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Abstract—We study the scaling of the capacity per unit energy
of a wireless network as a function of the number of nodes and
the deployment area. We show that in a network of n nodes
located randomly in a region of area scaling linearly with n and
communicating over Gaussian fading channels with power path-
loss exponent α, the per-node capacity per unit energy scales
essentially as Θ(n1−α/2) in the low path-loss regime (2 ≤ α ≤ 3)
and essentially as Θ(n−1/2) in the high path-loss regime (α ≥
3); while if the area is held constant, it scales essentially as
Θ(n) and Θ(n(α−1)/2) in the low and high path-loss regimes,
respectively. We propose a novel communication scheme, phase-
aligned amplify-and-forward, which is shown to be order-optimal
in the low path-loss regime—no other known scheme achieves the
same scaling. We show that the well-known multi-hop scheme is
order-optimal in the high path-loss regime.

I. INTRODUCTION

Traditionally, communication energy efficiency in wireless
networks has been studied from the perspective of a single
link or canonical multi-user channels. In particular, Verdú
[1], [2] introduced the notion of link capacity per unit cost,
modifying the Shannon-theoretic objective of maximizing the
number of bits reliably transmitted per use of the channel
to the number of bits reliably transmitted per unit energy,
and characterized the capacity per unit cost for certain point-
to-point and broadcast/multi-access channels. These results,
however, do not easily generalize to larger networks. In fact,
even for the traditional metric of maximizing the number
of bits per channel use, the exact communication limits are
unknown for even simple networks, such as the relay and
interference channels.

Nonetheless, in the last decade or so, exciting progress has
been made toward approximately characterizing the capacity
of large wireless networks. This question was first studied by
Gupta and Kumar [3], who focused on asymptotic behavior of
the network capacity. In particular they showed that under a
model of communication called the protocol model, the per-
node rate for random source-destination pairing with uniform
traffic can scale at most as O(n−1/2). They further showed
that essentially the same scaling can be achieved by a simple
scheme based on multi-hop communication. Subsequent work
on this topic has focused on removing the protocol model
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assumption made in [3], and instead considered Gaussian
fading channels with a power-loss of r−α for signals sent
over a distance of r for path-loss exponent α ≥ 2. In a
series of papers, upper bounds on the achievable rates for
random source-destination pairing have been derived (see [4]–
[6] and references therein). On the other hand, in another
stream of work (see [5], [7] and references therein) it was
shown that in the low path-loss regime (α ≤ 3), cooperative
communication schemes significantly outperform multi-hop
communication. In particular, Özgür et al. [5] introduced a
hierarchical cooperative communication scheme achieving the
optimal per-node rate scaling of Θ(n1−α/2±ε), ε > 0, in an
extended network (i.e., network located in an area Θ(n)), and
showed that multi-hop communication is scaling-optimal in
the the high path-loss regime (α ≥ 3).

In this paper, we aim to combine the paradigms of energy
efficiency and approximate capacity analysis of large wireless
networks. While the scaling of energy efficiency of large net-
works under certain specific traffic patterns, such as broadcast
from a single source (see [8] and references therein) and
multiple unicast with relatively few source-destination pairs
(up to

√
n pairs with n nodes in the network, see [9]), has

been studied in the literature, it has not been analyzed under
more general traffic patterns.

Our contribution in this paper is to characterize the scaling
of the capacity per unit energy of large wireless networks
under the Gaussian fading channel model with path-loss
exponent α ≥ 2. We show that the multi-hop scheme [3] is
order-optimal in the high path-loss regime. For energy-efficient
communication in the low path-loss regime, we introduce
a new achievable scheme called phase-aligned amplify-and-
forward. The scheme operates in two stages. In stage I, the
source nodes transmit their messages to a set of relay nodes.
In stage II, these transmissions are forwarded by the relay
nodes to the destination nodes. This forwarding in stage II
is done at opportune time slots where the channel phases are
aligned with the ones observed in stage I such as to allow a
beamforming gain at each destination for its respective signal.
We show that this scheme is order-optimal in the low path-loss
regime up to a poly-logarithmic factor in the number of nodes
n. No other known scheme matches the performance of this
scheme for the capacity per unit energy in the aforementioned
regime. We note that the scaling-optimal scheme for capacity



per unit energy depends only on the path-loss exponent and
not on the area-scaling exponent, a behavior in stark contrast
to that exhibited by the scaling-optimal schemes for capacity
[10].

The remainder of the paper is organized as follows. We start
with the description of the network and channel models in
Section II. We present the main results of the paper in Section
III. In Section IV, we introduce and analyze the phase-aligned
amplify-and-forward scheme.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider n nodes distributed independently and uniformly
at random on a square of area nν , for area-scaling exponent
ν ≥ 0. Two special cases are worth mentioning. For ν = 0, the
network area is constant as a function of number of nodes n;
this is referred to as a dense network. For ν = 1, the network
area scales linearly with the number of nodes n; this is referred
to as an extended network. The nodes are paired up uniformly
at random into source-destination pairs for unicast, each node
being the source for one unicast session and destination for
another. All n unicast sessions are at uniform rate.

Nodes communicate over Gaussian channels with phase fad-
ing and power path loss. More specifically, if the transmission
by node u in a given time slot t is xu(t), then the reception
of node v in that time slot is

yv(t) =
∑
u 6=v

hu,v(t)xu(t) + zv(t),

where
hu,v(t) = r−α/2u,v ejθu,v(t),

with path-loss exponent α ≥ 2, with θu,v(t) being uniformly
distributed in [0, 2π) and independent1 across node pairs (u, v)
and across different time slots t, and with zv(t) ∼ CN (0, 1)
independent across different nodes v and across different time
slots t. We assume full channel state information (CSI) is
available at all the nodes, i.e. all nodes know the realization
of θu,v(t) for each (u, v) at the beginning of time slot t.

Definition. (R,P ) is an ε-achievable rate-power pair (0 <
ε < 1) for a network realization if for every γ > 0, there exists
T0 such that for all T ≥ T0 there exists a code of block length
T that achieves a rate of R− γ for each unicast session, with
an average transmit power no more than P at each node, and
achieves an error probability no more than ε, where the error
event is defined to take place if any of the unicast sessions
fails to deliver the intended message correctly.

Definition. Given a network realization of size n. Its capacity
per unit energy C̃(n) is

C̃(n) := sup
{
R
P : P > 0, (R,P ) is ε-achievable ∀ε > 0

}
.

We point out that R and P denote per-node rate and per-
node power constraints, respectively.

1This independence assumption makes physical sense only when the carrier
wavelength λ used for communication is smaller than n−1

√
nν , see [11], [12]

and [13]. We assume throughout that this is the case.

III. MAIN RESULTS

Our main result is the following.

Theorem 1. For every α ≥ 2, there exist constants K1,K2 >
0 such that for all ν ≥ 0,2

lim
n→∞

P
(
K1 log(1−α)/2(n) ≤ C̃(n)

ne(ν,α)
≤ K2 logα+5(n)

)
= 1,

where

e(ν, α) :=

{
1− αν

2 , if 2 ≤ α < 3
−1−α(ν−1)

2 , if α ≥ 3.

The proof of Theorem 1 is presented in Section IV. The
theorem shows that

log(C̃(n))
log(n)

p→ e(ν, α), (1)

i.e., the capacity per unit energy C̃(n) behaves as ne(ν,α)±o(1).
Theorem 1 is, however, stronger since the upper and lower
bounds on C̃(n) differ only by a poly-logarithmic factor in n.

We now provide a brief description of the communication
scheme achieving the inner bound in Theorem 1. Interestingly,
the structure of the scheme depends on the path-loss exponent
α, but not on the area-scaling exponent ν. For the range
2 ≤ α ≤ 3, we introduce a new scheme called phase-aligned
amplify-and-forward. In this scheme, source nodes transmit
their messages to the destination nodes with the help of relays,
which are chosen to be at the same order distance from both
of them (see Fig. 1). In stage I of the scheme, the source nodes
transmit their messages to the relay nodes using Gaussian
codebooks. In stage II, these transmissions are forwarded by
the relay nodes to the destination nodes. This forwarding is
done at opportune time slots where the channel phases allow a
beamforming gain at each destination for its respective signal.
In other words, this two-stage relaying strategy allows the
multi-path signals to be added coherently for all the source-
destination pairs simultaneously.

It is worth emphasizing that both the simultaneous trans-
missions of sources in the first stage and beamforming from
relay nodes in the second stage are crucial aspects of the
above scheme. While the energy gain due to the latter is to
be expected, the former ensures that the relay nodes receive
enough signal power so as to not end-up wasting too much
energy amplifying noise in the second stage, as well as that
the relay nodes still operate with low enough power to be in
the energy-efficient near-linear regime when transmitting in
the second stage.

For the range α ≥ 3, we use the well-known multi-hop
scheme. The matching (in the scaling sense) outer bound in
Theorem 1 establishes that the above schemes are scaling-
optimal with respect to data rates per unit energy.

It is interesting to compare the scaling-optimal scheme with
respect to rate per unit energy to the scaling-optimal scheme
with respect to rate alone. As we pointed out earlier, for a

2All logarithms are to the base e.
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Fig. 1. Stages I and II of phase-aligned amplify-and-forward. Source nodes
{s1, s2, s3} transmit to the destination nodes {d1, d2, d3} with the help of
the relays {r1, r2, r3}.

given (ν, α) pair the scaling-optimal scheme with respect to
rate per unit energy depends only on the path-loss exponent
α and not on the area-scaling exponent ν. On the other hand,
the scaling-optimal scheme with respect to rate alone depends
on both α and ν [10].

The upper bound on the capacity per unit energy in Theo-
rem 1 can be obtained by suitably adapting the approach in
[5], [10], [14]. The lower bound on capacity per unit energy
in Theorem 1 in the high path-loss regime (α ≥ 3) is based
on mult-hop communication, and the rate per unit energy it
achieves follows from the arguments in [3]. Due to space
constraints, we omit the details of both proofs. The lower
bound on capacity per unit energy in the low path-loss regime
(2 ≤ α < 3) is based on phase-aligned amplify-and-forward,
which we analyze in detail next.

IV. PHASE-ALIGNED AMPLIFY-AND-FORWARD

In this section, we consider the low path-loss regime 2 ≤
α < 3. In this regime, and for the special case of dense
networks (ν = 0), the hierarchical cooperation scheme [5]
achieves a per-node rate of Θ(n−ε) for any ε > 0. A higher
per-node rate of Θ(1) is achievable using the interference
alignment scheme [15]. However, the factor nε increase in
rate comes at the cost of increased energy consumption: while
hierarchical cooperation requires a per-node power of O( 1

n ),
the interference alignment scheme requires a per-node power
of Θ(1).

We now describe a new scheme, called phase-aligned
amplify-and-forward. For the case of dense networks, this
scheme achieves a per-node rate of Θ(1) while consuming a
power of only O( 1

n ). Thus, for dense networks, phase-aligned
amplify-and-forward achieves the same constant per-node rate
as interference alignment with the same power requirement as
the hierarchical cooperation scheme.

The situation is analogous for extended networks, where
phase-aligned amplify-and-forward has the same energy con-
sumption as hierarchical relaying, but achieves a rate that is a
factor nε higher.

The following lemma summarizes the rate this scheme
achieves, proving the lower bound in Theorem 1 for α ∈ [2, 3).

The matching (in the scaling sense) upper bound in Theorem 1
shows that this scheme is optimal up to a polylogarithmic
factor in n for 2 ≤ α < 3.

Lemma 2. For every α ∈ [2, 3), there exists a constant K ′1 >
0 such that for all ν ≥ 0,

lim
n→∞

P
(
C̃(n) ≥ K ′1ne(ν,α)

)
= 1.

Proof of Lemma 2: First, consider a dense network, i.e.,
ν = 0, so that the nodes are placed on a square of unit area.
Divide the network into seven vertical sections of dimensions
1 × 1

7 each. We have between 1
2 ·

n
7 and 2 · n7 nodes in each

vertical section with high probability (w.h.p.). Further, the
number of source-destination pairs with sources in one vertical
section and destinations in another (possibly identical) vertical
section lies between 1

2 ·
n
49 and 2 · n49 w.h.p.

Consider all possible pairs of sections. We time-share be-
tween these 49 pairs, handling in each time slot the messages
from the sources in the first section to the destinations in the
second section of the pair. For each such source section and
destination section, we choose a third vertical section that is
at least at distance

√
n/7 from both the source and destination

sections (see Fig. 1). Since there are seven vertical sections,
such a choice of relay section is always possible. As will
become clear in the following, this choice of relay nodes is
made to avoid near-far effects.

Let us restrict attention to one group of source-destination
pairs with an appropriately chosen vertical section consisting
of relay nodes. Denote by S, D, and R the source, destination,
and relay nodes, respectively. By construction |S| = |D|.
Moreover, with high probability,

1
2
n/49 ≤ |S| = |D| ≤ 2n/49 (2)

and
1
2
n/7 ≤ |R| ≤ 2n/7. (3)

Note that, by the choice of relay nodes,

2−α/4 ≤ |hs,r(t)|, |hr,d(t)| ≤ 7α/2, (4)

for all s ∈ S, r ∈ R, d ∈ D, in any time slot t.
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θr3,d(t′)

θs,r1 (t)

r2

r3

θs,r3 (t)

θs,r2 (t)

θr2,d(t′)

Fig. 2. Coherent beamforming from relays {r1, r2, r3} to destination node
d through phase-aligned amplify-and-forward. The time slot t′ is chosen such
that θs,ri (t) ≈ −θri,d(t

′) for all i ∈ {1, 2, 3}.



The communication scheme consists of two stages. The
sources transmit in stage I. The relays receive in stage I and
transmit a scaled copy of their observations to the destinations
in stage II, appropriately reshuffled, as described next.

For each (s, r) ∈ S × R, quantize the phase θs,r(t) of
the channel gain hs,r(t) into 8 equal divisions of [0, 2π), and
call the resulting quantized phase θ̂s,r(t). Perform the same
quantization procedure for (r, d) ∈ R × D. The quantized
channel space H has size

|H| = 8|S||R|+|R||D| = 82|R||S|.

Consider the channel output at the relays R at time t1. The
relays forward a scaled version of this channel output at time
t2 such that θ̂s,r(t1) = −θ̂r,d(t2) for all s ∈ S, r ∈ R, d ∈ D
with d the intended destination for source s. Note that this
means the non-quantized phases satisfy

|θs,r(t1) + θr,d(t2)| ≤ π/4, (5)

for a source-destination pair (s, d) and for any relay node
r ∈ R. In other words, the phase alignment ensures that the
forwarded signal is (approximately) beamformed by the relays
to the desired destination (see Fig. 2).

Note that with the above procedure, times of reception at
the relay in stage I and times of retransmission in stage II are
paired up. We now argue that in a large enough block, most
time slots can be successfully paired in this manner.

Given a block of length L, each quantized phase state
appears in stage I as well as stage II at least L(1−δ)/|H| and
at most L(1 + δ)/|H| times with probability at least 1− |H|

4Lδ2 ,
for any δ > 0 [16, Lemma 1.2.12]. Fix δ = 1/2. By choosing
L large, this probability can be made as close to 1 as desired.
Consider now two such blocks of length L. The first block
is used for stage I of the communication scheme, and the
second block for stage II. Match the first L/2|H| copies of
each quantized phase state in stage I with the corresponding
first L/2|H| copies in stage II. The unpaired time slots are
not used for any transmission, resulting in a loss in rate of at
most a factor 2 w.h.p.

Consider the following two paired time slots t1, t2, and let
(s1, d1) be a specific source-destination pair. Note that, by the
pairing procedure, t2 > t1. In stage I, each source transmits
according to an independently generated Gaussian codebook
with average power constraint 1/n. Relay r receives

yr(t1) =
∑
s∈S

hs,r(t1)xs(t1) + zr(t1).

The received signal yr(t1) has average power

E
[
|yr(t1)|2

]
=

1
n

∑
s∈S
|hs,r(t1)|2 + 1

≤ 1
n
|S|7α + 1

≤ 2 · 7α

49
+ 1 =: σ2,

where we have used (4) for the first inequality and (2) for
the second one. In stage II, each relay node r rescales its

observation yr(t1) by a factor 1/σ
√
n and transmits at time

t2, xr(t2) := 1
σ
√
n
yr(t1). Note that E

[
|xr(t2)|2

]
≤ 1

n , and
hence the signal transmitted at the relay nodes satisfies an
average power constraint of 1/n. The destination d1 for source
s1 receives

yd1(t2) =
∑
r∈R

hr,d1(t2)xr(t2) + zd1(t2)

=
1

σ
√
n

∑
s∈S

(∑
r∈R

hs,r(t1)hr,d1(t2)

)
xs(t1)

+
1

σ
√
n

∑
r∈R

hr,d1(t2)zr(t1) + zd1(t2).

The received signal yd1(t2) at destination d1 has three
components: The desired signal, interference, and noise. Con-
ditioned on the the channel gains, the desired signal at d1 is
NC(0, P (t1, t2)) with

P (t1, t2) :=
1

σ2n2

∣∣∣∑
r∈R

hs1,r(t1)hr,d1(t2)
∣∣∣2.

Again conditioned on the channel gains, the interference at d1

is NC(0, I(t1, t2)) with

I(t1, t2) :=
∑
s 6=s1

Is(t1, t2),

and where

Is(t1, t2) :=
1

σ2n2

∣∣∣∑
r∈R

hs,r(t1)hr,d1(t2)
∣∣∣2,

is the interference power due to source s. Conditioned on the
channel gains, the noise at d1 is NC(0, N(t1, t2)) with

N(t1, t2) :=
1
σ2n

∑
r∈R
|hr,d1(t2)|2 + 1.

Let A denote the event θ̂s,r(t1) = −θ̂r,d(t2) ∀ s ∈ S, r ∈
R, d ∈ D with (s, d) being a source-destination pair. By using
sub-codes of length L/2|H| and appropriate rate for each
quantized channel state, over the two blocks of length L we
can hence achieve a rate from s1 to d1 of

R =
1

196
E
[

log
(

1 +
P (t1, t2)

I(t1, t2) +N(t1, t2)

)∣∣∣∣A] , (6)

where the expectation is over the channel gains, and where the
factor 1/196 accounts for the loss of 1/2 due to transmitting
over two blocks of length L, the loss of 1/2 due to only pairing
up half of each block, and the loss of 1/49 due to time sharing
between all 49 possible source-destination sectors.

We now analyze the terms appearing in (6). Conditioned on
A, we have

P (t1, t2) =
1

σ2n2

∣∣∣∑
r∈R

hs1,r(t1)hr,d1(t2)
∣∣∣2

≥ 1
σ2n2

(
|R|2−α/2 cos(π/4)

)2

≥ 1
196 · 2α+1σ2

, (7)



where the first inequality follows from (4) and (5), and the
second inequality follows from (3). Now note that, condi-
tioned on A and for s ∈ S, s 6= s1, the random variables
{θs,r(t1), θr,d1(t2) : r ∈ R} are mutually independent. Thus,

E[Is(t1, t2)|A] = E
[

1
σ2n2

∣∣∣∑
r∈R

hs,r(t1)hr,d1(t2)
∣∣∣2∣∣∣∣A]

(a)
=

1
σ2n2

∑
r∈R
|hs,r(t1)|2|hr,d1(t2)|2

(b)

≤ 2 · 72α−1

σ2n
,

where in (a) we have used that the cross terms upon expanding
the square yield zero in expectation from the conditional
mutual independence noted earlier, and where (b) follows from
(3) and (4). Thus, we have

E[I(t1, t2)|A] ≤ |S|2 · 7
2α−1

σ2n
≤ 4 · 72α−3

σ2
, (8)

where we have used (2). Finally, still conditioned on A,

N(t1, t2) =
1
σ2n

∑
r∈R
|hr,d1(t2)|2 + 1 ≤ 2 · 7α−1

σ2
+ 1, (9)

where we have used (4) and (3).
Combining this with (6), we can achieve a rate R per source-

destination pair of at least

R =
1

196
E
[

log
(

1 +
P (t1, t2)

I(t1, t2) +N(t1, t2)

)∣∣∣∣A]
(a)

≥ 1
196

E
[

log
(

1 +
1/(196 · 2α+1σ2)

Is(t1, t2) + 2 · 7α−1/σ2 + 1

)∣∣∣∣A]
(b)

≥ 1
196

log
(

1 +
1/(196 · 2α+1σ2)

E[Is(t1, t2)|A] + 2 · 7α−1/σ2 + 1

)
(c)

≥ 1
196

log
(

1 +
1/(196 · 2α+1σ2)

4 · 72α−3/σ2 + 2 · 7α−1/σ2 + 1

)
:= K ′1.

Here (a) follows from (7) and (9) and monotonicity, since
log(1+ x

y+z ) is monotonically increasing in x for fixed y, z >
0 and monotonically decreasing in z for fixed x, y > 0; (b)
follows from convexity of log(1+ x

y+z ) in y for fixed x, z > 0
and Jensen’s inequality; (c) follows from (8) and again from
monotonicity, since log(1 + x

y+z ) is monotonically decreasing
in y for fixed x, z > 0. Note that the constant K ′1 depends
only on α. Thus, it is possible to achieve a constant rate per
user while using a power of 1/n per node, so

C̃(n) ≥ K ′1n = K ′1n
e(0,α),

for α ∈ [2, 3). This proves Lemma 2 for ν = 0.
Now, consider a network with arbitrary area-scaling ex-

ponent ν, i.e., a square of area nν , in which n nodes are
placed uniformly at random. By scaling up power by a factor
nαν/2, we can make this network behave like a dense one.

Thus, running the above phase-aligned amplify-and-forward
scheme with power constraint nαν/2−1, we achieve a constant
throughput K ′1 per node. This shows that

C̃(n) ≥ K ′1n1−αν/2 = K ′1n
e(ν,α),

for α ∈ [2, 3) and ν ≥ 0, proving Lemma 2.

V. CONCLUSION

We have characterized the scaling of the capacity per unit
energy of large wireless networks under a Gaussian phase-
fading model with power path-loss exponent α ≥ 2. We have
provided a new achievable scheme, phase-aligned amplify-
and-forward, that is scaling-optimal for the capacity per unit
energy in the low path-loss regime, 2 ≤ α ≤ 3. We also have
shown that the multi-hop communication scheme is scaling-
optimal in the high path-loss regime, α ≥ 3. One drawback
of our proposed phase-aligned amplify-and-forward scheme is
the large delay associated with it. Constructing schemes that
match the performance of phase-aligned amplify-and-forward,
but have smaller delay, would be of interest.
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