)

− tr+2Vn−2(t)
(r + 1)(r + 2)

=
∫ t

0

(nt− y1)n+r−1

(r + 1)(r + 2) . . . (r + n− 1)
dy1 −

n−1∑
k=2

(k − 1)k+rtk+rVn−k(t)
(r + 1)(r + 2) . . . (r + k)

=
r! (nn+r − (n− 1)n+r) tn+r

(n + r)!
−

n−1∑
k=2

r!(k − 1)k+rtk+rVn−k(t)
(k + r)!
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This gives us an (incorrect) relation among the cn,r’s.

cn,r =
r! (nn+r − (n− 1)n+r)

(n + r)!
−

n−1∑
k=2

r!(k − 1)k+rcn−k

(k + r)!
(3)

Plugging in r = 0, cl = (l+1)l−1

l! for each l and verifying the equality thus obtained would complete
the proof by induction. Given some weird integral, one cannot be too sure that one would have much
to say about it. But a combinatorial identity? How hard can that be? Turns out that we have got
to verify this.

n∑
k=0

(
n

k

)
(k − 1)k(n− k + 1)n−k−1 = nn . (4)

MATLAB

I thought I ought to atleast check that the formula (4) is correct. Verified it manually for small n,
then wrote some hasty code in MATLAB to verify for larger n.

Feeds in n = 10 ..... Correct!

Feeds in n = 25 ..... Correct!

<heart-racing>

Feeds in n = 100 ..... Correct!

Nothing more to say! It is indeed, an identity.

All That Glitters Is Not Gold

This is the combinatorial identity we have been horsing around with:

n∑
k=0

(
n

k

)
(k − 1)k(n− k + 1)n−k−1 = nn .

Let’s observe it carefully. Strangely reminiscent of the binomial formula
∑n

k=0

(
n
k

)
yk(n−y)n−k = nn,

but not quite. I mused over this identity for quite a while, but a proof eluded me. Combinatorial?
No. Proof by induction? No. Hands-on fiddling with terms involved? No. One crazy idea I had was
to try to come up with a distribution for a random variable Y which somehow exhibited

E[Y k(n− Y )n−k] = (k − 1)k(n− k + 1)n−k−1, for 0 ≤ k ≤ n ,

but that was about all of it. Finally, after a full twenty days, I had occasion to go through my
calculations again and discovered the flaw. Yup, the one from (1) to (2).
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Penance

I remember the moment of shock. I immediately corrected the mistaken step to get

Vn,r(t) =
∫ t

0

∫ 2t

y1

∫ 3t

y2

. . .

∫ nt

yn−1

(yn)r dyndyn−1 . . . dy2dy1

=
∫ t

0

∫ 2t

y1

∫ 3t

y2

. . .

∫ (n−1)t

yn−2

(nt)r+1 − (yn−1)r+1

r + 1
dyn−1 . . . dy2dy1

cn,rt
n+r =

(nt)r+1

r + 1
Vn−1,0(t)− 1

r + 1
Vn−1,r+1(t)

cn,r =
nr+1

r + 1
cn−1,0 −

1
r + 1

cn−1,r+1 (5)

=
nr+1

r + 1
cn−1,0 −

(n− 1)r+2

(r + 1)(r + 2)
cn−2,0 +

1
(r + 1)(r + 2)

cn−2,r+2 (using (5) here)

=
n−1∑
k=1

(−1)k−1 r!(n− k + 1)k+r

(k + r)!
· cn−k,0 + (−1)n+1 1

(r + 1)(r + 2) . . . (r + n− 1)
c1,n+r−1

cn,r =
n∑

k=1

(−1)k−1 r!(n− k + 1)k+r

(k + r)!
· cn−k,0

(
using c1,n+r−1 =

1
n + r

, c0,0 = c0 = 1
)

which is in fact, the correct recurrence formula for cn,r, (as opposed to (3)) and which for r = 0 gives

n∑
k=0

(−1)k (n− k + 1)k

k!
· cn−k = 0 .

Completing the proof by induction requires us to verify this by plugging in cl = (l+1)l−1

l! for each l,
i.e. to verify

n∑
k=0

(−1)k

(
n

k

)
(n− k + 1)n−1 = 0 ,

which is easily seen to be true by observing that
∑n

k=0(−1)k
(
n
k

)
kr = 0 for 0 ≤ r ≤ n − 1. This

completes the solution to the fun problem.

But What About That Identity?

I ran back to the computer room next morning, wrote up some more MATLAB code to check if the
formula (4) was correct for each n. The machine got back announcing that the formula was true for
all n in 1 to 100 .... except for

n=19,22,31,33,34,37,40,43,44,45,46,49,50,53,54,57,58,63,65,67,

68,73,75,77,78,79,80,81,83,85,87,88,89,90,91,92,93,94,95,99

i.e. false for some 40 integers between 1 to 100 with 19 being the first counterexample. True for
some, false for some - certainly, a very odd way to behave, for a combinatorial formula that is wrong!
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Redemption

Summer soon was over and I got back to dear old IIT Bombay, my alma mater. Early November
’07, I received an unexpected e-mail. Written by Prof. Ajit Diwan, it began: “By accident, I found
your blog and the identity you mentioned that you found.” Wait! I hadn’t told you that during those
intern days, I had written a corny blogpost detailing this experience of almost-hitting-something-
very-nice. The e-mail continued: “It is actually true and there is a simple combinatorial proof for it.
(I did not know it earlier).”

WOW! Apparently, MATLAB had reported that the formula was false for some n due to problems
with precision. To be fair, the numbers involved, like 1919, are huge!

But If It Is Gold, Then It Shall Always Glitter

n∑
k=0

(
n

k

)
(k − 1)k(n− k + 1)n−k−1 = nn .

Quoting Prof. Diwan’s e-mail to me:

The R.H.S. is just the number of functions from {1, 2, ..n} to itself. The L.H.S counts
these in a different way. For any such function f, let k(f) denote the largest i, such
that |f−1{1, 2, . . . , i− 1}| ≥ i, and k(f) = 0 if there is no such i. The L.H.S. counts the
number of functions f with k(f) = k, for k = 0 to n. The tricky part is the k = 0 case.
In this case the number of functions is (n + 1)(n−1). Note that this is just the number of
spanning trees in the complete graph with n + 1 vertices. It is possible to show this by an
explicit bijection. The case for k > 0 follows easily from this.

But How?

After receiving this e-mail, I went back to check my notes. You see the silly error in going from (1)
to (2)? First, note that all subsequent steps are correct. And guess what? This mistaken step is
actually correct only for the special case when r = 0 .... which is all that we end up using it for!

Strange! Two ways to get a recurrence relation in cn’s from the integral - one leads to a trivial
combinatorial identity, while the other leads to something much more interesting.

This also gives an alternate proof of the identity.
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